$(2^{1}/_{2}\text{Hours})$ [Total Marks: 60

- **N.B.**: (1) All questions are compulsory.
 - (2) **Figures** to the **right** indicate **full** marks.
 - (3) Draw neat diagrams wherever necessary.
 - (4) Symbols have usual meanings unless otherwise stated.
- 1. (a) Attempt any one:---

08

(i) Obtain the expression

$$\frac{d}{dt}(\overline{P}_{mech} + \overline{P}_{field}) = \frac{1}{4\pi} \int_{V} [(\overline{\nabla} \cdot \overline{E})\overline{E} + (\overline{\nabla} \cdot \overline{B})\overline{B} + (\overline{\nabla} \times \overline{E}) \times \overline{E} + (\overline{\nabla} \times \overline{B}) \times \overline{B}] dV$$

For momentum conservation.

- (ii) Obtain the expression for the energy conservation law of electrodynamics. Give the physical interpretation of poynting vector \overline{S} .
- (b) Attempt any one:---

04

- (i) Derive the continuity equation from Maxwell's equations.
- (ii) Explain why the tails of the comets are always directed away from the Sun.
- 2. (a) Attempt any one:---

08

- (i) From Maxwell's equations in vacuum (for $\rho=0$ and j=0). Obtain the wave equation . For Partial solution $\overline{E}=\overline{E}_0e^{i(k.r-\omega t)}$ and $\overline{B}=\overline{B}_0e^{i(k.r-\omega t)}$, Show that $\overline{k},\overline{E}$ and \overline{B} in that order form an orthogonal right handed system. Also show that $E_0=B_0$
- (ii) For the simplest atomic model (where we imagine electron elastically bound to the atomic nucleus and performing damped harmonic oscillations of frequency ω_0). Obtain the expression for atomic polarizability α (ω). Hence comment on the frequency dependence of polarizability.
- (b) Attempt any one:---

04

(i) For plane harmonic waves in matter obtain the following relation

$$\overline{k} \times \overline{E} = \frac{\omega}{c} \mu \overline{H}$$

P.T.O.

(ii) Distinguish TE,TM and TEM waves on the basis of boundary conditions.

3. (a) Attempt any one:---

08

(i) The LienardWiechert electric field of a point charge is given by:

$$\vec{E} = e \left[\frac{\left(\hat{n} - \hat{\beta}\right)(1 - \beta^2)}{k^3 R^2} + \frac{\hat{n} \times \{(\hat{n} - \vec{\beta}) \times \vec{a}\}\}}{c^2 k^3 R} \right]$$

Where the symbols have their usual meaning.

Using this relation show that the power radiated, P, by a non relativistic charged particle is given by

$$P = \frac{2}{3} \frac{e^2 a^2}{c^3}$$

(ii) Define retarded potential and show that it leads to the generalized Coulomb's law:

$$\vec{E}(\vec{r},t) = \int \left[\frac{\rho}{R^2} \hat{e}_R + \frac{1}{cR} \frac{\partial \rho}{\partial t} \hat{e}_R - \frac{1}{c^2 R} \frac{\partial \vec{J}}{\partial t} \hat{e}_R \right] d\tau'$$

Where $\overrightarrow{R} = \overrightarrow{r} - \overrightarrow{r}'$. When does it reduce to the fundamental form of Coulomb's law?

(b) Attempt any one:---

04

- (i) Obtain Lorentz force law in terms of scalar potential ϕ and vector potential \vec{A} .
- (ii) In the use of multipole expansion in the context of radiation, we make three assumptions. Explain them.
- 4. (a) Attempt any one:---

08

- (i) Construct Energy Momentum Tensor (asymmetric form) $T^{\alpha\beta}$. Derive an expression for the conservation of energy using it.
- (ii) Construct field strength tensor $F^{\alpha\beta}$ and Lorentz transformation matrix Λ for frames with common x x' axes and relative velocity v. and show how fields transform. (You can use covariant or contra variant notations)
- (b) Attempt any one:---

04

- (i) State and explain the postulates of special theory of relativity.
- (ii) State the properties of Lorentz transformation matrix.
- 5. Attempt any **four:---**

12

(i) Write Maxwell's equations in differential form.

P.T.O.

- (ii) A wire is has resistance R, a potential difference of V volts is applied across its length L If the radius of the wire is a, find the Poynting vector at the surface of the wire.
- (iii) The components of instantaneous electric fields in a plane wave propagated in Z direction are E_x = E_1 Cos (kz- ω t) and E_y = E_2 Sin (kz- ω t). Comment on the state of polarization of the wave.
- iv) Explain: 'Phase velocity and group velocity are equal in non dispersive medium.'
- (v) What is the gauge transformation? State the Coulomb gauge and Lorentz gauge.
- (vi) The LienardWiechert electric field of a point charge is given by:

$$\vec{E} = e \left[\frac{\left(\hat{n} - \hat{\beta}\right)(1 - \beta^2)}{k^3 R^2} + \frac{\hat{n} \times \{(\hat{n} - \vec{\beta}) \times \vec{a}\}\}}{c^2 k^3 R} \right]$$

Write the term responsible for radiation. Explain.

(vii) Using $\Lambda_{\mu}^{\alpha}\Lambda_{\nu}^{\beta}g^{\mu\nu} = g^{\alpha\beta}$ show that

$$(ds)^2 = dx^{\sigma} dx^{\epsilon} g_{\sigma\epsilon}$$

is invariant under Lorentz transformation.

(viii) Write down the components of ∂^{α}