		(3 Hou	rs)	[Total Marks:	100
	(2) <i>I</i> (3) <i>I</i>	Attempt all questions from Attempt any three question Attempt any two questions Figures to the right indica	ns fro fron	om Section II. n Section III.	
		Se	ection	I	
1. At (1)		all questions, choose the crease in extent of conjugar		et option. If double bonded system results in	40
	(a) (c)	hyperchromic shift hypsochromic shift	(b) (d)	hypochromic shift bathochromic shift	
(2)	Pre	sence of two filters in a ph	oto fl	uorimeter.	
	(a)	improves sensitivity		improves selectivity	
	(c)	improves accuracy	(d)	improves precision	
(3)	In '(a) (c)	H NMR spectroscopy, posi coupling constant precessional frequency	(b)	chemical shift	
(4)	hav (a)	Laffarty rearrangement in n ving a double bond and \alpha H \gamma 'H	(b)	pectrometry is shown by compounds	
(5)	, ,	·		³ C NMR spectrum of toluene is	
	(a)	7	(b)	6	
	(c)	5	(d)	2	
(6)		which technique temperature ecorded as a function of the Thermal gravimetric analy Differential thermal analy Thermometric titration Differential scanning thermometric techniques the control of the techniques and the control of the techniques and the control of the control of the techniques and the control of the contro	ime _ ysis sis		

TURN OVER

2

(7)	(7) Which wave number range is prescribed by the pharmacopoeia measurements			ribed by the pharmacopoeia for IR	
	(a)	60 - 208cm ⁻¹	(b)	206 - 560cm ⁻¹	
	(c)	670 - 4000cm ⁻¹	(d)	3800 - 6000cm ⁻¹	
(8)	2N	H ₂ SO ₄ is			
	(a)	$1 \text{ M H}_2 \text{SO}_4$	(b)	$2 \text{ M H}_2 \text{SO}_4$	
		$5 \text{ MH}_2 \text{SO}_4$	(d)	$10 \text{ MH}_2 \text{SO}_4$	
(9)	10	ppm is			
	(a)	1 μg/ml	(b)	10 μg/ml	
	(c)	20 μg/ml	(d)	$0.5 \mu\text{g/ml}$	
(10)	Bra	gg's equation is used in		············	
		UV spectroscopy			
	(c)	Raman spectroscopy	(d)	X ray diffraction	
(11)	11) We conclude that two means are significantly different if				
	(a)	the calculated t value is sr	nallei	than the tabulated t value	
	(b)	the calculated t value is la	rger 1	han the tabulated t value	
	(c)	the calculated t value is e	qual t	to the tabulated t value	
	(d)	the calculated t value is z	ero		
(12)	PAT	stand for			
		Process analytical technol	logy		
	(b)	Procedure analytical test			
	(c)	Permanent assessment tes	st		
	(d)	Process assessment test			
(13)		litional laboratory testing for olves.	inves	tigation of out of specification results	
	(a)	retesting	(b)	resampling	
	(c)	retesting and resampling	(d)	neither retesting nor resampling	

3

(14)	For	detection of polymorphs,	, the	following technique can be used
	(a)	UV spectroscopy	(b)	IR spectroscopy
	(c)	fluorimetry	(d)	Mass spectroscopy
(15)	Pre	cessional frequency depen	ds on	
		the applied magnetic field		
		the magnetic field experie		by the nucleus
	(c)			lied field and the field experienced
	()	by the nucleus	, ,	•
	(d)	the magnetic field general	ted by	the nucleus
(16)	An	example of a bulk propert	y det	ector in HPLC is
` ′	(a)	•		
	` '	UV visible detector	Ü	
		Fluorescence detector		
	` '	Phosphorescence detecte	r	
(17)	Chi	ral chromatography involve	es ser	paration of
,	(a)	enantiomers		diastereomers
	` '	geometrical isomers		
(18)	Мо	lecular ion peak is general	ly	,
, ,	(a)	peak with highest m/z val		
		peak with highest relative		sity
		peak with lowest m/z valu		
		peak with lowest relative		sity
(19)	Qua	adrupole analyser is used i	1)	
, ,		UV spectroscopy		
		NMR spectroscopy		
(20)	Wh	ich of the following bands	woul	d have the lowest wave number?
	C =	= 0 stretch of		
		aliphatic amides	(b)	αβ unsaturated amides
	(c)	aliphatic ketones	(d)	αβ unsaturated ketones

TURN OVER

			4	
(21)	Hea	d space analysis is used t	o	•
	(a)	determine moisture conte	at	
	(b)	determine residual solven	ts	
	(c)	determine polymorphism		
	(d)	determine optical rotation	Į.	
(22)		calibration of absorbance are	in UV	spectroscopy, the material/s used
		holmium filter	(b)	polystyrene
	(c)	potassium dichromate	(d)	toluene and hexane
(23)	In r	adial paper chromatograpl	iy sar	nple is placed
	(a)	near the outer surface of	the pa	aper
	(b)	at the centre of the paper	•	
	(c)	at the bottom of the pape	er	
	(d)	at the top of the paper		
(24)	C ==	C stretch for an alkene is	obse	rved at
	(a)	1620cm ⁻¹	(b)	1720cm ⁻¹
·	(c)	1520cm ⁻¹	(d)	1820cm ⁻¹
(25)	In r	ormal phase chromatogra	phy _	· ·
	(a)	stationary phase is polar	and n	nobile phase is polar
	(b)	stationary phase is non-p	olar a	nd mobile phase is non-polar
	(c)	stationary phase is polar	and n	nobile phase is non-polar
	(d)	stationary phase is non-p	olar a	nd mobile phase is polar
(26)	ELI	SA means		
	(a)	Enzyme Linked Immuno	Sorb	ent Assay
	(b)	Enzyme Linked Immuno	logica	l Serum Assay
	(c)	Enzyme Linked Immuno	modu	latory Serum Assay
	(d)	Enzyme Linked Immunit	v Sen	ım Assav

TURN OVER

5

			~			
(27)	The	number of disintegration	per se	econd for one curie is		
	(a)	1	(b)	7.3×10^{10}		
	(c)	3.7×10^{10}	(d)	1×10^{10}		
(28)	The	e chemical shift range for	¹³ C I	NMR signal of carbonyl group is		
	(a)	10 - 30 ppm	(b)	50 - 60 ppm		
	(c)	100 - 120 ppm	(d)	160 - 240 ppm		
(29)	In l	imit of detection, signal to	nois	e ratio is		
	(a)	2:1	(b)	3:1		
	(c)	8:1	(d)	10:1		
(30)	Car	boxylic acid group is an e	xamp	le of		
	(a)	weak cation exchange gr	oup			
	(b)	weak anion exchange gro	up			
	(c)	strong cation exchange g	roup			
	(d)	weak anion exchange gro	oup			
(31)	Wa	Il coated open tubular colu	ımns	are used in		
	(a)	HPLC	(b)	Ion exchange chromatography		
	(c)	Gas chromatography	(d)	Gel permeation chromatography		
(32)	Res	solution is affected by		*		
	(a)	only difference in retenti	on tin	nes of the chromatographic peaks		
	(b)	(b) only width of the chromatographic peaks				
	(c) both difference in retention times and width of the chromatographic peaks					
	(d)	neither difference in retent peaks	ion tin	nes nor width of the chromatographic		
(33)	Hej	otane sulfonic acid is an e	xamp	le of		
	(a)	ion exchange reagent	(b)	ion pair reagent		
	(c)	ion dissolving reagent	(d)	ion chelating reagent		

ITURN OVER

6 (34) For supercritical fluid, which statements are true Temperature and pressure go beyond critical point (A) (B) It is able to solubilise both polar and non-polar molecules (C) It is able to solubilise only polar molecules Temperature and pressure do not go beyond critical point (i) Statement A and B are true (ii) Statement A and C are true (iii) Statement D and B are true (iv) Statement D and C are true The ICH guideline for Impurities: Guideline for residual solvents is given (a) Q3A(R2)(b) Q3B (R2) (c) Q3C(R5)(d) Q3D If a chromatographic peak starts at 5.1 minutes ends at 5.5 minutes and has a maximum at 5.3 minutes, the number of theoretical plates (N) are (a) 2800 (b) 2804 (c) 2809 (d) 2815 Capacity factor of a component in chromatography is (37)(a) Adjusted retention time of solute divided by dead time (b) Retention time of solute divided by dead time (c) Retention time of more retained component to less retained component Adjusted retention time of solute divided by retention time of solute (d) (38)In thermogravimetric analysis the property measured is _____ (a) change in weight (b) change in temperature (c) rate of change of weight (d) rate of change of temperature

[TURN OVER

(b) IR > UV > NMR

(d) UV > NMR > IR

The order of energy used in the techniques is _____.

(39)

(a) UV > IR > NMR

(c) NMR > UV > IR

7

(40) A commonly used reagent gas in chemical ionisation is

(a) Nitrogen

(b) Oxygen

(c) Carbondioxide

(d) Methane

Section II

2. Attempt any three questions: $(10 \times 3 = 30)$

30

- (1) Explain the following terms:
 - (a) Gradient elution
 - (b) Radiochemical purity
 - (c) Working standard
 - (d) Correlation coefficient
- (2) Enlist the problems faced by pharmaceutical analyst during development of analytical method for the assay of low dosage drugs from formulations. Explain in detail trouble shooting for the same keeping in view green analytical chemistry.
- (3) Explain the term PAT. Give suitable examples for the same.
- (4) Discuss current analytical aspects in quality control of herbals.
- (5) Calculate number of theoretical plates for A and B and resolution between A and B for following data:

HPLC column length - 25 cm

	Retention	Width of peak		
	time (min)	at base (min)		
Unretained compound	1.5	0.3		
A	4	1.3		
В	7	1.8		

[TURN OVER

8

Section III

3. Attempt any two questions:

30

- (1) In bioanalytical studies LC-MS is the method of choice. Comment on the above statement and justify your answer. Write a note on LC-MS method development for analysis of drug and metabolites from a biological matrix.
- (2) Documentation is very important in research. Discuss the importance of proper documentation in research taking suitable examples.
- (3) Discuss the importance of forced degradation studies in development of stability indicating assay method. How will you conclude that the method developed is stability indicating.
- (4) What are the analytical considerations for dissolution studies for new drug formulations. Write a note on current trends in dissolution testing of solid dosage forms.