Q. P. Code: 11222 **(6)** ## TOTAL MARKS: 60; TOTAL TIME: $2\frac{1}{2}$ HRS. | , | All questions are compulsory. All questions carry equal marks. | N. W. W. | |--------------------------------------|---|--------------------------------| | 3) | In the first four questions attempt any two subquestions from (a) , (b) , (c) . In the fifth question attempt any four subquestions out of six . | 200 | | (a) (b) | Let E be an algebraic extension of k and let $\sigma: E \to E$ be an embedding of E into its over k . Prove that σ is an automorphism of E . (i) Let $E = F(\alpha)$, where $\alpha \in E$ is algebraic over F of degree 2017. Show that $E = F(\alpha)$ | 6 | | | (3) (ii) Find the degree over \mathbb{Q} of the splitting field of X^5-7 with correct justification. (| (3 | | (c) | (ii) Define the term: algebraically closed field. Prove that if k is an algebraically closed | (3
se
(3 | | (a)(b) | (i) With correct justification, construct a tower of field extensions $k \subset K \subset F$ with F | 6 | | | (ii) Define the term: separable closure. Determine the separable closure of $\mathbb{Q}(\sqrt{2})$ over (3) | ` | | | Prove that all finite, separable extensions form a distinguished class. Let H be a finite group of automorphisms of a field K . Then prove that K is a Gal | (6 | | | extension of its fixed field K^H . Further show that H is the Galios group of K/K^H . | 6 | | . , | | 66 | | 4. (a) | Let F be a field of characteristic zero such that F does not contain any primitive n -th roof unity. Let $a \in F$. If K is the splitting field of $X^n - a$ over F , then prove that the Galgroup of K over F is solvable. | | | (b) | | (3) | | (c) | Let A, B be lines or circles defined by linear or quadratic equations respectively, that has | ιv | | | coefficients in a subfield F of the real numbers. Then prove that the points of intersection F and F have coordinates in F , or in a real quadratic field extension F' of F . | (6) | --TURN OVER- - 5. (a) Let τ be the map $\tau: \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{3})$ defined by $\tau(a+b\sqrt{3}) = a-b\sqrt{3}$. Prove that τ is an automorphism of $\mathbb{Q}(\sqrt{3})$. Find the fixed field of τ . - (b) Let K be an extension of a field F of finite degree n. Let $\alpha \in K$. Prove that α is algebraic over F and its degree divides n. - (c) Prove that every constructible real number is algebraic. State clearly all results used. (3) - (d) Define the terms: normal extension, Galois extension. Is the extension $\mathbb{Q}(\sqrt[4]{2})$ a Galois extension of \mathbb{Q} ? Justify. - (e) Determine the degree of the splitting field of the polynomial $X^4 1$ over \mathbb{Q} with correct justification. - (f) Let \mathbb{F}_p denote the finite field of characteristic p, where p is a prime. Prove that for any polynomial $f(X) \in \mathbb{F}_p[X]$, $f(X)^p = f(X^p)$.