(3 Hours) [Total Marks: 60]

N.B.

- i. Attempt any **TWO** questions among question numbers 1, 2, 3, and any **TWO** questions among questions 4, 5, 6.
- ii. Figures to the right indicate full marks.
- iii. Simple non-programmable calculator is allowed
- 1. (a) Derive the UMPU test for testing $H_0: p = p_0$ against $H_1: p \neq p_0$ (07) when $X_1, X_2, ..., X_n$ are iid Bernoulli (p) random variables.
 - (b) A coin, with probability p of falling heads, is tossed independently 100 times and 60 heads are observed. Use the UMPU test for testing the hypothesis $H_0: p = 1/2$ against the alternative $H_1: p \neq 1/2$, at level of significance $\alpha = 0.1$.
 - (c) Define an α -similar test. When do you say an α similar test (04) has Neyman structure?
- 2. (a) Let $X_1, X_2, ..., X_m$ and $Y_1, Y_2, ..., Y_n$ be independent samples from $N(\mu, 1)$ and $N(\eta, 1)$ respectively. Find a UMPU test of size α for testing $H_0: \mu \le \eta$ against $H_1: \mu > \eta$.
 - (b) Let $x_1, x_2, ..., x_n$ be a random sample from $N(\mu, \sigma^2)$. Show that the UMPU test for testing $H_0: \mu \le 0$ against $H_1: \mu > 0$ is UMP invariant. (The MLR property of non-central Student's t-distribution may be assumed without proof).
- 3. (a) Let $X_1, X_2, ..., X_n$ be a random sample of size n having probability density function $f(x, \theta)$. Construct a locally most powerful unbiased test of size α for testing $H_0: \theta = \theta_0$ against $H_1: \theta \neq \theta_0$.

- (b) Let $X_1, X_2, ..., X_m$ and $Y_1, Y_2, ..., Y_n$ be iid. Observations from Poisson (μ) and Poisson (λ) respectively. Find a Neyman structure test for $H_0: \mu = \lambda$ against $H_1: \mu > \lambda$.
- 4. (a) Show that for bivariate normal distribution kendall's coefficient τ is given by $\tau = \frac{2}{\pi} \sin^{-1} \rho$. Find an unbiased estimator of τ and express it in the form resembling ordinary correlation coefficient.
 - (b) Obtain expression for Spearman's rank correlation coefficient (06) in terms of differences of ranks. Show that it satisfies criteria of good measure of association.
- 5. (a) Generate by enumeration the exact null probability distribution (09) of k-sample median test for k = 3, $n_1 = 1$, $n_2 = 2$, $n_3 = 1$. If the rejection region consists of those arrangements which are least likely under the null hypothesis, find the rejection region R and exact α .
 - (b) How is Kruskal-Wallis test different from k sample median (06) test? Describe Kruskal-Wallis test.
- 6. (a) Show that SPRT terminates with probability one. (07)
 - (b) Let $X_1, X_2, ...$ be iid B(1, p) random variables. Write SPRT procedure to test $H_0: p = p_0$ against $H_1: p = p_1 > p_0$. Derive the OC and ASN functions. Prepare table showing values of the functions at five standard points.
