Q.P.Code: 09180

[Total Marks: 60]

N.D.	(2) Descriptions are compulsory.	
	(2) Draw neat diagrams wherever necessary.	
	(3) Figures to the right indicate full marks.	
	(4) Use of scientific calculator is allowed.	
0.1 (/	A) Attempt any one:	(8)
(,, (,	1) Explain the frequency dependence of the real part of permittivity in dielectric solids.	(-)
	Clearly indicate the ranges of ionic, dipolar and electronic contributions to the	
	permittivity.	
	2) For a homogeneous linear dielectric with n atoms per unit volume, placed in an unifo	rm
	electric field E, find the local field in the medium and hence find the Clausius-Mosso	
	relation for the dielectric susceptibility χ .	
	Totalion for the discount succeptioning to	
((B) Attempt any one:	(4)
	1) Explain the concept of Lorentz Oscillator.	
	2) Discuss the P-E loop in ferroelectric materials.	
Q.2	(A) Attempt any one:	(8)
	1) How electrical conductivity is derived in the semi-classical approach (Drude model)?	,
	Explain the features of this model.	
	·	
	2) Explain the concept of effective mass. Also discuss the motion of electrons in bands.	
0	B) Attempt any one:	(4)
()	1) Explain the Mathissen's rule.	(+)
	2) Explain the thermoelectric effect in brief.	
	2) Explain the thermoelectric crieet in orier.	
0.3(A	A) Attempt any one:	(8)
• •	1) Explain how hysteresis loop is formed in magnetic materials?	` '
	Explain different parameters in it.	
	2) Estimate ground state of various transition elements (3d) and rare earth elements (4f)	
	and determine Lande g-factor	
	#### #################################	
(E	3) Attempt any one:	(4)
	1) Sketch the hysteresis loop for hard and soft magnetic materials. Comment on it.	
	2) Define magetostriciton and its application.	
	(4) 444	(0)
Q.4	(A) Attempt any one:	(8)
	1) Explain the concept of High temperature superconductivity.	
	How it differs from conventional superconductivity?	
	2) Distinguish between Type I and Type II superconductors.	
	(B) Attempt any one:	(4)
	1) What are cooper pairs? How they are formed?	(1)
	2) How superconductors are perfectly diamagnetic? Discuss it.	

(2½ Hours)

Q.P.Code: 09180

2

Q.5 Attempt any four

(12)

- 1) Explain the IR spectroscopy in brief.
- 2) Write a note on Maxwell's equations.
- 3) Explain the Widemann Franz law for free electrons.
- 4) In a certain copper sample, the electron drift velocity is 2.16 m/s in an electric field of 500V/m. Estimate the electron mobility and relaxation time.
- 5) Explain the magetoresistance phenomenon and its applications.
- 6) On the basis of susceptibility how magnetic materials are classified?
- 7) Explain Meissner effect with neat diagrams.
- 8) List the applications of High Tc superconductors.