Q.P.Code: 07072

[Total Marks:75]

(2) Figures to the right indicate marks for respective sub questions. Q1 (a) Attempt any **ONE** question. State and prove Wilson's Theorem. Also prove it's converse. Show that (08)n>1 is prime if and only if $(n-2)!\equiv 1 \pmod{n}$. Prove that a linear congruence $ax \equiv b \pmod{n}$ has solution if and only if (08)d/b where d=gcd(a,n). If d/b then prove that it has d mutually incongruent solutions modulo n. Find solutions of $24x \equiv 15 \pmod{21}$. (b) Solve any **TWO** questions: Prove that $ax \equiv ay \pmod{m}$ if and only if $x \equiv y \pmod{\frac{m}{(a,m)}}$. (06)Prove that if p is an odd prime, $1^p + 2^p + 3^p + \dots + (p-1)^p \equiv 0 \pmod{p}$ (ii) (06)p). Also prove that if p and q are distinct primes then $p^{q-1}+q^{p-1}\equiv 1 \pmod{pq}$ Define function $\varphi(n)$. Prove that for $n \ge 1$, $\sum_{d/n} \varphi(d) = n$. (iii) (06)(iv) Solve the system linear congruences (06) $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$ and $x \equiv 4 \pmod{9}$. Attempt any **ONE** question: Q2 (a) (08)Show that the equation $x^4 + y^4 = z^4$ has no solution in positive (i) integers. (ii) Show that a positive integer n is representable as the sum of two (08)squares if and only if each of its prime factors of the form 4k+3 occurs to an even power. (b) Solve any **TWO** of the following. Determine all solutions in positive integers of the Diophantine (i) (06)equation 5x+3y=52. Show that the equation $x^2 + y^2 = 9z + 3$ has no integral solution. (ii) (06)Show that the area of a Pythagorean triangle can never be equal to a (iii) (06)perfect (integral) square. Let p be an odd prime. If $p|a^2 + b^2$, where gcd(a, b) =1, prove that the (iv) (06)prime $p \equiv 1 \pmod{4}$.

REVISED COURSE

 $(2\frac{1}{2} \text{ Hours})$

N.B.: (1) All questions are compulsory.

Q3	(a)	Attempt any ONE question:	
	(i) (ii)	Explain RSA cryptosystem. Also write RSA algorithm. Define the term primitive root of integer n .Prove that if n has primitive root then it has exactly $\varphi(\varphi(n))$ primitive roots. Hence find number of primitive roots of n=31.	(08) (08)
	(b)	Solve any <u>TWO</u> of the following.	(00)
	(i)	Prove that if the integer a has order k modulo n and h>0, then a^h has order $k/\gcd(h,k)$ modulo n.	(06)
	(ii)	Explain Hill's cipher with blocks of two letters. Encipher message	(06)
		WAKEUP using matrix $\begin{bmatrix} 2 & 3 \\ 5 & 8 \end{bmatrix}$ (mod26).	DX,
	(iii)	Encipher message RETURN HOME using Vigenere's cipher with seed Q. Also decipher BS FMX KFSGR obtained by applying keyword YES.	(06)
	(iv)	If affine transformation $f(x)=ax+b \pmod{26}$ enciphers GI to WC, find a, b. Also find deciphering transformation and use it to decipher MX.	(06)
Q4		Solve any THREE:	
	(i)	Use Kraitchik's method to factor the number 20437. Explain the method.	(05)
	(ii)	Establish each of the assertions:	(05)
		a) If n is an odd integer , then $\phi(2n) = \phi(n)$.	
		b) If n is an even integer, then $\varphi(2n) = 2\varphi(n)$	
	(iii)	Prove that $ax + by = a + c$ is solvable if and only if $ax + by = c$ is solvable.	(05)
		Show that the representation of a given prime p as the difference of two	
	(iv)	squares is unique. Does this result hold for any arbitrary positive integer that is neither prime nor of the form 4k+2?	(05)
	(v)	Given that a has order 3 modulo p, where p is an odd prime, show that a+1 must have order 6 modulo p.	
	(vi)	Decrypt the message fwmdiq. Suppose the message is encrypted by Hill cipher with the encrypting matrix $K = \begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix}$	(05)
	マ ピーショウ ツ	A 7X CAT TAL CIL MAL AND AND AND AND	