8

4

8

4

4

$(2^{1}/_{2}\text{Hours})$	[Total Marks : 60]

- **N.B.**: (1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Draw neat diagrams wherever necessary.
 - (5) Symbols have usual meaning unless otherwise stated.
 - (5) Use of **log-table** and **non-programmable** calculator is allowed.
- 1. (a) Attempt any one:---
 - (i) What is Random error and Systematic error? Explain in brief the different sources of random error.
 - (ii) Write short notes on
 - a. T Distribution
 - b. Poisson Distribution
 - c. Binomial Distribution
 - (b) Attempt any one:---
 - The data given below is of the lattice dimension c of the unit cell of 8 crystals 4 created by an experimenter in a lab. At $\alpha = 0.05$ level of significance, determine whether the sample mean of the values differs significantly from the published value of c = 1.1693 nm

c (in nn	7)	1 1685	1 1665	1 1672	1 1675	1 1695	1 1692	1 1702	1 1683
C (111 1111	ιj	1.1005	1.1005	1.10/2	1.10/5	1.10/5	1.10/2	1.1/02	1.1005

The t values for different confidence levels at n-1 degrees of freedom are as follows

No. of Values n	Degrees of Freedom	$t_{68\%}$	$t_{90\%}$	$t_{95\%}$	$t_{99\%}$
8	7	1.0703	1.8946	2.3647	3.4995
9	8	1.0602	1.8595	2.3060	3.3554
10	9	1.0525	1.8331	2.2622	3.2498

(ii) Find the mean and standard deviation for the following probability distribution function.

$$f(x) = \begin{cases} 0, & x < 0 \\ Ax^4 e^{-4x}, & 0 \le x < \infty \end{cases}$$

- 2. (a) Attempt any one:---
 - (i) With the help of a neat diagram explain the construction and working of a diffusion pump.
 - (ii) With the help of a neat diagram explain the construction and working of Pirani gauge. What is the ultimate pressure measured by Pirani gauge?
 - (b) Attempt any one:---
 - (i) Get the expression for conductance when pipes are connected in series.
 - (ii) What is desorption and outgassing? Explain both the phenomena.
- 3. (a) Attempt any one:---
 - (i) Explain the principle, construction and working of a linear drift tube accelerator. 8
 - (ii) Explain the working mechanism of Geiger Muller counter. Also describe the quenching phenomenon.

Turn Over

	(b)	(i) Distinguish between an electron synchrotron and proton synchrotron.(ii) What are the advantages of semiconductor detectors over gas filled detectors?	4
4.	(a)	Attempt any one: (i) With the help of energy level diagram explain the principle of Mossbauer spectroscopy. Describe its use in materials characterization.	8
		(ii) What is X-ray diffraction? With the help of neat labeled diagram, explain the construction and working of X-ray diffractometer. Discuss the θ -2 θ scan.	8
	(b)	Attempt any one: (i) What is the principle of photoelectron spectroscopy? Hence explain XPS as a characterization technique.	4
		(ii) What do you mean by Rutherford Backscattering? Discuss its use in Rutherford Backscattering Spectrometry (RBS) with the applications.	4
5.	(a)	Attempt any four: The assembly of a hybrid circuit requires the soldering of 58 electrical connections. If 0.2% of the electrical connections are faulty, what is the probability that an assembled circuit will have:	3
	(b)	 a. No faulty connection b. More than one faulty connection. Explain the terms briefly: a. True Value b. Population Mean c. Sample Mean 	3
	(c) (d)	Explain briefly any three leak detection methods. Draw a schematic diagram of a vacuum system neatly labeling all the parts.	3
	(e)	The pole pieces of a cyclotron are 1.6 m in diameter and provide a magnetic field of 2Wb/m^2 . What will be the energy of the protons and deuterons? Given: $m_p = 1.67 \times 10^{-27} Kg$ and $q = 1.6 \times 10^{-19} C$.	3
	(f)	A Gieger Muller counter has a dead time of 400 µsec. What is the true counting rate if the observed counting rate is 1000 per minute?	3
	(g)	Scanning of FCC cubic sample of InSb by X-rays with wavelength 0.154 nm exhibit a peak at $2\theta = 62.3^{\circ}$. If the diffraction is first order diffraction from the $\{3\ 3\ 1\}$ planes, calculate the lattice constant.	3
	(h)	Explain principal of UV-visible spectroscopy. State its advantages.	3

4A541268B83EDC45CA9D94208F7ECA52