(3 Hours) [Total Marks: 60

N.B.

- i. Attempt any **TWO** questions among question numbers 1, 2, 3, and any **TWO** questions among questions 4, 5, 6.
- ii. Figures to the right indicate full marks.
- iii. Simple non-programmable calculator is allowed.
- 1. (a) Let \underline{X} be a $_{p \times 1}$ random vector with $E(\underline{X}) = \underline{0}$ and $V(\underline{X}) = \Sigma$. (09) Define multiple correlation coefficient and partial correlation coefficient. In usual notation prove that $1 \rho_{1.23 \dots p}^2 = \left(1 \rho_{12.34 \dots p}^2\right) \left(1 \rho_{13.4 \dots p}^2\right) \left(1 \rho_{14.5 \dots p}^2\right) \dots \left(1 \rho_{1p-1.p}^2\right) \left(1 \rho_{1p}^2\right)$
 - (b) Derive the Hotelling's τ^2 statistic for testing $H_0: \mu_1 = \mu_2 = \dots = \mu_p$ (06) based on a random sample of size n from $N_p(\mu, \Sigma)$ where Σ is unknown.
- 2. Consider k independent p-variate normal populations given by $N_p(\underline{X}_{\alpha}, \underline{\mu}_{\alpha}, \Sigma_{\alpha})$; $\alpha = 1, 2, ..., k$. Derive the Likelihood Ratio Test to test the following two null hypotheses.
 - (i) $H_a: \Sigma_1 = \Sigma_2 = ... = \Sigma_k (\mu_\alpha \text{ unknown } : \alpha = 1, 2, ..., k.)$
 - (ii) $H_b: \mu_1 = \mu_2 = \dots = \mu_k ; \Sigma_1 = \dots \Sigma_k$

Give the corresponding asymptotic distributions.

- 3. (a) State the model, and hypothesis of a two-way multivariate analysis (11) of variance (MANOVA) and explain every term in the model.

 Draw the MANOVA table and discuss the testing procedure.
 - (b) Let $\underline{X} = (X_1, X_2, ..., X_p)'$ with $E(\underline{X}) = \underline{0}$ and $V(\underline{X}) = \Sigma$. Prove in usual notations that $\rho_{1,23...p}$ is the maximum correlation between X_1 and any other linear function of \underline{X}^* where $\underline{X}^* = (X_2, ..., X_p)'$

- 4. (a) Define population canonical correlations and population canonical variates. Give geometrical interpretation of the population canonical correlation analysis.
 - (b) Let $\underline{z}^{(1)} = V_{11}^{-1/2} \left(\underline{x}^{(1)} \underline{\mu}^{(1)} \right)$ and $\underline{z}^{(2)} = V_{22}^{-1/2} \left(\underline{x}^{(2)} \underline{\mu}^{(2)} \right)$ be two vectors of standardized variables. If $\rho_1^*, \rho_2^*, \dots, \rho_p^*$ are the canonical correlations for the vectors $\underline{x}^{(1)}, \underline{x}^{(2)}$ and $(U_i, V_i) = \left(\underline{a}_i' \underline{x}^{(1)}, \underline{b}_i' \underline{x}^{(2)} \right)$, $i = 1, 2, \dots, p$ are the associated canonical variates, determine the canonical correlations and canonical variates for the $\underline{z}^{(1)}, \underline{z}^{(2)}$.
 - (c) Show that if λ_i is an eigenvalue of $\sum_{11}^{-1/2} \sum_{12} \sum_{22}^{-1} \sum_{21} \sum_{11}^{-1/2}$ with associated eigenvector \underline{e}_i , λ_i is also an eigenvalue of $\sum_{11}^{-1} \sum_{12} \sum_{22}^{-1} \sum_{21}$, with eigenvector $\sum_{11}^{-1/2} \underline{e}_i$, thereby giving an alternative calculation of canonical correlations and variates.
- 5. (a) Let π_1 population be $N_p(\underline{\mu}_1, \Sigma)$ and π_2 population be $N_p(\underline{\mu}_2, \Sigma)$. (05) Show that the estimated minimum expected cost of misclassification (ECM) rule is given by

 Allocate \underline{x}_0 to π_1 if $(\underline{x}_1 \underline{x}_2)' s_{pooled}^{-1} \underline{x}_0 \frac{1}{2} (\underline{x}_1 \underline{x}_2)' s_{pooled}^{-1} (\overline{x}_1 + \overline{x}_2) \ge \ln \left[\left(\frac{c(1/2)}{c(2/1)} \right) \left(\frac{p_2}{p_1} \right) \right]$

Allocate \underline{x}_0 to π , otherwise

- (b) For two populations show that $\frac{\left(\sup_{\text{population s means to the overall mean}}\right)}{\left(\text{variance of y}\right)}$ is proportional to $\frac{\left(\underline{\underline{l}'} \underline{\delta}\right)^2}{\underline{\underline{l}'} \Sigma \underline{\underline{l}}}$ where $\underline{\delta} = \left(\underline{\mu}_1 \underline{\mu}_2\right)$. Further, show that this ratio is maximized by the linear combination $\underline{\underline{l}} = c \Sigma^{-1} \underline{\delta} = c \Sigma^{-1} \left(\underline{\mu}_1 \underline{\mu}_2\right), c \neq 0.$
- (c) Derive Fisher's discriminant function and the classification rule for two multivariate normal populations. (04)

- 6. (a) Show that canonical correlations are invariant under nonsingular linear transformations of the form $c \underline{x}^{(1)}$ and $b \underline{x}^{(2)}$ of the $\underline{x}^{(1)}, \underline{x}^{(2)}$ variables.
 - (b) Show that the first canonical correlation is larger than the absolute (05) value of any entry in ρ_{12} , in usual notations.