[Time: 3 Hours] [Marks:70]

Please check whether you have got the right question paper.

- N.B: 1. All questions are compulsory.
 - 2. Use of simple calculator is allowed.
 - 3. Figures to the right indicate full marks.
- **Q.1** (A) Attempt any 7 [2 marks each]:

1) The value of
$$\int_{2}^{5} (3x^2 + 2x + 1) dx$$
 is:

- a) 411
- b) 141
- c) 142
- d) 35
- 2) If $\begin{vmatrix} 2 & x \\ 1 & 4 \end{vmatrix} = \begin{vmatrix} x & 6 \\ 2 & 4 \end{vmatrix}$ then the value of x is:
 - a) 1
 - b) -2
 - c) 4
 - d) 2
- 3) The N^{th} derivative of $f(x) = \log(2x+1)$ is:

a)
$$y_n = \frac{1}{2(2x+1)}$$

a)
$$y_n = \frac{1}{2(2x+1)}$$

b) $y_n = \frac{(1)^{n-1}(n-1)!2^n}{(2x+1)^n}$
c) $y_n = \frac{(1)^n(n)!2^n}{(2x+1)^n}$
d) $y_n = \frac{(1)^n(n-1)!2^n}{(2x+1)^n}$

c)
$$y_n = \frac{(1)^n (n)! 2^n}{(2x+1)^n}$$

d)
$$y_n = \frac{(1)^n (n-1)! 2^n}{(2x+1)^n}$$

- 4) For $f(x,y)=x^2+xy+y^2$, the value of $\frac{\partial^2 f}{\partial x^2}$ is:
 - a) 2x+y
 - b) 1
 - c) 2
 - d) x+2y
- 5) If y=2x, then Δy by taking h=1 is:
 - a) 4
 - b) 2
 - c) 3
 - d) 1
- 6) If $A = \begin{bmatrix} k & k & 4 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ is a singular matrix, then value of k is:
 - a) 5/4
 - b) 5/2

- c) 15/4
- d) 40/8
- 7) The solution of the differential equation x dx+y dy=0 is:
 - a) $x^2 + y^2 = c$
 - b) $x^2 y^2 = c$
 - c) x+y=c
 - d) x-y=c
- 8) The value of $\int log x \ dx$ is:
 - a) xlogx-1+c
 - b) xlogx+1-c
 - c) x(logx+1)+c
 - d) x(log x-1)+c
- 9) General solution for the differential equation (D³-6D²+9D)y=0 is:
 - a) $(c_1x+c_2)e^{3x}+c_3$
 - b) $c_1e^{3x}+c_2e^{3x}+c_3e^{0x}$
 - c) $(c_1x+c_2x)e^{3x}+c_3$
 - d) $(c_1x+c_2)e^{3x}+c_3e^{3x}$
- (B) Attempt any 1:
 - 10) The value of $\int_{-2}^{2} x^5 dx$ is:
 - a) 16/3
 - b) 8/3
 - c) 0
 - d) 3/16
 - 11) Which of the following is not a homogeneous differential equation?
 - a) f(x,y)=2x-9y
 - b) $f(x,y)=3x^2-7y^2$
 - c) $f(x,y)=x^2+3y^2-1$
 - d) a and b
- Q.2 (A) Attempt any two (4 marks each)
 - 1) Find the Nth derivative of $y = \frac{2x+1}{x^2+3x+2}$
 - 2) Using Maclaurin's series, give the expansion of f(x)=cosx
 - 3) Examine the function f(x,y)=xy(3-x-y) for maxima and minima.
 - (B) Attempt any one (3 marks)
 - 1) State Roil's Mean Value Theorem. Use it to verify for $f(x)=x^2-5x+6$ in [2,3]
 - 2) Differentiate the equation: (1+x2)y2-xy1+y=0, n times w.r.t.x.
- Q.3 (A) Attempt any two (4 marks each)
 - 1) Obtain the reduction formula for $\int_0^{\frac{\pi}{2}} Sin^n x \, dx$, hence evaluate $\int_0^{\frac{\pi}{2}} Sin^{10} x \, dx$

2

1

8

3

8

- 2) Find the whole area of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$
- 3) Evaluate : $\int_0^{\frac{\pi}{2}} Sin^4 x \ dx$
- (B) Attempt any one (3 marks)
 - 1) The portion of the curve $x^2=9y$ between x=0 and x=3 is revolved about x-axis. Find the volume of solid of revolution.
 - 2) By using the properties of Definite integral, Prove $\int_0^{\pi/2} \left(\frac{\cos x}{\sin x + \cos x}\right) dx = \frac{\pi}{4}$
- Q.4 (A) Attempt any two (4 marks each)
 - 1) By using the Adjoint method, find the inverse of the matrix $A = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$
 - 2) Find the Eigen values and one of the Eigen vectors of the matrix: $\begin{bmatrix} 2 & -1 & 1 \\ 2 & 2 & -1 \\ 1 & 2 & -1 \end{bmatrix}$
 - 3) Verify Cayley Hamilton theorem for the matrix A= $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - (B) Attempt any one (3 marks)
 - Solve the following equations by Cramer's rule: x+y=3, y+z=5, x+z=4
 - 2) Find the Rank of the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$
- Q.5 (A) Attempt any two (4 marks each)
 - 1) Solve $(x^3+y^3)dy=x^2y dx$
 - 2) Solve (1-x) dy-(1+y) dx=0. Also find the particular solution, if y=2 when x=1
 - 3) Find the particular solution of (D³-D²-D+1)y=0, when x=0, y=1 and $\frac{dy}{dx}=0$
 - (B) Attempt any one (3 marks)
 - 1) Form the differential equation for y=ae^x+be^{-x}, where a, b are arbitrary constants.
 - 2) Solve the following homogeneous differential equations: $\frac{dy}{dx} = \frac{xy+y^2}{x^2+xy}$
- Q.6 (A) Attempt any two (4 marks each)
 - 1) Using Lagrange's interpolation formula obtain a polynomial which passes via the points (0,5),(1,-1) and (3,13).
 - 2) Given:

VAVOVA O VO, A, M. V	N ~ Y ~	\begin{align*} \text{2} \text{2}			
x 1 3	5	7	9	11	13
f(x) 5 21	53	101	165	245	341

Find $\int_{1}^{13} f(x)dx$, using Simpson's $1/3^{rd}$ rule.

3

8

3

8

3

8

3) Estimate the missing term by using E and Δ from the following:

Х	0	1	2	3	4
Υ	1	3	9	-	81

- (B) Attempt any one (3 marks)
 - 1) Estimate the value of f(x) at x=2.65 from the following data by Newton's forward difference formula.

Х	-1	0	1	2	3
f(x)	-21	6	15	12	3

2) Solve $\left(\frac{\Delta^2}{E}\right) x^3$ by taking h=1

3