Q.P. Code:08713

[Time: 2½ Hours] [Marks:60c]

Please check whether you have got the right question paper.

N.B:

- 1. **All** questions are **compulsory**.
- 2. **Figures** to the **right** indicate **full marks**.
- 3. Draw neat labeled diagrams wherever necessary.

Q.1	A)	1.	is a destructive detector in GC.	06
		2.	is used to study near absorption band of optically active compounds.	3
		3.	In 'Silica Gel 60F' F stands for	
		4.	Fronting of peaks are usually the result of	
		5.	The chiral stationary phase can be prepared by attaching chiral compound to the	
		6.	Heavy metals can be best estimated by	
Q.1	B)	Answe	r in one sentence (any 3)	06
		1.	Define derivatization in GC.	
		2.	Explain chamber saturation in HPTLC.	
			Give examples of universal and specific detectors of HPLC	
		4.	Give types of light sources used in AAS.	
		5.	Define column switching.	
Q.2	A)	Justify	"HPTLC is an improvised form of TLC" and add a note on HPTLC finger printing.	12
Q.2		Explain	in brief the principle, instrumentation of HPTLC and add a note on trouble shooting approaches	12
Q.3	A)	Discuss	the importance of automation in HPLC	06
	B)	Explain	the concept of column switching with respect to HPLC	06
Q.3		Give a	brief account on different type of detectors used in HPLC and elaborate on its applications.	12
Q.4	A)	How ar	e the detectors in GC classified? Give two examples of any one type of detector.	06
	B)	Justify	derivatization improves detectability of an analyte in GC".	06
	3		OR OR	
Q.4	300	What a	re various biological matrices? Why is it necessary to isolate analytes from biological matrices for GC	12
25.52 20.00		analysi	s? Explain with two examples.	
Q.5	A)	Justify	AAS is an important tool in analysis of heavy metals.	08
20,09	B)	Give th	e applications of XRD.	04
200	7,9		OR OR	
0.5	200	Give th	e principles instrumentation and applications of CD and ORD	12