Q. P. Code: 11222

(6)

TOTAL MARKS: 60; TOTAL TIME: $2\frac{1}{2}$ HRS.

,	All questions are compulsory. All questions carry equal marks.	N. W. W.
3)	In the first four questions attempt any two subquestions from (a) , (b) , (c) . In the fifth question attempt any four subquestions out of six .	200
 (a) (b) 	Let E be an algebraic extension of k and let $\sigma: E \to E$ be an embedding of E into its over k . Prove that σ is an automorphism of E . (i) Let $E = F(\alpha)$, where $\alpha \in E$ is algebraic over F of degree 2017. Show that $E = F(\alpha)$	6
	(3) (ii) Find the degree over \mathbb{Q} of the splitting field of X^5-7 with correct justification. ((3
(c)	(ii) Define the term: algebraically closed field. Prove that if k is an algebraically closed	(3 se (3
(a)(b)	(i) With correct justification, construct a tower of field extensions $k \subset K \subset F$ with F	6
	(ii) Define the term: separable closure. Determine the separable closure of $\mathbb{Q}(\sqrt{2})$ over (3)	`
	Prove that all finite, separable extensions form a distinguished class. Let H be a finite group of automorphisms of a field K . Then prove that K is a Gal	(6
	extension of its fixed field K^H . Further show that H is the Galios group of K/K^H .	6
. ,		66
4. (a)	Let F be a field of characteristic zero such that F does not contain any primitive n -th roof unity. Let $a \in F$. If K is the splitting field of $X^n - a$ over F , then prove that the Galgroup of K over F is solvable.	
(b)		(3)
(c)	Let A, B be lines or circles defined by linear or quadratic equations respectively, that has	ιv
	coefficients in a subfield F of the real numbers. Then prove that the points of intersection F and F have coordinates in F , or in a real quadratic field extension F' of F .	(6)

--TURN OVER-

- 5. (a) Let τ be the map $\tau: \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{3})$ defined by $\tau(a+b\sqrt{3}) = a-b\sqrt{3}$. Prove that τ is an automorphism of $\mathbb{Q}(\sqrt{3})$. Find the fixed field of τ .
 - (b) Let K be an extension of a field F of finite degree n. Let $\alpha \in K$. Prove that α is algebraic over F and its degree divides n.
 - (c) Prove that every constructible real number is algebraic. State clearly all results used. (3)
 - (d) Define the terms: normal extension, Galois extension. Is the extension $\mathbb{Q}(\sqrt[4]{2})$ a Galois extension of \mathbb{Q} ? Justify.
 - (e) Determine the degree of the splitting field of the polynomial $X^4 1$ over \mathbb{Q} with correct justification.
 - (f) Let \mathbb{F}_p denote the finite field of characteristic p, where p is a prime. Prove that for any polynomial $f(X) \in \mathbb{F}_p[X]$, $f(X)^p = f(X^p)$.

