257

P.G.D. O.R. M.
SEM - 11

ADVANCED LINEAR
PROGRAMMING

© UNIVERSITY OF MUMBAI

Dr. Suhas Pednekar
Vice-Chancellor
University of Mumbai,
Mumbai

Dr. Dhaneswar Harichandan Anil R Bankar

Director Incharge, Associate Prof. of History & Asst. Director &
Institure of Distance & Open Learning, Incharge Study Material Section,
University of Mumbai, Mumbai IDOL, University of Mumbai

Programme Co-ordinator : Dr. Madhura Kulkarni
Asst. Prof..-Cum. Asst. Director
IDOL, University of Mumbai

Course Co-ordinator : Ms. Megha Bansal
IDOL, University of Mumbai

Course Writer : Prof. Radha Iyer
ADMI, University of Mumbai

Reprint October 2018, P.G.D.O.R.M. SEM - 11,
ADVANCED LINEAR PROGRAMMING

Published by : Incharge Director
Institute of Distance and Open Learning,,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed : Ashwini Arts
Gurukripa Chawl, M.C. Chagla Marg, Bamanwada,
Vile Parle (E), Mumbai - 400 099.

Printed by : P Square Solutions, Barari, Mathura

CONTENTS

Unit No. Title Page No.
1. Dynamic Programming 01
2. Integer Programming 23
3. Goal Programming 47
4. Parametric Programming 63
5. Non-Linear Programming 73
6. Software Applications in OR 91

O &% o% %
P 00 00 o0

I

P.G.D.O.R.M.
SEM-1I
ADVANCED LINNER PROGRAMMING
Syllabus

1) Dynamic Programming :

Introduction to Dynamic Programming, Dynamic
Programming Approach, Formulation of Dynamic Programming,
Optimal Sub-division Problem, System Reliability.

2) Integer Programming :

Introduction to Integer Programming, Types of Integer
Programming, Gomory's Integer Cutting Plane Method, Gomory's
Mixed Integer Cutting Plane Method, Branch and Bound Method

3) Goal Programming :

Introduction to Goal Programming, the Concept of Goal
Programming, General Goal Programming Method, Modified
Simplex Method of Goal Programming.

4) Parametric Programming :

Introduction to parametric Programming, Variation in the
Objective Function Coefficient, Variability in the availability of
Resources

5) Non Linear Programming Methods :
Introduction, General Non-Linear Programming Problem,
Graphical Solution Method, Quadratic Programming.

6) Software Applications in OR:

Introduction to various software’s used in OR, Understanding
the solver add-in to solve OR problems, Understanding various
other software’s like SPSS, LINDO etc. for Optimisation.

References :

1) Quantitative Techniques in Management, N.D. Vohra, McGraw
Hill.

Operations Research, Premkumar Gupta, D.S. Hira, S. Chand.
Operations Research, J.K. Sharma, MacMillan.

Business Statistics, Naval Bajpai, Pearson.

Business Mathematics, Zameeruddin Kazi, Vijay Khanna, S.K.
Bhambiri, Vikas Publication.

Business Statistics, J.K. Sharma, Pearson.

a b wiN
N— N N

(*2)
~—

o2 30 Qo o3

DYNAMIC PROGRAMMING

Unit Structure

1.1 Introduction

1.2 Characteristics of dynamic programming

1.3 Dynamic programming approach

1.4 Formulation of dynamic programming problems
1.5 Optimal subdivision problem

1.6 Applications of dynamic programming

1.7 Exercises

1.1 INTRODUCTION

In optimisation problems involving a large number of
decision variables or the inequality constraints, it may not be
possible to use the methods of calculus for obtaining a solution.
Classical mathematics handles the problems in a way to find the
optimal values for all the decision variables simultaneously which
for large problems rapidly increases the computations that become
uneconomical or difficult to handle even by the available
computers. The obvious solution is to split up the original large
problem into small sub-problems involving a few variables and that
is precisely what the dynamic programming does.

Dynamic programming is a mathematical technique dealing
with the optimisation of multistage decision problems. The
technique was originated in 1952 by Richard Bellman and G.B.
Dantzig, and wan initially referred to as the stochastic linear
programming. Today dynamic programming has been developed
as a mathematical technique to solve a wide range of decision
problems and it forms an important part of every operation
researcher's tool kit.

Though the originator of the technique, Richard Bellman,
himself, has said, "we have coined the term 'dynamic programming'
to emphasise that there are problems in which time plays an
essential role", yet, in many dynamic programming problems time is

2

not a relevant variable. For example, a decision regarding
allocation of a fixed quantity of resources to a number of alternative
uses constitutes one decision to be taken at one time, but the
situation can be handled as a dynamic programming problem. As
another instance, suppose a company has marked capital C to be
spent on advertising its products through three different media i.e.,
of newspaper, radio and television. In each media the
advertisement can appear a number of times per week. Each
appearance has associated with it certain costs and returns. How
many times the product should be advertised in each media so that
the returns are maximum and the total cost is within the prescribed
limit? In this situation time is not a variable, but the problem can be
divided into stages and solved by dynamic programming.

1.2 CHARACTERISTICS OF DYNAMIC
PROGRAMMING

The important features of dynamic programming which
distinguish it from other quantitative techniques of decision-making
can be summarized as follows:

1. It involves a multistage process of decision-making. The stages
may be certain time intervals or certain sub-division of the
problems, for which independent feasible decisions are possible.

2. In dynamic programming, 'state' is a description of the system
(problem) which tells the necessary parameters of the system for
the purpose of making decisions. It is not essential to know about
the previous decisions and how the states arise. This enables us to
consider decisions one at a time.

3. In dynamic programming the outcome of decisions depends
upon a small number of variables; that is, at any stage only a few
variables should define the problem. For example, in the production
smoothening problem, all that one needs to know at any stage is
the production capacity, cost of production in regular and overtime,
storage costs and the time remaining to the last decision.

4. A stage decision does not alter the number of variables on which
the outcome depends, but only changes the numerical value of
these variables. For the production smoothening problem, the
number of variables which describe the problem i.e., production

3

capacity, production costs, storage costs and time to the last
decision, remain the same at all stages. No variable is added or
dropped. The effect to decision at any stage will be to alter the used
production capacity, storage cost, production cost and time
remaining to the last decision.

5. Principle of Optimality: Dynamic Programming is based on
Bellman's Principle of Optimality, which states, "An optimal policy (a
sequence of decision) has the property that whatever the initial
state and decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first
decision". This principle implies that a wrong decision taken at one
stage does not prevent from taking of optimum decisions for the
remaining stages. For example, in a production scheduling
problem, wrong decisions made during first and second months do
not prevent taking correct decisions during third, fourth month etc.

6. Bellman's principle of optimality forms the basis of dynamic
programming technique. With this principle in mind, recursive
equations are developed to take optimal decision at each stage. A
recursive equation expresses subsequent state conditions and it is
based on the fact that a policy is 'optimal' if the decision made at
each stage results in overall optimality over all the stages and not
only for the current stage.

7. Dynamic Programming provides a systematic procedure wherein
starting with the last stage of the problem and working backwards
one makes an optimal decision for each stage of the problem. The
information for the last stage is the information derived from the
previous stages. It may be noted that D.P. problems can also be
solved by working forward i.e., starting with the first stage and then
working forward up to the last stage.

1.3 DYNAMIC PROGRAMMING APPROACH

Before discussing the solutions to numerical problems, it will
be worthwhile to know a little more about some fundamental
concepts of dynamic programming. The first concept is stage. As
already discussed, the problem is broken down into sub problems
and each sub problem is referred to as a stage. A stage signifies a
portion of decision problem for which a separate decision can be
made. At each stage there are a number of alternatives and the

4

decision-making process involves the selection of one feasible
alternative which may be called as stage decision. The stage
decision may not be optimal for the considered stage, but
contributes to make an overall optimal decision for the entire
problem.

The other important concept is state. The variables which
specify the condition of decision process and summarise the
current 'status' of the system are called state variables. For
example, in the capital budgeting problem, the capital is the state
variable. The amount of capital allocated to the present stage and
the preceding stages (or the capital remaining) defines the status of
the problem. The number of state variables should be as small as
possible. With the increase in number of state variables, increases
the difficulty of problem solving.

The procedure adopted in the analysis of dynamic
programming problems can be summarized as follows:

1. Define the problem variables, determine the objective function
and specify the constraints.

2. Define the stages of the problem. Determine the state variables
whose values constitute the state at each stage and the
decision required at each stage. Specify the relationship by
which the state at one stage can be expressed as a function of
the state and decision at the next stage.

3. Develop the recursive relationship for the optimal return function
which permits computation of the optimal policy at any stage.
Specify the optimal return function at stage 1, since it is
generally a bit different from the general optimal return function
for the other stages.

4. Make a tabular representation to show the required values and
calculations for each stage.

1.4 FORMULATION OF DYNAMIC PROGRAMMING
PROBLEMS

Consider a situation where in a certain quantity 'R' of a
resource (such as men, machines, money, materials etc.) is to be
distributed among 'n' number of different activities. The return 'P'
depends upon the activities and the quantities of resource allotted
to them and the objective is to maximise the total return.

5

If pi (R;)) denotes the return form the ith activity with the resource R;,
then the total return may be expressed as

P(R1, Ry, ,Rn) = p1(R1) + p2 (R2) + ...+ pn (Rn) -..eeee. (1)
The quantity of resource R is limited, which gives rise to the
constraint
R=Ri{+R;+..+R,,Ri20,i=1,2,....,n. ... (2)

The problem is to maximise the total return given by equation (1)
subject to constraint (2),
If fo (R) = Maxosri<r [P(R1, Ry,,Rn)] = Maxosri<r [P1(R1) + p2 (R2)
+ ...+ pn (Rn)] -....(3)
then f, (R) is the maximum return from the distribution of the
resource R to the n activities. Let us now allocate the resource to
the activities, one by one, starting from the last i.e. nth activity. An
expression connecting f, (R) and f,.1 (R) for arbitrary values of R
and n may now be obtained with the help of principle of optimality.
If R, is the quantity of resources allocated to the nth activity such
that 0 £ R, <R, then regardless of the values of Ry, a quantity (R-
R,) denote the return from the (n-1) activities, then the total return
from all the n activities will be
Pn (Rn) + fn-‘] (R' Rn).
An optimal choice of R, will maximise the above function and thus
the fundamental dynamic programming model may be expressed
as

where f1 (R), when n = 1 is obtained from equation (3) as
fi(R)=p1(R). oo (5)

Equation (5) gives the return from the first activity when whole of

the resource R is allotted to it. Once fy (R) is known, equation (4)

provides a relation to evaluate f, (R), fz3 (R),.....This recursive

process ultimately leads to the value of f,.1(R) and finally f, (R) at

which the process stops.

EXAMPLE 1: (Employment Smoothening Problem)

A firm has divided its marketing area into three zones. The
amount of sales depends upon the number of salesmen in each
zone. The firm has been collecting the data regarding sales and
salesmen in each area over a number of past years.

The information is summarised in table 1. For the next year
firm has only 9salesmen and the problem is to allocate these

6

salesmen to three different zones so that the total sales are
maximum.

Table 1
Profits in thousands of rupees
No. of Zone Zone Zone
Salesmen 1 2 3
0 30 35 42
1 45 45 54
2 60 52 60
3 70 64 70
4 79 72 82
5 90 82 95
6 98 93 102
7 105 98 110
8 100 100 110
9 99 100 110
Solution:

In this problem the three zones represent the three stages
and the number of salesmen represent the state variables.

Stage 1: We start with zone 1. The amount of sales corresponding
to different number of salesmen allocated to zone 1 are given in
table 1 and are reproduced in table 2.

Table 2

Zone 1

No. of 0 1 2 3 4 5 6 7 8 9
salesmen:

Profit (000" |30 |45 |60 (70 |79 |90 |98 | 105|100 | 90
of Rs.):

Stage 2: Now consider the first two zones, zone 1 and 2. Nine
salesmen can be divided among two zones in 10 different ways: as
9in zone 1 and 0 in zone 2, 8 in zone 1 and 1 in zone 2, 7 in zone
1 and 2 in zone 2, etc. Each combination will have associated with
it certain returns. The returns for all number of salesmen (total) 9, 8,
7,, 0 are shown in table 3.

For a particular number of salesmen, the profits for all possible
combinations can be read along the diagonal. Max. profits are
marked by*.

7

Table 3
Zone 1 X4 0 1 2 3 4 5 6 7 8 9
30 | 45| 60| 70 | 79 | 90 98 | 1051100 90
F1(X1)
Zone 2
f2(X2)
X2
o] 35 |65 [80[95°[105°[+14a]125*] 133 [140135 125
1| 45 7571 9011051 1157] 124 1135+ 143*] 150 [1451
2| 52 821 97 11421 12271 4311 1421 1501 457
3| 64 94 [10971241 1341 143 [154*f 162
4 72 10244713321 1421 1511 162
5] 82 | 112]127{ 1421 1521 161
6| 93 | 123113811531163"]
71 98 | 12841431158
8 100 1301 145
9 100 1307

Stage 3: Now consider the distribution of 9 salesmen in three
zones 1, 2 and 3. The decision at this stage will result in allocating
certain number of salesmen to zone 3 and the remaining to zone 2
and 1 combined; and then by following the backward process, they
will be distributed to zones 2 and 2.

8

For total of 9 salesmen to be allocated to the three zones, the
returns are shown in table 4 below:

Table 4

No. of 0 1 2 3 4 5 6 7 8 9
salesmen:

Total 65 80 95 1 105 | 1151 125 | 135 | 143 | 154 163
Profit f»

(x2) + f4

(x4)
Salesmen | 0+O | O+1 | 0+2 | O+3 | O+4 [O+5 | 1+5 | 3+4 | 3+5 6+3
in Zone 2

+ Zone 1 1+2 1+6

(x2 + x1)

No. of 9 8 7 6 5 4 3 2 1 0
salesmen
in Zone 3:

Profit f3 110 | 110 | 110 | 102 | 95 82 70 60 |54 42

(x3):

Total 175 | 190 | 205 | 207 | 210* | 207 | 205 | 203 | 208 205

Profit f3
(x3) + f2
(X2) + f4

(x1)

From table 4, the maximum profit for 9 salesmen is Rs. 2,
10, 000 if 5 salesmen are allotted to zone 3 and from the remaining
four, 1 is allotted to zone 2 and 3 to zone 1.

EXAMPLE 2 CAPITAL BUDGETING PROBLEM

A manufacturing company has three sections producing
automobile parts, bicycle parts and sewing machine parts
respectively. The management has allocated Rs. 20, 000 for
expanding the production facilities. In the auto parts and bicycle
parts sections, the production can be increased either by adding
new machines or by replacing some old inefficient machines by
automatic machines. The sewing machine parts section was started
only a few years back and thus the additional amount can be
invested only by adding new machines to the section. The cost of
adding and replacing the machines, along with the associated

9

expected returns in the different sections is given in the table 1.
Select a set of expansion plans which may yield the maximum
return.

Alternatives | Auto parts | Bicycle Parts | Sewing Machine
Section Section Parts Section
Cost Returns | Cost Returns | Cost Returns
(Rs.) |[(Rs.) (Rs.) |(Rs.) (Rs.) | (Rs.)
1. No|O 0 0 0 0 0
Expansion

2. Add New | 4, 000 | 8, 000 8, 000 12,000 | 2,000 |8, 000
Machines

3. Replace | 6,000 | 10,000 | 12,000 | 18,000 |- -
Old m/cs

Solution

Here each section of the company is a stage. At each stage there
are a number of alternatives for expansion. Capital represents the
state variable. Let us consider the first stage - the auto parts
section. There are three alternatives: no expansion, add new
machines and replace old machines. The amount that may be
allocated to stage 1 may vary from 0 to Rs. 20, 000; of course, it
will be overspending if it is more than Rs. 6000. The returns of the
various alternatives is given in table 2.

Table 2
Stage 1: Auto parts section
State Evaluation of alternatives (Values in Optimal Solution
X1 (000" | thousands of Rs.)
of Rs.) 1 2 3
CostCy11=0 | CostCi2=4|CostCi3=6 Optimal | Decision
Return Return Return Return
0 0 - - 0 1
2 0 - - 0 1
4 0 8 - 8 2
6 0 8 10 10 3
8 0 8 10 10 3
10 0 8 10 10 3
12 0 8 10 10 3
14 0 8 10 10 3
16 0 8 10 10 3
18 0 8 10 10 3
20 0 8 10 10 3

10

When the capital allocated is zero or Rs. 2, 000, only first
alternative (no expansion) is possible. Return is, of course, zero.
When the amount allocated is Rs. 4, 000, alternatives 1 and 2 are
possible with returns of Rs. 0 and Rs. 8000. So, we select
alternative 2 and when the amount allocated is Rs. 6000, all the
three alternatives are possible, giving returns of zero, Rs. 8, 000
and Rs. 10, 000 respectively. So, we select alternative 3 with return
of Rs. 10, 000 and so on.

Stage 2: Let us now move to stage 2. Here, again, three
alternatives are available. The computations are carried out in
table 3.

Table 3
Stage 1: Bicycle Parts Section (+ Auto parts section)

State Evaluation of alternatives (Values in Optimal Solution

X2 thousands of Rs.)

(ooo' 1 2 3

of Rs.)
CostCz1=0 | CostCx =8 Cost c23 = 12 | Optimal | Decision
Return Return Return Return

0 0+0=0 - - 0 1

2 0+0=0 - - 0 1

4 0+8=8 - - 8 1

6 0+10=10 |- - 10 1

8 0+10=10 [12+0=12 - 12 2

10 0+10=10 [12+0=12 - 12 2

12 0+10=10 |12+8=20 18+0=18 |20 2

14 0+10=10 [|12+10=22 |[18+0=18 |22 2

16 0+10=10 |12+10=22 |[18+8=26 |26 3

18 0+10=10 |12+10=22 |18+10=28 |28 3

20 0+10=10 |12+10=22 |[18+10=28 |28 3

Here state x, represents the total amount allocated to the
current stage (stage 2) and the preceding stage (stage 1). Similarly,
the return also is the sum of the current stage and the preceding
stage (Principle of optimality). Thus when x, [Rs. 8000, only the
first alternative (no expansion) is possible. But with x, = Rs. 8, 000,
a return of Rs. 12, 000, three alternatives are possible with second
alternative (add new machines). With x, = Rs. 12, 000, three
alternatives are possible with the maximum return of Rs. 20, 000
from alternative 2. The optimal policy consists of a set of two
decisions, namely adopt alternative 2 at second stage (Table 3)
and again alternative 2 at the first stage (table 2).

Stage 3: The computations for stage 3 are given in table 4.

11

Table 4

Stage 1: Sewing Machine Parts Section (+ Bicycle Parts Section +
Auto parts section)

State Evaluation of alternative 2 Optimal Solution
X3 (000' of | (Values in thousands of rupees)
Rs.)
CostCy1=0 Cost C3,=2 Optimal Decision
Return Return Return
0 0+0=0 - 0 1
2 0+0=0 8+0=8 8 2
4 0+8=8 8+0=8 8 1,2
6 0+10=10 8+8=16 16 2
8 0+12=12 8+10=18 18 2
10 0+12=12 8+12=20 20 2
12 0+20=20 8+12=20 20 1,2
14 0+22=22 8 +20=28 28 2
16 0+ 26 =26 8 +22=30 30 2
18 0+28=28 8+26=34 34 2
20 0+28=28 8 +28 =36 36 2

For X5 = 20, 000, the optimal decision for stage 3 is alternative 2,
which gives a total return of Rs. 36, 000. This involves a cost of Rs.
2,000 and leaves Rs. 18, 000 to be allotted fro stages 2 and 1
combined. From table 3, for allocation of Rs. 18, 000, alternative 3
is to be chosen which costs Rs. 12, 000. For remaining sum of Rs.
6, 000 from table 2, decision alternative 3 is to be selected. Thus
the optimal policy of expanding production facilities is 3-3-2, which
can be elaborated as replace old machines with automatics in auto
parts section, replace old machines with automatics in bicycle parts
section, and add machines to the sewing machines parts section.
This policy gives the optimal return of Rs. 36, 000.

12

EXAMPLE 3
A manufacturer has entered into a contract for the supply of
the following number of units of a product at the end of each month:

Month: Jan March August October November December
No. of Units: 10 5 20 3 6 30

The units manufactured during a month are available for
supply at the end of the month or they may be kept in storage at a
cost of Rs. 2 per unit per month. Each time the manufacture of a
batch of units is undertaken, there is a set-up cost of Rs. 400.
Determine the production schedule which will minimise the total
cost.

Solution

Here the six months represent the 6 stages and number of
units to be manufactured are the state variables. We shall start
from the last month of December and move backwards.

Month of December
The best decision is to produce 30 units with a cost of Rs.
400 towards the set-up cost and there is no storage cost.

Month of November

There are two alternatives:

1. Produce (6 + 30) = 36 units to satisfy the demand of November
and December.

Total Cost = Rs. (400 + 30 x 2 x 1) = Rs. 460.

2. Produce 6 units in Nov. + 30 units in Dec. involving 2 set-ups and
no storage cost.
Total cost = Rs. (400 + 400) = Rs. 800.

[] The optimum decision is to produce 36 units in Nov. and no units
in Dec.

Month of October

Various alternatives are:

1. Produce (3 + 6 + 30) = 39 units in Oct.

Total cost=Rs. (400 +6x2x1+30x2x2)=Rs. 532.
2. Produce (3 + 6) = 9 units in Oct. and 30 units in Dec.
Total Cost =Rs. (400 x 2 + 30 xw x 1) =Rs. 812.

3. Produce 3 units in Oct. and 36 units in Nov.

13

Total Cost =Rs. (400 x 2+ 30x 2 x 1) = Rs. 860.

Note that as per the decision made in Nov., producing 3 units in
Oct., 6 in Nov., and 30 in Dec. is already ruled out as it involves
higher cost.

Thus optimum decision is to produce 39 units in Oct. and nothing in
Nov. and Dec.

Month of August

The various possible alternatives are:

1. Produce (20 + 3 + 6 + 30) = 59 units in August.

Total Cost=Rs. (400 +3x2x+6x2x3+30x2x4)=Rs. 688.
2. Produce (20 + 3 + 6) = 29 units in August and 30 in Dec.

Total Cost =Rs. (400 x2)+3x2x2+6x2x3)=Rs. 848.

3. Produce (20 + 3) = 23 units in August and 36 in Nov.

Total Cost =Rs. (400x2)+3x2x2+30x2x1)=Rs. 872.

4. Produce 20 units in August and 39 in Oct.

Total Cost =Rs. (400x2)+6x2x1+30x2x2)=Rs. 932.

Thus optimum decision is to produce 59 units in August and none
in the following months.

Month of March

The various possible alternatives are:

1. Produce (5 + 20 + 3 + 6 + 30) = 64 units in March.

Total Cost =Rs. (400 +20x2x5+3x2x7+6x2x8+30x2
x 9) = Rs. 1,278.

2. Produce (20 + 3 + 6) = 29 units in August and 30 in Dec.

Total Cost = Rs. (400 x 2 +20x2x5+3x2x7+6x2x8)=
Rs. 1,318.

3. Produce (5 + 20 + 3) = 28 units in March and 36 in Nov.

Total Cost = Rs. (400 x2+20x2x5+3x2x7+30x2x1)=
Rs. 1, 102.

4. Produce (5 + 20) = 25 units in March and 39 in Oct.

Total Cost = Rs. (400 x2+20x2x5+6x2x1+30x2x2)=
Rs. 1, 132.

5. Produce 5 units in March and 59 units in August.

Total Cost =Rs. (400 x2 +3x2x2+6x2x3+30x2x4)=
Rs. 1, 088.

1 The optimum decision is to produce 5 units in March and 59 units
in August. The total cost involved is Rs. 1, 088.

14

Month of January
The various possible alternatives are:
1. Produce all 74 units in January.

Total Cost =Rs. (400 +5x2x2+20 x2x7+3x2x9+6x2x
10+30x2x11) =Rs.1,534.

2. Produce (10 + 5 + 20 + 3 + 6) = 44 units in January and 30 units
in December.

Total Cost =Rs. (400 x 2+ 5x2x2+20x2x7+3x2x9+6x2
x 10) =Rs. 1, 274.

3. Produce(10 + 5 + 20) = 35 units in January and 39 units in Nov.

Total Cost =Rs. (400 x2+5x2x2+20x2x7+3x2x9+30x
2x1) =Rs. 1, 214.

4. Produce (10 + 5 + 20) = 35 units in January and 39 units in Oct.

Total Cost =Rs. (400 x2+5x2x2+20x2x7+6x2x1+30x
2x2) =Rs. 1, 232.

5. Produce (10 + 5) 15 units in January and 59 units in August.
Total Cost=(400x2+5x2x2+3x2x2+6x2x3+30x2x4)
=Rs. 1, 108.

6. Produce 10 units in January, 5 units in March and 59 units in
August.

Total Cost = (400 x 3+ 3 x2x2+6x2x3+30x2x4)
= Rs. 1, 488.

Thus optimum decision is to produce 15 units in Jan. and 59
units in August.

Therefore, the best production schedule that will minimise
total cost and satisfy the demand from January till December is to
produce 15 units in January and 59 units in August.

1.5 OPTIMAL SUBDIVISION PROBLEM

This problem deals with the division of a given quantity into a
given number of parts. Let Q be the quantity to be divided in n
number of parts (u4, Uz, U3 Uy). Then problem can be expressed
as

15

Ll

maximise ;=1 Or maximise uq Uz U3 Uy

subjectto:=x =Q.
uz20,i=12,....,n.

The problem can be handled by dynamic programming, by
considering each part as a stage. The alternatives at each stage
are infinite, since u; is continuous and may assume any non-
negative value, satisfying the constraints

b

E (4]

i=1 = Q

The state of the system x; at any stage i, represents the part
of resource Q, allocated to stage 1 through i inclusive. The
recursion formula is then given as

f1 (X1) = maxyi=x {u1},
fi (Xi) = maxo < uisxi {Ui fi-r (Xi - u)},
= max i { ui ((Xi - ui)}-.

EXAMPLE 4
Determine the value of us, u, us so as to maximise (us U,
us), subject to us+ ux+ uz= 10 and uy, uy uz= 0.

Solution:
In this example Q = 10, is to be divided into three parts us u;
and us such that their product is maximum.

This D.P. problem can be regarded as a three-stage problem
with sate variables x4, X2 X3 and returns f1 (x1), f2 (x2) and f3 (x3)
respectively.

At stage 3,X3=UuUs+ uUs+ U3

at stage 2,X2=X3-U3z=Uq+ U

at stage 1, X1 = X2 - Ug = Uy,

f1 (X1) =Uq = Xo- Uy,

f2 (x2) = max { uz (X2 - uz2)}, 0< u2< X,

= max (UpXs - UsXz2), 0= UpS Xo.

Differentiating w.r.t uz, and equating the differential to zero,
df2 (x2) x2

T au2z =Xp-2ux=0oru;= 2,

16

x2 x2
fo(x2) = 2 (Xo- 2)= x2/4.
(x3 - u3)2
Now f3 (x3) = max y3 { Uz, X22/4} = max ua{ u3 + }

Differentiating w.r.t uz and equating to zero,
d
Auf(us Xs2 + Uz - 2 uz? X3)J/4 = 0
orxs>+3us?-4usxs=0
orxs®-3usxs+3us’-uzx3=0
or Xz (Xz-3 us)-uz(xz-3u3z)=0
or (X3 - uz) (x3- 3uz)=0.

[1 Either x3 = uzwhich is trivial since
X3 = Uq+ Uzt Uz

¥3 10
orus=3 =3,
10 20
1x2=10- 3 = 3,
x2 10 10
andu,= 2 = 3 andhenceu; = 3,
10
L) uq =U2=U3=T
1,000

and maximum product =uq .Uy .uz= 27
SYSTEM RELIABILITY

EXAMPLE 5

An electronic device consists of four components, each of
which must function for the system to function. The system
reliability can be improved by installing parallel units in one or more
of the components. The reliability (R) of a component with one, two
or three parallel units and the corresponding cost (C) are given in
Table 1. The maximum amount available for this device is 100. The
problem is to determine the number of parallel units in each
component.

17

TABLE 1
Number of Components
units
1 2 3 4
R R R R
C C C C
1 0.70 0.50 0.70 0.60
10 20 10 20
2 0.80 0.70 0.90 0.70
20 40 30 30
3 0.90 0.80 0.95 0.90
30 50- 40 40
Solution:

The reliability of a system is the product of the reliability of its
components. If R; u; is the reliability of component having u; units in
parallel, then the reliability of the system comprising of n

ut

components in series is =1 Rj ui, The problem then becomes

ut
maximise R=:=1 R u;

Ci.ud

subject to =1 <C,
where Ci.ul js the cost of components, when it has ¥ units in
parallel, and C is the total capital available. The problem can be
solved by considering the components as stages and the capital
allocated as state of the system, x;. The state x; (0< x; <C) is the
capital allocated to stages 1 through i, inclusive. The reliability of
the components of the return function at stage i may be expressed
as fi (x).

The recursive equation can be written as
f1 (x1) = max,i { Ri.u}, 0 < Choul < xq;
fi(xi) = maxyi { Ri.uix fi.g (Xi- Ci.ur) },0< Ciul <y

Since the return functions of different components are
multiplied by each other, the procedure is called multiplicative
decomposition.

18

In the given example, device will consist of at least one unit
in each component.
[1C11£x1 £ C - Cz1 - C31-Cyy
Ci1 +C12=x2=C - C3aq - Cyy
C11+ Cy2 + Cy3=x3 = C - Cyy
C14+ Cio+Ci13+Ciusx4sC

or 10 < x4 £ 50,
or30=<x,=<70,

or 40 < x3 < 80,
or 60 < x4 <100.

The computations for different stages are given below in the

tabular form.

Stage 1
F1 (ui/xq1) = Ry, Optimal
Solution
Xi ui =1 ui =9 ui =3 f1 (x1)
R=0.7, R =0.8, R=0.9, Ui
CcC=10 C=20 C=30
10 7 - - 7
1
20 7 .8 - 8
2
30 7 .8 9 9
3
40 7 .8 9 9
3
50 7 .8 9 9
3
Stage 2
F2 (U2/X2) = R2.U2.f1(X2 - C2.U2) Optlmal
Solution
Xi u2 =1 ui =2 utl =3 Fa (x2)
R=0.5, R =0.8, R=0.9, uz
CcC=20 CcC=20 C=30
30 S5x.7 - - .35
1
40 5x.8 - - 40
1
50 5x.9 Tx.7 - 45
2
60 5x.9 7x.8 8x.7 45
2,3
70 5x.9 7x.9 .8x.8 45
3

19

Stage 3
F3 (U3/X3) = R3.U3.f2(X3 - C3.U3) Optlmal
Solution
Xi u3 =1 u3 =2 u3 =3 F3 (x3)
R=0.7, R=0.9, R =0.95, C |Us
C=10 C =30 = 40
40 [.7x.35=.245 |- - 245
1
50 .7 x.40=.280 |- - .280
1
60 I x.49=.343 | 9x.35=.315 | - .343
1
70 7 x.56=.392 | 9x.40=.360 | .95x.35=.3325 |.392
1
80 7 x.64=.448 | 9x.49=.441 | .95x .40 =.380 448
1
Stage 4
F4 (U4/X4) = R4.U4.f3(X4 - C4.U4) Optlmal
Solution
Xi ud4 =1 ut =2 ut =3 Fa (X4)
R=06, C=20 |[R=0.7, C=30 |[R=0.9, C=40 |Us4
60 |.6x.245= 147 - - 47
1
70 |.6x.280=.168 7 x.245= 1715 |- .168
2
80 |.6x.343=.2058 |.7 x.280 =.196 9 x.245=.2205 |.2058
3
90 |.6x.392=.2352 |.7 x.343 =.2401 .9 x.280 = .252 .2352
1
100 | .6 x .448 = .2688 | .7 x .392 = .2744 | .9x.343 =.3087 | .2688
3

Optimal value of F4 (x4) = 0.3087 with us = 3 and x4 = 100, is
obtained from F3 (x3) = 0.343 which has %3 =1 and F;, (x;) = .49,
which is for 42 =2 and then #1 =1. Thus the optimal allocation is :3
units in parallel should be installed on component four, 1 unit on
component three, 2 units on component two and 1 unit on
component one.

20

1.5 APPLICATIONS OF DYNAMIC PROGRAMMING

Linear programming has found its applications in large-scale
complex situations, dynamic programming has more applications in
smaller-scale systems. Following are a few of the large number of
fields in which dynamic programming has been successfully
applied:

1. Production: In the production area, this technique has been
employed for production scheduling and employment smoothening,
in the face of widely fluctuating demand requirements.

2. Inventory Control: This technique has been used to determine
the optimum inventory level and for formulating the inventory
reordering rules, indicating when to replenish an item and by what
amount.

3. Allocation of Resources: It has been employed for allocating
the scarce resources to different alternative uses, such as
allocating salesman to different sales zones and capital budgeting
procedures.

4. Selection of an advertising media: (See example)

5. Spare Part Level Determination: To guarantee high efficiency
utilisation of expensive equipment.

6. Equipment replacement policies: To determine at which stage
equipment is to be replaced for optimal return from the facilities.

7. Scheduling methods for routine and major overhauls on complex
machinery.

8. Systematic plan or search to discover the whereabouts of a
valuable resource.

These are only a few of the wide range of situations to which
dynamic programming has been successfully applied. Many real
operating systems call for thousands of such decisions. The
dynamic programming models make it possible to make all these
decisions, of course with the help of computers. These decisions

21

individually may not appear to be much of economic benefit, but in
aggregate they exert a major influence on the economy of a firm.

1.6 EXERCISES

1. What is dynamic programming? Write step-by-step procedure to
solve a general problem by D.P. approach.

2. What is dynamic programming and what sort of problems can be
solved by it?

3. Discuss dynamic programming application to business and
develop the recursive relation used in dynamic programming
formulation.

4. What is the need of dynamic programming and how is it different
from linear programming? Write some applications of dynamic
programming.

5. Write short note on characteristics of dynamic programming.

SOLVE:

1. A food processing firm has compiled the following data for future
monthly production requirements and production costs in regular
and overtime periods.

Month Quantity Cost per unit
Regular (Rs.) | Overtime (Rs.)
September 4,000 20 30
October 5, 200 25 35
November 5, 000 24 34
December 3, 700 26 36
January 4,200 20 30
February 3, 000 20 30

The production capacity of the firm is 6, 000 units in regular
time and 3, 000 units in overtime. The cost of carrying storage is
Rs. 7.50 unit per month. If at the end of August, there are 3, 500
units in stock at a cost of Rs. 25 each, what is optimal production
schedule and the total associated cost? Note that no inventory is
required at the end of six months.

2. A drug manufacturing concern has ten medical representatives
working in three sales areas. The profitability for each
representative in three sales areas is as follows:

22

No. of representatives 0 1 2 3 4 5 6 7 8 9 10
Profitability Area 1 15 |22 |30 |38 |45 |48 |54 |60 |65 |70 |70
(thousands of | Area 2 26 |35 |40 |46 |55 |62 J70 J76 |83 |90 |95
rupees) Area 3 30 |38 J44 |50 |60 |65 |72 |80 |85 |90 |85

Determine the optimum allocation of medical representatives
in order to maximise the profits. What will be the optimum allocation
if the number of representatives available at present is only six?

3. A company has three media A, B and C available for advertising
its product. The data collected over the past years about the
relationship between the sales and frequency of advertisement in
the different media is as follows:

Frequency/month

A B C
1 125 180 300
2 225 290 350
3 260 340 450
4 300 370 500

The cost of advertisement is Rs. 5, 000 in medium A, Rs. 10,
000 in medium B and Rs. 20, 000 in medium C. The total budget
allocated for advertising the product is Rs. 40, 000. Determine the
optimal combination of advertising media and frequency.

23

INTEGER PROGRAMMING

Unit Structure
2.1 Introduction
2.2 Methods of Integer Programming

2.3 The Concept of Cutting Plane Method - Algorithms
2.4 Gomory Cutting Plane Method Examples: Integer Programming
2.5 The Mixed Algorithm

2.6 Branch & Bound (B&B) Algorithm
2.7 Exercise

2.1 INTRODCTION

A linear programming in which some or all of the variables
must take non-negative integer (discrete) values is commonly
referred to as integer linear programming problem. When all the
variables are constrained to be integers, it is called an all (pure)
integer programming problem, and in case only some of the
variables are restricted to have integer values, the problem is said t
be a mixed integer programming problem. In some situations each
variable can take on the values of either zero or one, as in 'do' and
'not to do' type decisions; such problems are referred to as zero-
one programming problems.

Strictly speaking, if in an L.P problem we restrict the
variables to be non-negative integers, the problem becomes non-
linear. However, it is convenient to still call it an integer linear
programming problem because after dropping integer restrictions
on the variables, the objective function as well as the constraints
remain linear in form.

One obvious and common approach to solve an integer
linear programming problem is to ignore the integer restrictions on
the variables and to solve the resulting L.P. problem by any of the
techniques described earlier, and then to round off or truncate the

24

fractional values of the optimal solution to the nearest integers. This
method, however, gives satisfactory results only if the values of the
variables are very large so that rounding off or truncating results in
negligible change. For example, if the optimum value of the
5
decision variable comes out to be 4549 8, it can be easily rounded
off to 4549 or 4550 without much error. However, for smaller
values, rounding or truncating may produce a solution totally
different from the true optimal integer solution. Some of the
constraints may be violated (Solution may become infeasible) since
rounding off certain variables may require substantial changes in
the values of the other variables to satisfy all the constraints. For

example, consider the constraints
1
-X1+X2 <52
1
5x1 + 3x2 < 102

1

having non-integer optimal solution as x; = 5 2 and x, = 8. Here
rounding off x4 to 2 or 3 or any other integer value violates one or
the other constraint. Even if the rounded off solution satisfies the
feasibility restriction, there is no guarantee that it is the true optimal
integer solution. For instance, consider the problem
maximise Z = 3x4 + 10x2
Subjectto xq+ 5x, <12

X1 < 3,

X1, X2 hon-negative integers.

The optimal non-integer solution of the above problem in figure 1 is

If the non-integer variable is rounded off to 2, it violates the
feasibility. Rounding off x, to 1 satisfies both the constraints but
gives Zmax = 19, which is f less than the true optimal integer solution
X1=2; X2 =2 and Znyax = 26.

25

Figure 1

X1+ 5x, <12

4 4—/X1 <3,

(3, 1.8)

w

/ l\/

\</Z= 3x1 + 102

0 1 2 3 4 5

—

v

In addition, for large problems this method may be computationally
expensive. For instance, if the optimal L.P. solution is x; = 3.4; x, =
2.6 and Zmnax = 8.6, one has to try four alternatives, namely (3, 2),
(3, 3), (4, 2) and (4, 3). The one which is feasible (satisfies all the
constraints) and is closeset to the optimal value of 8.6 of the
objective function will be the approximate integer solution. As the
variables increase in number, the number of alternatives increases
tremendously. For 3 variables, the number of alternatives is 2° = 8,
and for 11 variables it becomes 2" = 2048! And even after
examining all such alternatives, the optimal integer solution to the
problem is not guaranteed. All these difficulties justify the need for
developing a systematic and efficient procedure for obtaining the
exact optimal integer solution to such problems. A considerable
number of algorithms have been developed for this purpose.
Unfortunately, none possesses computational efficiency that is
even remotely comparable to the simplex method (except on
special types of problems), so they ordinarily are limited to relatively
small problems having a few dozen variables. Despite decades of
extensive research, computational experience with integer
programming algorithms has been less than satisfactory. To date,
there does not exist an |.P. computer code that can solve integer
programming problems consistently. Therefore, this remains an
active area of research and progress continues to be made in
developing more efficient algorithms.

26

2.2 METHODS OF INTEGER PROGRAMMING

A systematic procedure for solving pure integer
programming problems was first suggested by R. E. Gomory in
1958. He, later on extended the procedure to cover mixed integer
programming problems. Named as cutting plane algorithm, the
method consists in first solving the integer programming problem as
ordinary continuous L.P. Problem and then introducing additional
constraints one after the other to cut (eliminate) certain parts of the
solution space until an integral solution is obtained.

Another method called the branch and bound algorithm
originally developed by A.H. Land and A.G. Doig and later modified
by R. J. Dakin's is more efficient and is more widely used for
solving all integer and mixed integer programming problems. In this
method, too, the problem is solved as ordinary continuous L. P.
Problem and then the solution space is systematically 'partitioned'
into subproblems by deleting parts that contain no feasible integer
solutions.

The third algorithm, called additive algorithm due to E. Balas
is an efficient and interesting algorithm for solving pure zero-one
linear programming problems. The generalised penalty function
method has also been developed to solve all integer and mixed
integer programming problems.

2.3 THE CONCEPT OF CUTTING PLANE METHOD -
ALGORITHMS

(%

HRL NP Q1L
A

-.".1|.I #5d =k =]

10,1

3.1

(L

LR (KT

The intersection of the unit cube with the cutting plane
In the context of the Traveling salesman problem on three nodes,

27

this (rather weak) inequality states that every tour must have at
least two edges.

In mathematical optimization, the cutting-plane method is
an umbrella term for optimization methods which iteratively refine
a feasible set or objective function by means of linear inequalities,
termed cuts. Such procedures are commonly used to
find integer solutions to mixed integer linear programming (MILP)
problems, as well as to solve general, not necessarily
differentiable convex optimization problems. The use of cutting
planes to solve MILP was introduced by Ralph E. Gomory.

Cutting plane methods for MILP work by solving a non-
integer linear program, the linear relaxation of the given integer
program. The theory of Linear Programming dictates that under
mild assumptions (if the linear program has an optimal solution, and
if the feasible region does not contain a line), one can always find
an extreme point or a corner point that is optimal. The
obtained optimum is tested for being an integer solution. If it is not,
there is guaranteed to exist a linear inequality that separates the
optimum from the convex hull of the true feasible set. Finding such
an inequality is the separation problem, and such an inequality is
a cut. A cut can be added to the relaxed linear program. Then, the
current non-integer solution is no longer feasible to the relaxation.
This process is repeated until an optimal integer solution is found.

Cutting-plane methods for general convex continuous
optimization and variants are known under various names: Kelley's
method, Kelley-Cheney-Goldstein method, and bundle methods.
They are popularly used for non-differentiable convex minimization,
where a convex objective function and its subgradient can be
evaluated efficiently but usual gradient methods for differentiable
optimization can not be used. This situation is most typical for the
concave maximization of Lagrangian dual functions. Another
common situation is the application of the Dantzig-Wolfe
decomposition to a structured optimization problem in which
formulations with an exponential number of variables are obtained.
Generating these variables on demand by means of delayed
column generation is identical to performing a cutting plane on the
respective dual problem.

2.4 GOMORY CUTTING PLANE METHOD EXAMPLES:
INTEGER PROGRAMMING

Cutting planes were proposed by Ralph Gomoryin the
1950s as a method for solving integer programming and mixed-
integer programming problems. However most experts, including
Gomory himself, considered them to be impractical due to
numerical instability, as well as ineffective because many rounds of
cuts were needed to make progress towards the solution. Things

28

turned around when in the mid-1990s Gérard Cornuéjols and co-
workers showed them to be very effective in combination
with branch-and-bound (called branch-and-cut) and ways to
overcome numerical instabilities. Nowadays, all commercial MILP
solvers use Gomory cuts in one way or another. Gomory cuts are
very efficiently generated from a simplex tableau, whereas many
other types of cuts are either expensive or even NP-hard to
separate. Among other general cuts for MILP, most notably lift-and-
project dominates Gomory cuts.

Let an integer programming problem be formulated
(in Standard Form) as:

Maximise C'y
Subject to Ax = b,
x=0, x; all integers.

The method proceeds by first dropping the requirement that
the x; be integers and solving the associated linear programming
problem to obtain a basic feasible solution. Geometrically, this
solution will be a vertex of the convex polytope consisting of all
feasible points. If this vertex is not an integer point then the method
finds a hyperplane with the vertex on one side and all feasible
integer points on the other. This is then added as an additional
linear constraint to exclude the vertex found, creating a modified
linear program. The new program is then solved and the process is
repeated until an integer solution is found.

Using the simplex methodto solve a linear program
produces a set of equations of the form

Z atj,xj __

X + = &1
where x;is basic variable and the x;'s are the non-basic variables.
Rewrite this equation so that the integer parts are on the left side
and the fractional parts are on the right side:

> taijlyi

X; + - [bt] = be - [br] - 3= K(atj —[aij1]) x)

For any integer point in the feasible region the right side of
this equation is less than 1 and the left side is an integer, therefore
the common value must be less than or equal to 0. So the
inequality

bi-[br]-% L@y —[afll yxj< 0
must hold for any integer point in the feasible region. Furthermore,
non-basic variables are equal to Os in any basic solution and if x;is
not an integer for the basic solution x,

bi-[br]- 37 K(aij - [ai1} jxj= Bi-[bi]>0

29

So the inequality above excludes the basic feasible solution
and thus is a cut with the desired properties. Introducing a new
slack variable xi for this inequality, a new constraint is added to the
linear program, namely

x + % K@i —[aij13 yxj =[bi1]- bi x= 0, ¢ is an integer.

In the previous section, we used Gomory cutting plane
method to solve an Integer programming problem. In this section,
we provide another example to enhance your knowledge. Let's
concentrate on the following example:

EXAMPLE 1: GOMORY CUTTING PLANE METHOD
Maximize z = x4 + 4x>

subject to

2Xq +4x, <7

5x1+ 3x2 15

X1, X2 are integers = 0

Solution.

First, solve the above problem by applying the simplex method (try
it yourself).The final simplex table is presented below.

Final Simplex Table

Cj 1 4 0 0
CcB Basic X1 X2 X3 X4 Solution values
variables b (=Xg)
B
4 X2 1/2 1 1/4 0 7/4 (1 +3/4)
0 X4 712 0 -3/4 1 39/4 (9 + 3/4)
Zj—Cj 1 0 1 0

Taking first row as the source row, the corresponding equation is
1/2X4 + 1o + 1/4x3 + Ox4 = 1 + 3/4
1/2x1+ (1 + 0)xz + (1 - 3/4)x3 =1 + 3/4

Gomory's constraint
- (1/2x4 - 3/4x3) < -3/4
-1/2x4 + 3/4x3 + x5 = -3/4

30

Table
Cj 1 4 0 0 0
cg | Basic variables X1 | X2 X3 X4 X5 Solution
B values
b (=XB)
4 X2 1721 1 1/4 0 0 7/4
0 X4 7/121 O -3/4 1 0 39/4
0 X5 -1/2] O 3/4 0 1 -3/4
Zj—Cj 1 0 1 0 0
Table
Cj 1 4 0 0 0
CB Basic X1| Xo X3 X4 X5 Solution
variables values
B b (=Xg)
4 X2 0 1 1 0 1 1
0 X4 0 0 9/2 1 7 9/2
(4+1/2)
1 X1 1 0 -3/2 0 -2 3/2
(1+1/2)
Z—Cj 0 0 5/2 0 2

Taking second row as the source row, the corresponding equation

is:

Oxq1+0xo +9/2x3 + IXa + X5 =4 + 1/2
or (4+1/2)x3+(1+0)xg+(7+0)xs=4+1/2

Gomory's constraint

-1/2x3 £ -1/2
-1/2x3 + xg = -1/2

31

Table
(o 11 4 0 0 0 0
cs Basic X1 | X2 X3 X4| Xs5| Xe Solution
variables values
B b (=Xs)
4 X2 011 1 0 1 0 1
0 X4 0|0 9/2 1 7 0 9/2
1 X1 110 -3/2 0 -2 0 3/2
0 X6 0|0 -1/2 0 0 1 -1/2
z—; 0|0 5/2 0 2 0

In the above table, there is a negative value under Xgcolumn;

therefore, apply the dual simplex method.

Final Table: Gomory Cutting Plane Method

[1] 4 0 0 0 0
CB Basic X1| X2 X3 Xa X5 Xe Solution
variables values
B b (=Xs)
4 X2 0] 1 0 0 1 2 0
0 X4 0|0 0 1 7 9 0
1 X4 110 0 0 21 -3 3
0 X3 0|0 1 0 0 -2 1
z—; 0|0 0 0 2 5

The optimal solution is

X1=3,X2=0
z=3+4X0=3

2.5 THE MIXED ALGORITHM

In mixed integer problems only some of the variables are

constrained to be integers. As in the case of pure integers, the

32

problem is first solved as a continuous linear programming problem
and then secondary cuts corresponding to the integer variables are
added one by one. The value of the objective function in the
optimum solution of the mixed integer programming problem is
always superior to or at least equal to that of all integer problem,
and is always inferior to or equal to that of the continuous L.P.
Problem.

EXAMPLE 1:
Maximise Z = 4x4 + 6X2 + 2X3,
subject to 4x4- 4x2< 5,
-X1+6x2 <5,
- X1+ X2+ X35 X4, X2, X32 0; Xq X3 integer.
Solution:

The optimal solution to this problem obtained by ignoring the
integrality condition is given in the following simplex table:

Table 1
CB Basis X1 X2 X3 S1 Sz S3 b
X4 1 0 0 3/10 1/5 0 5/2
X2 0 1 0 1/20 1/5 0 5/4
X3 0 0 1 1/4 0 1 25/4

Optimal feasible non-integer solution

Variables x4 and x, are constrained to be integers. To construct

Gomory's constraint, select xi.row which has the larger fractional

part, 1/2. This row can be written as
(1+0)x4+(0+3/10)S1+(0+1/5)S,=2+1/2

The Gomory's constraint to be added is
S'=3/M0S4+1/5S,-1/2
or-3/10S1-1/5S,+S"'=-1/2.
Adding this constraint to table 1, we get

33

Table 2
CB Basis X1 X2 X3 81 Sz S3 S' b
4 X1 1 0 0 3/10 1/5 |0 0 5/2
6 Xo 0 1 0 1/20 1/5 |0 0 5/4
2 X3 0 0 1 1/4 0 1 0 25/4
0 S' 0 0 0 (-3/10) [-1/5 10 1 -1/2 9
z; 2 2 |2
ro) o |o |[-2 2 |2 |o
- - - 20/3 10 - -
ratio
Replace S' by Sy,
Table 3
CB Basis X1 X2 X3 S1 Sz 83 S' b
4 X4 1 0 0 0 0 0 1 2
6 X2 0 1 0 16 |0 1/6 7/6
2 X3 0 0 1 0 -1/6 |1 5/6 35/6
0 Sy 0 0 0 1 2/3 0 -10/3 | 5/3

Taking x3-row as the source row, we have
(1+0)x3+ (-1+5/6)S,+(1+0)S;+(0+5/6)S'=5+5/6.

[1The Gomory's constraint is

3 3 3 5 5 3

S"=6S2:+: 6S-60r-6S,.65'+S"=-5.

34

This constraint is now added to table 3 and we get

Table 4

CB Basis X1 X2 X3 S1 Sz 83 S' S"|b
4 X1 1 0 0 0 0 0 1 0 |2
6 Xo 0 1 0 0 1/6 0 1/6 0 |7/6
2 X3 0 0 1 0 -1/6 1 5/6 0 |35/6
0 S' 0 0 0 1 (2/3) 10 -10/3 |0 | 5/3
0 s" 0 0 0 0 (-5/6) 1 0 -5/6 1 |-5/6 ¢

4 6 2 0 2/3 2 20/3 0
Z;
<j 0 0 0 0 -2/3 -2 1-20/3 |0

- - - - 4/5 - 8 -
ratio

A
Replace S" by S,
Table 5

CB Basis X1 X2 X3 S1 Sz S3 S s b
4 X1 1 0 0 0 0 0 1 0 2
6 Xo 0 1 0 0 0 0 0 1/5 |1
2 X3 0 0 1 0 0 1 1 -1/5 16
0 Sy 0 0 0 1 0 0 -4 4/5 11
0 Sy 0 0 0 0 1 0 1 -6/5 | 1

Optimal Integer Solution

Table 5 gives optimal integer solution.
X1=2; X2 =1; X3 = 6; Zmax = 26.

35

2.6 BRANCH & BOUND (B&B) ALGORITHM

Branch and bound algorithm is the most widely used method
for solving pure as well as mixed integer problems in practice. Most
commercial computer codes use this method for solving I.P.
Problems.

In this method also, the problem is first solved as a
continuous |.P. problem ignoring the integrality condition. If in the
optimal solution some variable, say x4 is not an integer, then

Xj*[X; [Xj*+ 1.
where x; and x; + 1 are consecutive non-negative integers.

It follows that any feasible integer value of x; must satisfy one
of the two conditions, namely
X Sx orxzx +1
since variable has no integer value between x; and X ju1,

These two conditions are mutually exclusive and when
applied separately to the continuous L.P. problem, form two
different sub problems. Thus the original problem is 'branched' or
'partitioned' into two sub problems. Geometrically it means that the
branching process eliminates that portion of the feasible region that
contains no feasible integer solution.

For instance, let the continuous optimal solution to a problem be
1

X1 =52, X2 =0, Zmax = 55.
1
Now, x1 = 52 gives 5 [] x4 [] 6.
For an integer valued solution,
eitherxy<5o0rx; =6
and we search for optimum value of Z either in the first region (x4 <
5) or in the second region (x1 2 6).

This branching process yields two sub problems, one by
adding the constraint x; < x; and the other by adding the constraint
x; 2 x; + 1to the original set of constraints. Each of these sub
problems is then solved separately as a linear program, using the
same objective function of the original problem. If any sub problem
yields an optimal integer solution, it is not further branched.
However, it yields a non-integer solution, it is further branched into
two sub problems. This branching process is continued, until each

36

problem terminates with either integer valued optimal solution or
there is evidence that it cannot yield a better one. Whenever a
better integer solution is found for any sub problem, it replaces the
one previously found. The integer valued solution, among all the
sub problems that gives the most optimum value of the objective
function is selected as the optimum solution.

Main drawback of this algorithm is that it requires the
optimum solution of each sub problem and in large problems it
could be very time-consuming. However, the computational
efficiency of this algorithm is increased by applying the concept of
"bounding". According to this concept, whenever the continuous
optimum solution of a sub problem yields a value of the objective
function lower than that of the best available integer solution
(maximisation case), it is useless to explore the problem any
further. This sub problem is said to be fathomed and is dropped
from further consideration. Thus once a feasible integer solution is
obtained, its associated objective function can be used as a lower
bound (maximisation case) to delete inferior sub problems. Hence
efficiency of a branch and bound algorithm depends upon how
soon the successive sub problem are fathomed.

If the objective function is to be minimised, the procedure
remains the same except that upper bounds are used. Thus the
value of the first integral solution becomes an upper bound for the
problem and the programmes are eliminated when their objective
function values are greater than the current upper bound.

This algorithm can be extended directly to the mixed integer
problems (in which only some of the variables are integer). If a
variable is continuous, we simply never select it as a branching
variable. A sub problem provides a new bound on the objective
value if the values of all the discrete variables are integer and the
objective value is better than the existing bound.

EXAMPLE 1
Minimise Z=2x1+ 3x2
Subject to 6 x4 + 5xp < 25
X1 + 3x2 <10,
X1, X2 non-negative integers.
SOLUTION

The given problem is first solved as a continuous linear
programming problem ignoring the integrality condition. Any of the
methods, graphical or simplex could be used, however the

37

graphical method will be used here. The non-integer optimal
solution given in figure 1 is

Figure 1 A
) 6 X1 + 5x, £ 25
) /
Optimum Solution
] 25 35 155
K 1+ 3%, <10
2 Z = 2Xq + 3%
T
0 1 '2 '3 4 5 6
25 35 155

This is the starting solution and is represented on the
tree diagram given in figure 6. It can be observed that addition of
integer restrictions can only make L. P. solution worse. Hence
upper bound on the value of Z for the integer problem is 12. Since
the solution is non-integer with both x1 and x, having fractional

values, any variable may be arbitrarily selected for branching. If x»
35
is selected, then x, = 13 gives 2 [1 x, [1 3.

Thus, we add a new constraint either x, < 2 or x, < 3
to the original L.P problem, yielding two sub problems:

Sub Problem 1 Sub Problem 1

Z =2Xx4 + 3x2 Z =2Xx4 + 3x2

Subject to Subject to

6 x4 +5x,<25 6 X1 +5x,<25

X1+ 3x2=10 X1 +3x2<10

X< 2 X< 3

X1, X2 Non-negative integers X1, X2 Non-negative integers

these sub problems are again solved by ignoring the internality
condition. The solution of sub problem 1 given in figure 2 is
X1 =2.5,X2=2; Zmax =11

38

<« 6 x4+ 5x,525
4 Optimal Solution
/\ X1=2.5, X0 =2; Zmax =11

3 /x1+3x2S1O

1 < Z = 2Xq + 3%,

v

0o 1 2 3 4 5

Figure 2
This is a feasible integer solution to the given problem. Since
variables x4 and xz are integers, there is no need to branch sub
problem 2 further. Note that Z,.x =11 is a lower bound on the
maximum value of Z for the future solutions. Thus Z; = 11.

Similarly, the optimal solution obtained graphically in figure 3 for
sub problem 2 is

/6X1+5X2525

4 ptimal Solution
X1=1; %X =3; Zmax =11

(48]

X< 3

<« Xx1+3x<10

Z = 2X1 + 3xo

»

0 1 2 3 4 5

figure 3

39

Sub problem 1 is now the only candidate for branching.
The optimum continuous solution to this problem give Zgn.x =11,
which is not inferior to the lower bound. Therefore, it can be
branched into further sub problems. Since x4 is the only fractional
valued variable, this will act as the branching variable and the new
sub problems will have one of the following additional constraints:

X1 S [25] or Xq < 2,
X1 2 [2.5] orxi=3

Thus the sub problems emanating from it are

Sub problem 3 Sub problem 4

Maximise Z = 2x4 + 3x2 Maximise Z = 2x4 + 3x2
Subject to Subject to

6 x4 +5x225 6 x1+5x,225

X1+ 3x2 <10 X1+ 3x2<10

Xo < 2, Xo < 2,

X1 < 2, X1 < 3,

X1, X2 hon-negative integers X1, X2 hon-negative integers

The optimal solution to sub problem 3, as shown in figure 4 is x4 =

4

6 x1 + 5xp < 25
¥ 5 /
4

4_\ X4 <2
/ Optimal Solution x4 = 2; X2 =2; Zmax =10

X1+ 3x2<10

/) oz
2

<+ Z = 2Xx1 + 3%
R 2 3 % 5

This solution is integer feasible but is inferior to the best
available solution already obtained. Hence, the value of lower
bound Z, = 11 remains unchanged and sub problem 3 is also
fathomed.

v

40

The optimal solution to sub problem 4, as shown in figure 5 is:

Figure 5

6 x4 +5x,525

?Z Optimal Solution x4 = 3; X, = 1.4; Znax =10.2
2 X4+ 3x2 =10

X = 2Xq + 3x»
0 1 2 3 4 5

v

X1=3; X0 =14; Znmax =10.2

Since the solution is non-integer, sub problem 4 can be
further branched with x, as the branching variable. But the value of
its objective function (Zmax =10.2) is inferior to the lower bound and
hence this does not promise a solution better than the one already
obtained. Therefore, this sub problem is also fathomed. Now there
is no sub problem which can be further branched and the best
available solution corresponding to sub problem 2 is the integer
optimal solution of the problem.

4

ie.Xx1=1; =3, Znax=11

Problem
Figure 6
X1 =25/13; x, = 35/13
Zmax = 10.2
Xp < 3 Xp < 2
Sub Problem 2 Sub problem 1
Xlzl;X2:3; Zmalel X1:2.5;X2:2; Zmalel
X112 3 X1 < 2
Sub Problem 4 Sub Problem 3
X1=3: %= 1.4; Zynax =10.2 X1=2;X2= 25 Zmax =10
Fathomed Fathomed

Figure 6 summarises the generated sub problems in the
form of a tree.

The above example was solved using graphical method. We
present below a mixed-integer problem and solve it by the simplex
method.

EXAMPLE 2

Solve the following mixed integer problem by the branch and bound

technique:
Maximise z=X4+Xo
Subject to 2x1+ 5x2,<16,
6 x4 + 5 x5 < 30,
Xo 2 0,
x12 0 and integer
Solution

The continuous optimal solution of the problem has been obtained
in table 1 as
X1 =7/2 and x2 = 9/5, giving Znax = 53/10 = 5.3

42

Table 1
Ci 1 1 0 0
Cs Basis X1 Xo S4 So Bi 0
0 S 2 5 1 0 16 8
S, (6) 5 0 1 30 5 9
Z; 0 0 0 0
c] =C;j- 1 1 0 0
Z;
f
0 S 0 (10/3) 1 -1/3 6 9/5
1 X1 1 5/6 0 1/6 5 6
Z; 1 5/6 0 1/6
c]=C;j- 0 1/6 0 -1/6
Z;
1 X2 0 1 3110 | -1/10 9/5
1 X1 1 0 -1/4 1/4 7/2
Z; 1 1 1/20 3/20
cJ =Cj- 0 0 -1/20 | -3/20
Z;

X2 =9/5; X4 =7/2; Zmax = 5.3

Since only x4 is integer constrained, the problem is branched
into two sub problems, each using one of the following additional
constraints:

7

X1 <[2]orxs £3, and

7

X12[2]+ 1o0rx; 4.
Optimal solution to the problem

Maximise
Subject to

z=X1+ X5

2x1 + 5 x2 16,
6 x1 + 5 x2 =30,
XQZO,

X1Z3

is obtained in table 2 as x1 = 3 and xz = 2, giving Zmax = 5. Since it
satisfies the condition of x4 being integer, it is the best solution
available so far, and lower bound Z, = 5.

43

Ci 1 1 0 0 0
CB Basis X1 Xo 81 Sz 83 bi 0
0 |s; 5 1 0 8
2 0 16
0 |S, 5 0 0 5
6 1 30
0 |[S; 0 0 1 313 |
(1) 0
Z 0 0 0
0 0
@ =Cj-Z 1 0 0
1 0
f
0 |Sq G)| 1 -2 2
0 0 10
0 |S, 5 0 -6 12/5
0 1 12
1 |x 0 0 1 313
1 0
Z 0 0 1
1 0
cj=Cj-Z 1 0 -1
0 i 0
1 |x 0 1 - |2
1/5 2/5
0 (S 0 0 -1 4 |2
1 |x 1 0 0 1 |3
Z 1 1 1/5
3/5
=C;-Z 0 0o | -1/5 -
3/5

44

Optimal solution to the problem
Maximise
Subject to

z=X1+ Xo

2x1 + 5 X%, <16,
6 x4 + 5 xo < 30,
X124,

X220

is obtained in table 2 as x4 =4 and x, = 6/5, which gives Zmax = 26/5
= 5.2. This solution also satisfies the condition of x; being non-
negative integer and value of Z = 5.2 is better than the lower bound.
Therefore this branch is also fathomed. Therefore, the optimal
solution to the given problem is x4 =4 and x, = 6/5 and Znax = 5.2.

Table 3
G 1 1 0 0 0 -M
Cs Basis X4 X2 Sq S, S3 b; 0
A
0 Sy 2 5 1 0 0 0 16 8
0 Sy 6 5 0 1 0 0 30
-M A (1) 0 0 0 -1 1 4 4 <+
Z; -M 0 0 0 M -M
cj=C;-Z; | 1+M 1 0 0 -M 0
A
SF 0 5 1 0 8/5
0 S 0 (5) 0 1 6 6/54
X4 1 0 0 0 -1 -
Z; 1 0 0 -1
cj=C;-Z 0 1 0 0 1
A
0 X4 0 0 1 -1 -4 2
X2 0 1 0 1/5 | 6/5 6/5
1 X4 1 0 0 0 -1 4
Z; 1 1 0 15 | 1/5
cj=C;-Z 0 0 0 |-1/5]-1/5

X1 =4; Xy =6/5; Zmax = 26/5 = 5.2.

45

2.7 EXERCISE

Q1. Write short note on integer programming model.

Q2. Define and briefly explain |.P.P and mixed |.P.P.

Q3. What is the concept involved in Gomory's cutting plane
method?

Q4. Describe a method of solving mixed I.P.P.

Q5. Explain the branch and bound method in integer programming.

Q6. Explain some of the practical applications of integer
programming.

SOLVE THE FOLLOWING

1. Consider the problem of assigning three jobs to three men. Each
man is capable of doing all the jobs; however, the time taken by the
different men on each job is different and can be assumed to be
known. The assignment has to be done so that each job is
assigned only once, each man gets only one job and the total time
taken by all the job is minimised. Formulate it as an I.P. problem
with decision variables defined as

x;j = [1, if the ith man is assigned to job j

0, otherwise.

2. A sales representative of a pharmaceutical company has been
assigned a region and he must visit n cities in this region once in a
quarter, starting from and returning to the regional headquarters.
Formulate this as an [.P. problem to minimise the distance
travelled.

3. A refrigeration and air-conditioning company has been awarded
a contract for the air-conditioning of a new computer installation.

The company has to make a choice between two alternatives:

a. hire one or more refrigeration technicians for six hours a day or
b. hire one or more part-time refrigeration apprentice technicians for
four hours a day.

The rate of wages of a refrigeration technician is Rs. 20 per
hour, while the corresponding rate of apprentice technician is Rs. 8
per hour. The company wants to engage the technicians on work
for not more than 25 man hours per day and also limit the charges
to technicians to Rs. 440. The company estimates, that the
productivity of a refrigeration technician is eight units and that of a

46

part-time apprentice technician is three units. Formulate the integer
programming problem to enable the company to select the optimum
number of technicians and apprentices.

4. Solve the problem by Gomory's algorithm:
Maximise Z = 3xq1 +4xy,
subject to X1+ X254,

3/5x1+ X, £ 3,

X1, X2 2 0 and integer.

5. Solve by cutting plane algorithm:
Maximise Z=T7x1+ 10x2,
subject to -X1 + 3X2 £ 6,

7 X1+ X2 < 35,

X1, X2 2 0 and integer.

47

GOAL PROGRAMMING

Unit Structure

3.1 Introduction

3.2 Goal programming with a single goal

3.3 Goal programming with multiple goals

3.4 Non-preemptive goal programming

3.5 Modified simplex method for goal programming
3.6 Test of optimality and derivation of revised tableau
3.7 Exercises

3.1 INTRODUCTION:

As observed earlier, traditional mathematical programming
models, including linear programming and integer programming,
are based on the assumption that the decision making has a single,
quantifiable, objective such as maximisation of profit or
minimisation of inefficiency or cost. However, often there are
situations, where instead of posing a single objective, managers
use multiple criteria in decision-making. Thus, instead of setting
only one objective, multiple goals may be set. Specifications of
multiple goals creates difficulties in the solution to a given problem
because the objectives are usually conflicting and incommensurate.
For example, increasing a portfolio's annual return calls for making
more risky investments. Thus, a portfolio manager's objective to
maximise returns would conflict with minimising risk. Further,
objectives may be incommensurate if they involve different units.
Thus, maximisation of profits, expressed in monetary terms is an
economic objective; maintaining a certain workforce level is an
employment objective which is input in terms of the number of
workers employed, while an environmental objective such as
pollution may be measured in terms of damage to surroundings.

Goal Programming allows handling such multi-objective
situations. It uses the concept of penalties in the format of linear
programming. To apply goal programming, first a target value, a

48

goal, is set for each of the objectives/goals. Since all the goals are
unlikely to be satisfied simultaneously, a penalty is assigned for
each unit of deviation from the target value in each direction. Thus,
a revised linear programming problem, using 'deviational' variables
is formulated whose optimal solution comes as close as possible to
achieving the stated goals in the sense that it minimises the sum of
penalties incurred for under-achieving or over-achieving the various
goals. Thus, the central concept of goal programming is to
determine the individual preferences of the decision makers in
terms of the goals stated and to establish a single (an overall)
function, which is to be minimised or a series of goal functions
which are to be minimised in order of their relative importance.

3.2 GOAL PROGRAMMING WITH A SINGLE GOAL

Although goal programming is meant to deal with problems
with multiple goals, we may begin with a problem with a single goal
to develop some basic ideas.

EXAMPLE 1

A firm is producing two products which yield unit profits of
Rs. 40 and Rs. 35 respectively. The two products are known to
need 2 kg and 4 kg of raw material, respectively, per unit and 3
hours of labour each. With an availability of 60 kg of raw material
and 96 labour hours, the problem is restated as below:

Maximise Z = 40x4 + 35x>

Subject to 2x1 + 3x2< 60
4xq1 + 3x2< 96
X1, X220

Now, suppose the manager has set the goal to achieve a
profit of Rs. 1400. If we return to the graphic solution to this
problem, we observe that the maximum profit obtainable in this
case is Rs. 1000, and the profit represented by the Rs. 1400 iso-
profit line cannot be realised. Thus, the problem is not feasible in
terms of this requirement. However, goal programming, like
managers, recognises that any goal stated may be under-achieved,
met exactly, or over-achieved. For example, the goal of a profit of
Rs. 1400 in the above situation would be under-achieved, while if
the goal stated in the question is to attain a profit of Rs. 1000, it
would be met exactly. On the other hand, if the manager sets to
achieve a profit of Rs. 800, it would be over-achieved. Continuing

49

with the manager's goal of achieving a profit of Rs. 1400, the
requirement can be expressed using the mathematical abbreviation
40x4 + 35x2 = 1400 as a goal. The implication is that the goal is to
achieve the stated equality. (incidently, if the manager's goal was
instead to have a profit of at least Rs. 1400, the goal would be
expressed as 40x; + 35x, = 1400). However, what is to be
recognised is that such equalities or inequalities, which involve
goals are not like inequalities related to the resources or other
limitations. The inequalities (or equalities) related to resource
capacity (like raw material or labour) or non-goal oriented
limitations (like market size of a product), known as technological or
structural constraints, are rigid while inequalities representing goal
constraints are not so and are instead flexible.

We may now put the goal constraint into standard
mathematical notation. In this particular case, we are aware that the
goal constraint will be under-achieved. If we let d be the deviational
variable of under-achievement, we can write 40x4 + 35x; + d” =
1400. However, in a given problem, we would not know whether a
goal will be under-achieved or be over-achieved or exactly met, we
introduce two deviational variables - one of under-achievement and
other of over-achievement. Thus, if we designate the deviational
variable of over-achievement by d*, we can express the above goal
constraint as

40x4 + 35x, + d -d" = 1400
where deviational variable d° and d* are (i) either positive or zero
and (i) either d” and d* is zero or (i) both d” and d* are zero. This
relationship can always be met. For example, x; = 0, x, = 0, d” =
1400 and d* = 0 provides a solution.

It may be noted here that when a goal is met exactly, both
the deviational variables d” and d* would be equal to zero. Further,
we are assured that we never get a solution in which d” and d* are
both non-zero, since the objective is to minimise their sum-the
combination that minimises will always have one of them at a zero
level.

Thus, flexible goal constraints are always expressed in the
way the given constraint has been shown above, by introducing
deviational variables.

Now, reconsidering the example, we observe that we have
two resource constraints and one converted goal constraint. To find

50

the optimal solution, we first convert this problem to a standard
minimisation or maximisation problem. This is effected by the
concept of goal function. It is stipulated that we want to be as close
to the profit of Rs. 1400 as possible and, therefore, minimise d-, the
under-achievement. Accordingly, the problem may be set as
follows:
Minimise Z=d
Subject to 2x1 + 3x2< 60

4x4 + 3x2 <96

40x4 + 35x, + d - d" = 1400

X1, X2, d, d" =20

We may solve this LPP to get x4 = 18, x>
=8,d =400 and d* = 0 and profit = Rs. 1000, implying thereby that
the profit goal is under-achieved by Rs. 400 and that the maximum
profit is Rs. 1000. The solution is the same as that of the original
problem. The solution to the problem is contained in Tables 1, 2
and 3.

Table 1 Simplex Tableau 1: Non-optimal Solution

F

Basis X Xz S1 Sz D’ D B; Bi/aij
S, 0 2 3 1 0 0 0 60 30
S; O 4* 3 0 1 0 0 96 24
D 1 40 35 0 0 1 -1 1400 35 <4—
C; 0 0 0 0 0 0
Solution 0 0 60 96 1400 0
Aj -4? -35 0 0 0 1

Table 2 Simplex Tableau 2: Non-optimal Solution

Basis X1 Xz S1 Sz D’ D+ Bi Bilaij
S1 0 0 3/2* 1 -1/2 0 0 12 8
Xy 0 1 3/4 0 1/4 0 0 24 32
D 1 0 5 0 -10 1 -1 440 88
Cj 0 0 0 0 1 0
24 0 12 0 440 O

Solution
Aj 0 -5 0 10 0 1

51

Table 3 Simplex Tableau 3: Non-optimal Solution

Basis X1 Xz S1 Sz D" D+ Bi

X, 0 0 1 23 13 0 0 8
Xy 0 1 0o <12 12 0 0o 18
DD 1 0 0 -10/3 -253 1 -1 400
C; 0o 0 0 0 1 0

Solution 8 0 0 400 O

Aj 18 0 0 1

0 + 103 253

3.3 GOAL PROGRAMMING WITH MULTIPLE GOALS

We now consider the usual goal programming situations
which involve multiple goals. As indicated earlier, the basic
approach of goal programming is to establish goal or target (in
quantitative terms) for each objective, formulate an objective
function for each objective and then look for a solution that
minimises the deviations of these objective functions from their
respective goals.

The goals that one may set may be either one-sided or two-
sided. Further, one-sided goal can be a lower, which sets a lower
limit that we do not want to fall under (but exceeding the limit is all
right) or an upper, which sets an upper limit that we do not want to
exceed (and falling short of which is just fine). Similarly, a two-sided
goal sets a specific target, missing which from either side is not
desired.

The deviational variables for any goal constraint measures
the amount of discrepancy between the value of the objective and
the goal specified in respect thereof.

Depending upon how the goals compare, goal programming
problems may be categorised as being non-preemptive and
preemptive. Non-preemptive goal programming involves situations
where all the goals are of roughly comparable importance, whereas
preemptive goal programming deals with cases where there is a
hierarchy of priority levels for various goals so that there are goals
of primary importance which receive attention before others which
are of secondary importance. Thus, different goals are considered
one by one according to their relative importance. We shall discuss
the two types in turn.

52

3.4 NON-PREEMPTIVE GOAL PROGRAMMING

In non-preemptive goal programming, we first establish a
goal for each objective and then seek a solution that minimises the
sum of the deviation of these objectives from their respective goals.
The goal programming assumes that the decision-maker has a
linear utility function with respect to the objectives, that is to say,
the marginal rate of substitution between the objectives is linear,
regardless of the extent of deviation from the goal. Further, the
deviations may be given different weights, called penalty weights, in
accordance with the relative significance of the objectives, and the
solution sought may be the one which minimises the weighted sum
of the deviations. The weights used in a goal programming model
are indicative of the decision-maker's utility for the various
objectvies. Specifically, they measure the marginal rate of
substitution between objectives and the degree of importance in
attaining the goal of each objective relative to the others.

We shall illustrate the non-preemptive goal programming
with the help of some examples. Consider the following:

EXAMPLE 2

The production manager of a company wants to schedule a
week's production run for two products P4 and P2, each of which
requires the labour and materials as shown below:

Product

P4 P2
Labour Hours 2 4
Material M1 (kg) 4 5
Material M, (kg) 5 4

The weekly availability of resources is limited to 600 labour
hours, 1000 kg of material My and 1200 kg of M,. The unit profit for
P4 and P2 is Rs. 20 and Rs. 32 respectively.

Products Py and P, are in fact, new models and are
replacements of the older ones which have been discontinued very
recently. The manager would like to maximise profit but he is
equally concerned with maintaining workforce of the division at
nearly constant level in the interest of employee morale. The
workforce, which consists of people engaged in production, sales,
distribution, peons and other general staff, consisted of 108 person

53

in all. From a detailed study, it is known that production of one unit
of P4 would maintain 0.3 person in the workforce, while one unit of
P, would maintain 0.75 person.

Had the production manager been considering only
maximising profit, without regard to maintaining the workforce, he
would do so by producing 167.67 units of P4 and 66.67 units of P,
(this can be checked by solving the problem as an LPP). On the
basis of the available capacity, this would yield a profit equal to
167.67 x 20 + 66.67 x 32 or Rs. 5, 486.67. However, this would
maintain 100.3 people in the workforce. The manager feels that
probably he could increase the workforce requirement to desired
level by accepting somewhat lower profit. In keeping with this, the
following two goals are established: a profit of Rs. 5,400 per work
and a workforce of 108 persons. Formulate and solve this as a goal
programming problem.

If we let x4 and x; represent the number of units of P4 and P,
respectively, to be produced every week, the goals and constraints
of the problem can be stated as follows:

20 x4 + 32 x2 = 5400 Goal 1
0.3x1+0.75 x2=108 Goal 2
2x1 + 4 x, <600 Labour
4x4 + 5%, £ 1000 Material M4
5x1 +4 x,£1200 Material My

This problem may not have a feasible solution which
satisfies both the goals. Further, to be able to solve this problem
using simplex method, we need to introduce deviational variables in
each of the constraints involving goals. They may be defined as
follows:
let d4” = number of rupees below the profit goal of Rs. 5400
let d1* = number of rupees above the profit goal of Rs. 5400
let d,” = number of people below the workforce goal of Rs. 108
let d2” = number of people above the workforce goal of Rs. 108

Now, considering the nature of goals, it may be presumed
that over achievement of either of them would attract no penalty,
and we may seek a solution which would minimise the under
achievement of both of them. Accordingly, the problem may be
stated as follows:

54

Minimise Z=diy +dy
Subject to 20 xq + 32 xp +dy".dy" =5400
03x1+0.75x,+dy - d2+ =108
2x1+4 xo + S4 =600
4x4 + 5%, + S, =1000
5xq +4 x, + S3 = 1200
X1, X2, S4, Sy, S3,dy, d1+, d>” and d2+2 0

It may be observed here that, as discussed earlier, the goals
are written as constraints. Further, in solving a problem by simplex
method, while artificial variables are ordinarily introduced when
equations are involved, it is not so in the context of the constraints
involving goals. Here, expressing the deviation from goal as the
difference between two non-negative variables (di . d)’, for
example) provides the model sufficient flexibility to permit the under
achievement or over achievement of the goal. To solve the problem
using simplex method, the initial solution will be provided by the two
deviational variables d{” and d," and the three slack variables S S,
and S; introduced in the three constraints involving resources:
labour and materials. The detailed solution to the problem is
contained in Tables 1 and 2.

The optimal solution to the problem as obtained from Table 1
is: x4 = 150, xp = 75, dy” = 27/4 = 6.75, S, = 25 and S3 = 150, with
the objective function value equal to 6.75. From this, it is evident
that workforce shall be 101.25, with the employment goal being
under achieved to the extent of 6.75 people, while 25 kg of material
M; and 150 kg of material M, would remain unutilised. The other
variables are non-basic so that all the available labour hours shall
be used and the profit goal be met exactly.

TABLE 1 Simplex Tableau 1

Basis X4 Xo dy d1+ dy” d2+ S1 Sz S3 B; Bi/aij

di 1 20 32 1 -1 0 0 0 0 0 5400 168.75
dy 1 3/10 3/4* 0 0o 1 -1 0 0 0 108 144 <«
S; 0 2 4 0 0 O 0 1 0 0 600 150

S, 0 4 5 0 0 O 0 0 1 0 1000 200

S; 0 5 4 0 0 O 0 0 0 1 1200 300

C; 0 0 1 0o 1 0 0 0 0

Solution 0 0 5400 0 108 O 600 1000 1200

Aj -213/10 -131/4 0 0o 1 0 0 0 0

55

TABLE 2 Simplex Tableau 2

A

X4 Xz dy d1+ dy d2+ S1 Sz S B; Bi/aij
36/5 0 1 -1 - 128/3 0 0 0 792 299/16
128/3
0 2/5 1 0 0 4/3 4/3 0 0 0 144 - <+
0 2/5 0 0 0 -16/3 16/3* 1 0 0 24 9/2
0 2 0 0 0 -20/3 20/3 0 1 0 280 42
0 17/5 0 0 0 -16/3 16/3 0 0 1 624 117
0 0 1 0 1 0 0 0 0
0 144 792 0 O 0 24 2 6
-36/5 0 0 1 131/3 -128/3 0 0 0
A
TABLE 3 Simplex Tableau 3
X1 Xz d1- d1+ dz- dz+ S1 Sz S Bi Bi/aij
4 0 1 -1 0 0 -8 0 0 600 150
1/2 1 0 0O 0 O 14 0 0 150 300
3/40* 0 0 o -1 1 3/16 0 0 9/2 60 %
3/2 0 0 0O 0 O -54 1 0 250 500/3
3 0 0 O 0 0 A1 0 1 600 200
0 0 1 O 1 0 O 0 0
0 150 600 0 O 9/2 0 250 6
4 0 0 1 0 0O 8 0 O
+
TABLE 4 Simplex Tableau 4
X1 X3 d¢ d1+ dy d2+ S S3 B; Bi/aij
0 O 1 -1 160/3* -160/3 0 0 360 27/4¢
0o 1 0 0 20/3 -20/3 0 0 120 18
1 0 0 0 -40/3 40/3 0 0 60 -
0 O 0 0 20 20 1 0 160 8
0 O 0 0 40 40 0 1 420 21/2
0 O 1 o 1 1 0
60 120 360 0 O 0 160 420
0 O 0 1 -157/3 -157/3 0

56

TABLE 5 Simplex Tableau 5

Basis X1 Xz d1- d1+ dz- d2+ S1 Sz S3 Bi

D, 1 0 0 3/160 - 1 -1 -27/80 0 O 27/4
3/160

X, 0 0 1 -1/8 18 0 0 5/4 0 O 75

X4 0o 1 0 1/4 -1/4 0 0o -2 0 O 150

S, 0 0 0 -3/8 3/8 0 0 7/4 1 0 25

S3 0 0 0 -34 34 0 0 b5 0o 1 150

C; 0 0o 1 0 1 0O O 0 O

Solution 150 75 0 0 2714 0 O 25 150

Aj 0 0 157/160 3/160 0O 1 27/80 0 O

3.5 MODIFIED SIMPLEX METHOD FOR GOAL
PROGRAMMING

Pre-emptive goal programming problems can be solved using
the simplex method in a modified form. Before illustrating the
application of the method for solving such problems, let us recall
that in such problems, the objective is to minimise the unattained
portion of the goals, which is sought to be achieved by assigning
pre-emptive priority factors Py, Po, P, and so on (and differential
weighting in case of equal priority goals) to the deviational variables
introduced in respect of various goals. These serve to act as the c;
values. However, it is significant to note that the priority factors are
only ordinal weights (that is to say, they can be ranked in order of
their importance). They are not commensurable and, as such, no
values can be assigned to them. The A/ values here are not
expressed (like in case of linear programming) in a single row and
are written instead, in the form of a matrix, with the number of rows
equal to pre-emptive priority factors and the number of columns
being equal to the number of variables involved. The expression of
values as a matrix calls for a modified way of selecting the key
column to identify the incoming variable. Since P>>>Pj.4, the
selection procedure involves initiation from P; and moving to lower
priority goals.

57

Let us consider the following example:

EXAMPLE 1:
Solve the goal programming problem:
Minimise Z=P4dy + P2(4d2_ + 3d3_) + P3d1+
Subject to X1+ X2=300
2X1+ Xo +dq - d1+ =400
X1 +dy =150
Xo +ds =350

X1, X2,d1" d2’and d3 20

To solve this problem, we first express the given information
as shown in Table 1. Observe that the basic variables in Simplex
Tableau are S4, di" d2” and ds* with solution values equal to 300,
400, 150 and 350 respectively. Evidently, since both X4 and X; are
equal to zero, the zero output implies various negative deviational
variables di" d; and d3 are assuming positive values. The rows
under the c; row are listed according to the priority levels of the
goals, with the highest priority goal P at the bottom and the lower
ranked goals P, and P3 placed above it in the ascending order. The
values in these indicate the A/ values. Let us understand the
calculation of &/ = (cj - z) values in the table. For calculating z
values, consider the weights (coefficients) mentioned with Pq, P>
and Pj etc. First, look to the column beaded x4. Since the value in
this column corresponding to the row involving P4 (basic variable
d{") is 2, we get z;=2x 1 =2in respect of P1. With ¢; = 0 for x4, the
Aj =0 -2 =-2is written in the bottom row marked P4. Now, for P,
the values in the column are 1 and 0, with the corresponding basic
values being 4 and 3, we get z;= 1 x4 + 0 x 3 = 4. With ¢; = 0 for
X1, the &/ =0 -4 = -4 is shown in the row marked P, There being
on P3 in the basis the &/ = 0 in respect of the row marked Pz under
x1. As another example, consider the column headed d;*. Since the
value in this column opposite the basis variable d¢” is -1, we get z; =
1 x -1 = -1. Since both the values in the column headed d;* are
zero, zz=4x0+0x3=0and &/ =0-0 =0 against the row
marked P, Finally, since no variable in the basis has the priority
level P3, we have z;=0and & =1-0=1.

The values against rows marked P4, P2, and P3 under the
column headed b; and z; values and they are derived as follows.
The solution value of d¢ (with priority level 1) is 400. With the
weightage of P being 1, the z-value is 400 x 1 = 400. Similarly,
with d2” = 150 and d3” = 350 in the table and the weightage being 4

58

and 3 respectively, the z; value for this priority goal works out to be
150 x 4 + 350 x 3 = 1650. Finally, there being no basic variable
priority P3, we have d;* = 0 and z-value for this priority equal to 1 x
0=0.

3.6 TEST OF OPTIMALITY AND DERIVATION OF
REVISED TABLEAU

To test the optimality, we first look to the &/ values in the
bottom row, headed P4. The objective function being of
minimisation type, the solution is not optimal since all &/ 's are not
greater than, or equal to zero. To obtain a revised simplex tableau,
we consider the most negative of the &/ values in the P4 row in the
Simplex Tableau 1. It being equal to -2 for the common headed x4,
the variable x4 is the incoming variable. Using a; values in this
column, we calculate replacement ratios bi/a; and select the least
non-negative one, which in this case is 150, corresponding to the
variable dy". Thus, d;" is taken to be the outgoing variable.

TABLE 1 Simplex Tableau 1: Non-optimal Solution

Basis X1 Xz S1 d1- D1+ dz- D3- Bi Bi/aij
Sy 0 1 1 1 0 -1 0 0 300 300
d4 P, 2 1 0 1 0 0 0 400 200
dy 1 0 0 0 0 1 0 150 150%
4P,
D3 0 1 0 0 0 0 1 350 -
3P2

0 O 0 P, Ps3 4P, 3P,

0 O 0 0 1 0 0 0
ﬂfl I 4 3 0 0 0 0 0 1650

2 -1 0 0 1 0 0 400

59

TABLE 2 Simplex Tableau 2: Non-optimal Solution

Basis X1 Xz S1 d1- D1+ dz- D3- Bi Bi/aij
S 0 O 1 1 0 0 -1 0 150 150
d- P,y O 1* 0 1 -1 -2 0 100 100%
X4 0 1 0 0 0 0 1 0 150 -
Ds 0 1 0 0 0 0 1 350 350
3P,
(of 0O O 0 P, Ps3 4P, 3P,
|E3 0O O 0 0 1 0 0 0
&) Ip"il 0 3 0 0 o0 4 0 1050

0o -1 0 0 1 2 0 100

A

TABLE 3 Simplex Tableau 3: Non-optimal Solution

Basis X1 Xz S1 d1- D1+ dz- D3- Bi Bi/aij

S 0 0 1 1 1* 1 0 50 50 %
0
X2 0 0 1 0 1 1 2 0 100 -
X, 01 0 O 0 0 1 0 150 -
D;’ 0 0 O 11 1 250 250
3P,

C; 0 0 O P, P; 4P, 3P,

IP3] 0 0 O 0 1 0 0 0
8y f;'i] 0 0 0 3 3 2 0 750

0 0 0 1 0 0 0 0

TABLE 3 Simplex Tableau 3: Non-optimal Solution

Basis X1 Xz S1 d1- D1+ dz- D3- Bi

D, 0 O 1 -1 1* 1 0 50
P3
X, 0 1 1 0 1 1 0 150
Xy, 0 1 0 0 0 0 1 0 150
D; 0 0 -1 0 1 1 200
3P,
C; 0 0 0 P, Ps; 4P, 3P,

|P3 0 0 -1 0 0 0 0 50
8 g’i] 0 O 3 3 0 1 0 600

0 0 0 1 1 0 0 0

It may be mentioned here that if there is a tie in the most
negative &/ values of a given priority level, we consider the
corresponding &/ values in the next (lower) priority level and select

60

the variable which has a greater numerical value (ignoring sign)
of 4.

Once the incoming and outgoing variables (key column and
key row) are determined, the revised simplex tableau can be
obtained in the same way as in case of linear programming
problems. The resulting tableau is contained in Table 2. We have,
output of prouct A, x; = 150; unused materials S; = 150 kg; under
achievement of goal 2, d3” = 350, being the output of product B
short by as many units of the goal. For this solution as well, the
Aj values are calculated in the same way as discussed int he
context of solution given in table 1. As there is a negative &/ value
(= -1) for the variable x,, it is taken to be the incoming variable.
With replacement ratios calculated with the help of a; values of the
key column, it is evident that d4 is the outgoing variable. The next
solution is contained in table 3.

For the solution given in Table 3, it is evident that there are
no negative &/ values in the row marked P4, implying that
optimality has been achieved in relation to the top priority goal.
Hence, we consider the &/ values in the row marked P,. Here, two
negative values seen are -3 and -2 under d{* and dy’, respectively
and we select the more negative value of the two, that is, -3. Thus,
the variable d;* enters and S, leaves as the least non-negative
replacement ratio corresponds to this variable.

Finally, the revised Simplex Tableau is given in Table 4
which gives the optimal solution. It is optimal in the sense that it
enables the manager to attain the set goals as closely as possible
within the given decision scenario and the priority structure. It may
be noted that &/ 5 greater than or equal-to-zero in the rows
marked P41 and P,. However, there is a negative &/ (=-1) under the
variable Sz in the P3; row. Apparently, we can improve the solution
by considering this negative 4/ value by introducing S; in the
solution. But, it may be observed that this can be done only at the
expense of achieving the higher priority goal, as a positive
Aj value, equal to 3, for this variable is present in the row P,. The
rule, then, is that if there is negative &/ value at the lower priority
level, then the variable in that column cannot be selected as the
incoming variable if there is a positive &/ value at a higher priority
level.

61

From the simplex tableau 4, the optimal solution may be
stated as follows: x4 = 150; x, = 150; d4* = 50 and d3” = 200, which
implies that 150 units of each of the products A and B be produced
so that the target of selling 350 units of product B shall be under
achieved by 200 units and an over-time work of 50 hours shall be
involved.

3.7 EXERCISES:

1. Differentiate between non-preemptive and preemptive goal
programming problems. How is the solution method different in the
two cases?

2. "In goal programming we attempt to 'satisfy' or come as close as
possible to satisfying, the various goals". Discuss.

3. "Goal Programming appears to be the most appropriate, flexible
and powerful quantitative technique for complex decision problems
involving conflicting objectives." Discuss this statement.

SOLVE THE FOLLOWING

1. Write constraints to satisfy each of the following conditions in a
project selection model. The projects are numbered 1, 2, 3, 4, 5, 6,
7,8,9and 10.

i. Exactly one project from the set (1,2,3) must be selected.

ii. Project 2 can be selected only if number 10 is selected. However,
10 can be selected without 2 being selected.

iii. No more than one project from the set (1,3,5,7,9) can be
selected.

iv. If number 4 is selected, then number 8 cannot be selected.
v. Projects 4 and 10 must both be selected or both be rejected.

2. A manufacturer of toys makes two types of toys, A and B,
processing of these two toys is done on two machines X and Y. Toy
A requires 4 hours on machine X and six hours on machine Y,
while Toy B requires eight hours on machine X and five hours on
machine Y. There are thirty two hours of time per day available on
machine X and thirty hours on machine Y. The profit obtained on
each of the toys is Rs. 30 per unit. What should be the daily

62

production of each of the toys for maximum profit? A non-integr
solution to the problem is not acceptable.

3. A rural clinic hires its staff from nearby cities and towns on a
part-time basis. The clinic attempts to have a general practitioner
(GP), s nurse and an internist on duty during at least a portion of
each week. The clinic has a weekly budget of Rs. 1, 200. A GP
charges the clinic Rs. 40 per hour, a nurse charges Rs. 20 per
hour, and an internist charges Rs. 150. The clinic has established
the following goals in order of priority.

i. A nurse should be available for at least 30 hours per week.
ii. The weekly budget of Rs. 1, 200 should not be exceeded.
iii. A GP or internist should be available at least 20 hours per week.
iv. An internist should be available at least 6 hours per week.

Formulate a goal programming model for determining the number
of hours to hire each staff member in order to satisfy the various
goals.

4. The Super-Star Company produces three models of
microcomputers - SS100, SS150 and SS250. Most of the
components are imported from the Far East, and the company only
assembles the microcomputers. The operation hours required to
produce one unit of the microcomputers are 2 hours for SS100, 3
hours for SS150 and 4 hours for SS250. The normal capacity of the
assembly line is 400 hours per month. The profits per unit are Rs.
10, 000 for SS100, Rs. 15, 000 for SS150 and Rs. 25, 000 for
SS250. The President of the company has set the following goals,
according to their order of importance.

i. Avoid the under utilisation of production capacity.

ii. Meet the outstanding orders - 30 units for SS100, 20 units for
SS150 and 50 units for SS250.

iii. Avoid the over utilisation of the production capacity.
iv. Maximise total profit as much as possible.

Formulate a goal programming model for the problem and solve it
(up to 3 iterations only).

63

PARAMETRIC PROGRAMMING

Unit Structure

4.1 Introductions

4.2 Parametric cost problem

4.3 Parametric right-hand side problem
4.4 Exercises

4.1 INTRODUCTION

Parametric Linear Programming investigates the effect of
predetermined continuous variations of these coefficients on the
optimal solution. It is simply an extension of sensitivity analysis and
aims at finding the various basic solutions that become optimal, one
after the other, as the coefficients of the problem change
continuously. The coefficients change as a linear function of a
single parameter, hence the name parametric linear programming
for this computational technique. As in sensitivity analysis, the
purpose of this technique is to reduce the additional computations
required to obtain the changes in the optimal solution. The various
types of parametric problems that one may come across are:

i. Parametric Cost Problem: In which the cost coefficients c; vary
linearly as a function of parameter A.

ii. Parametric right-hand side problem: In which the requirement
coefficients b; vary linearly as a function f parameter A.

iii. Parametric problem involving linear variations in the non-basic
vector P;j of A.

iv. Parametric Problem involving simultaneous linear variations in c;,
bi and Pj_

This text covers type 1 and type 2 parametric problems in details.

64

4.2 PARAMETRIC COST PROBLEM

Let the linear programming problem before parametrisation be
Minimise Z = CX,
subjectto AX=b
Xz0,
where C is the given cost vector.

Let this cost vector change to C + A.C' so that the parametric cost
problem becomes
minimise Z=(C+A\C)X,
subjectto AX=Db,

X=z0,
where is the given predetermined cost variation vector and A is an
unknown (positive or negative) parameter. As A changes, the cost
coefficients of all variables also change. We wish to determine the

family of optimal solution as A changes from -“* to + “=-

This problem is solved by using the simplex method
and sensitivity analysis. When A = 0, the parametric cost problem
reduces to the original L. P. Problem; simplex method is used to
find its optimal solution. Let B and Xg represent the optimal basis
matrix and the optimal basic feasible solution respectively for A = 0.
The net evaluation or relative cost coefficients are all non-negative
(minimisation problem) and are given by

c_j =Cj-Zj=Cj-z cBai,-=cj-cBP_J,
where cg is the cost vector of the basic variables and PJ is the jth
column (corresponding to the variable x;) in the optimal table.
As A changes from zero to a positive or negative value, the feasible
region and values of the basic variables Xg remain unaltered, but
the relative cost coefficients change. For any variable x;, the relative
cost coefficient is given by

T (N)=(c+A¢') - (ce +Ac's) PJ = (cj-c's PI)+ A (¢/ -C's P1)=CJ +

AT,

Since vectors € and C' are known, @ and ¢ can be
determined. For the current minimisation problem, i (A) must be
non-negative for the solution to be optimal [€F (A} must be non-
positive for a maximisation problem]. Thus
7 (\)20,cj+Acf 20.

65

In other words, for a given solution we can determine the
range A within which the solution remains optimal.

EXAMPLE 1
Consider the linear programming problem

maximise Z =4x4 + 6x2 + 2X3,
subjectto X1+ Xp + X35 3,
X1+4X, + 7359
X1, X2, X3 0.
The optimal solution to this problem is given by the following table:
Table 1
Ci 4 6 2 0 0
CB Basis X1 X2 X3 X4 X5 b
4 X1 1 0 -1 4/3 -1/3 1
6 X2 0 1 2 -1/3 13 2
Z=Zcg 4 6 8 10/3 2/3
aji
Cj = Cji -7, 0 0 -6 -10/3 -2/3

Solve this problem if the variation cost vector C' = (2, -2, 2, 0, 0).
Identify all critical values of the parameter A.

Solution
The given parametric cost problem is
maximise Z = (4 +2A) x1 + (6 - 2\)x2 + (2 + 2A\)x3,
subjectto Xq1+ X2+ X3+ X4 =3,

X1+4Xo + X3+ X5=9

X1, X2, X3, X4 X5 = 0.
When A = 0, the problem reduces to the L.P. problem, whose
optimal solution is given by Table 1. The relative profit coeffiecients
in this optimal table are all non-positive. For values of A other than
zero, the relative profit coefficients become linear functions of A. To

compute them, we first, add a new relative profit row called <'J row
to table 1. This is shown in table 2.

TABLE 2
c, 2 2 2 0 0
C 4 6 2 0 0
C'B CB Basis X1 Xz X3 X4 X5 b
2 4 X4 1 0 -1 4/3 -1/3 1
-2 6 X 0 1 2 -1/3 1/3 2
] 0 0 -6 -10/3 -2/3 Z=16
I 0 0 8 -10/3 4/3 Z'=-

66

In table 2, ¢'J is calculated just as <J row except that vector C is
replaced by C'. For example,

— _— 0
fz=CQ-ZQ=C22CBai2=C2-CBP2=6-(4,6)1 =6-6=0.

1
0

o

1=c1-CB'T 2-(2,2)0 =0.

c2=-2-(2 2)1 =0.
S -1 _
€3 =2-(2,-2) 2 = 2-(-2-4)=38,
4
3 _
, =
4 =0-(2,-2) 3 -[8/3+2/3)=-10/3
1
=
3=
-(2,-2) 3 -[-2/3-2/3] = 4/3.

€5=0
Z'=1X2-2X2=-2
Table 2 represents a basic feasible solution for the given
parametric cost problem. It is given by
X1=1;X0=2; X3=X4 =%X5=0.
Value of the objective function, Z(\)=Z + AZ'=16-2 A
TN=T+Ac7,j=1,2,3,4,5.

Table 2 will be optimal if <J (A) < 0 for j = 3,4,5. Thus we can
determine the range of A for which table 2 remain optima as follows:
A (\N)=Cc3+\3=-6+8A<0o0r\<3/4,

c4 (\)=c4 + \c'4 =-10/3-10/3A<0o0rA<-1,
5 (\)=¢5 +\c'5 =-2/3+4/3N<0o0rA<1/2.

Thus x1 = 1, X2 = 2; X3 = X4 = x5 = 0 is an optimal solution for the
given parametric problem for all values of A between -1 and 1/2 and
Znax =16 -2 A.

For A > 1/2, the relative profit coefficient of the non-basic variable
X5, namely E()\) becomes positive and table 2 no longer remains
optimal. Regular simplex method is used to iterate towards
optimality. Xs is the entering variable and computation of '0' -
column indicates X, to be the variable that leaves the basis matrix
so that the key elements is 1/3. The key element is made unity and
Xz is replaced by Xs in table 3.

67

TABLE 3

c, 2 =2 2 0 0
C 4 6 2 0 0

C'B CB Basis X1 Xz X3 X4 X5 b

2 4 X4 1 1 1 0 3

0 0 X2 0 3 6 -1 1 6
J 0 2 -2 -4 0 Z2=12
@ 0 4 0 -2 0 Z'=-

Table 3 will be optimal if & (A) <0, for j = 2, 3, 4.
Now, €2 (\)=€2 + A\c'2=2-4A<0o0r A2 1/2,
3 (\) = €3 + \¢'3 = -2 < 0 which is true,
cd (\)=ch +\c’4=-4-2\<0o0r\2-2.

T For all A =2 1/2, the optimal solution is given by x4 =3, X2 = X3 = X4
0; xs=6and Znax = 12 + 6A.

For A [0 -1, the relative profit coefficient of the non-basic variable x4
becomes the entering variable and x4 the leaving variable. Key
element is 4/3. This element is made unity and x4 is replaced by x4
in table 4.

TABLE 4
c, 2 =2 2 0 0
c; 4 6 2 0 0
C'B CB Basis X1 X2 X3 X4 X5 b
0 0 X4 3/4 0 -3/4 -1/4 3/4

1
-2 6 X2 1/4 1 0 1/4 9/4

<] 5/2 0 -17/2 0 -3/2 Z=27/2
'y 5/2 0 0 1/2 Z' = -9/26

Table 4 will be optimal if & (\)< 0, forj =1, 3, 5.
Now €1 (A\)=1 +Ac’1 =5/2+5/2A<0o0r A <-1,

3 (\)=¢3 +AC'3 =-17/2+ 112 N1\ <17/11.
5 (\)=¢5 +Ac’5 =-3/2+1/2A<00r A< 3.

[l For all A = -1, the optimal solution is given by
X1=0,%x2=9/4; x3=0;x4=23/4; x5=0and Znax = 27/2 - 9/2\.

Thus tables2,3 and 4 give families of optimal solutions for -1 < A <
1/2, A= 1/2 and A < -1 respectively.

68

4.3 PARAMETRIC RIGHT-HAND SIDE PROBLEM

The right-hand side constants in a linear
programming problem represent the limits in the resources and the
outputs. In some practical problems all the resources are not
independent of one another. A shortage of one resource may cause
shortage of other resources at varying levels. Same is true for
outputs also. For example, consider a firm manufacturing electrical
appliances. A shortage in electric power will decrease the demand
of all the electric items produced, in varying degrees depending
upon the electric energy consumed by them. In all such problems,
we are to consider simultaneous changes in the right-hand side
constants, which are functions of one parameter and study how the
optimal solution is affected by these changes.

Let the linear programming problem before parametrisation be
maximise Z=cX
subject to AX =Db,

X=0,
where b is the known requirement (right-hand side) vector. Let this
requirement vector b change to b + Ab' so that parametric right-
hand side problem becomes:
maximise Z=cX
subject to AX =Db + Ab'

X20,
where b' is the given and pre determined variation vector and A is
an unknown parameter. As A changes, the right-hand constants
also change. We wish to determine the family of optimal solution as

A changes from - to + -

When A = 0, the parametric problem reduces to the original L.P.
problem; simplex method is used to find its optimal solution.

Let B and Xg represent the optimal basis matrix and the optimal
basic feasible solution respectively for A = 0. Then Xg = B b. As A
changes from zero to a positive or negative value, the values of the
basic variables change and the new values are given by

Xs=B'(b+A)=B'b+AB b =b +A B,

A change in A has no effect on the values of relative profit
coefficients €7 i.e., @ values remain non-positive (maximisation

problem). For a given basis matrix B, values of & and &’. can be

69

calculated. The solution Xg = # + A &’ is feasible and optimal as
long as & + A & = 0. In other words, for a given solution we can

determine the range for A within which the solution remains optimal.

EXAMPLE 1

Consider the linear programming problem

maximise Z = 4x4 + 6X2 + 2X3,

subjectto Xq+ X2 + x3< 3,
X1+4X, + 7359

X1, X2, X32 0.
The optimal solution to this problem is given by
Table 1
Ci 4 6 2 0 0
CB Basis X1 X5 X3 X4 Xs
4 X1 1 0 -1 4/3 -1/3
6 X2 0 1 2 -1/3 1/3
Z; = Z cpaj 4 6 8 10/3 2/3
Cj = G - Z; 0 0 -6 -10/3 -2/3
3
Solve the problem if the variation right-hand side vector b' = -3.

Perform complete parametric analysis and identify all critical values

of parameter A.

Solution
The given parametric right-hand side problem is
maximise Z=4x1+6x2+ 2x3+ 0 x4 + 0 X5,
subjectto Xq+ X+ X3+ X4 =3 + 3A,

X1+ 4Xo + TX3+ X5 =9 - 3\

X1, X2, X3, X4, X5 2 0.

When A = 0, the problem reduces to the L. P. problem whose
optimal solution is given by table 1. For values of A other than 0, the
values of right-hand constants change because of the variation

vector b'. This is shown in the expanded table 2.

Table 2
Ci 4 6 2 0 0
Cs Basis X Xo X X4 Xs B B
4 X 1 0 -1 4/3 -1/3 1 5
6 X2 0 1 2 -1/3 13 2 2
& 0 0 -6 10/3 -2/3 Z=16 Z'=

K

70

The vector & and ¥ are computed as follows:

b'=B'p'= 3 3 -3 =-2.

For a fixed A, the value of basic variables in table 2 are given by
Xx1=51 +\b'1 =145\ x,=52 +\b2 =2-2\

¢J values are not affected as long as the basis consists of variables

x1 and xz. As A changes, values of basic variables x; and xz change

and table 2 remains optimal as long as the basis (x4, X2) remains

feasible. In other words, table 2 remains optimal as long as

X1=1+5A=20o0rA=-1/5,
Xo=2-2A20o0rA<1.

Therefore, table 2 remains optimal as A varies from -1/5 to 1. Thus
for all -1/5 < A < 1, the optimal solution is given by

X1=1+BAN X2=2-2N, X3=X4=X5=0; Zmax = 16 + 8A.
For A > 1, the basic variable x, becomes negative. Although this
makes table 2 infeasible for the primal, it remains feasible for the
dual since all 7 coefficients are non-positive. Dual simplex method
can, therefore, be applied to find the new optimal solution for A > 1.
Evidently x» is the variable that leaves the basis. The ratios of the
non basic variables are -3, 10, -2. Thus variable x4 is the entering
variable. the key element -1/3 has been shown bracketed. Regular
simplex method is now used to find the new optimal solution. In
table 3, the key element has been made unity and x; is replaced
by X4,

Table 3
C, 4 6 2 0 0
CB Basis X1 X2 X3 X4 X5 E E_‘.‘ '
4 X4 1 4 7 0 1 9 -3
0 X4 0 -3 -6 1 -1 -6 6
Z=Zcp [] 4 16 28 0 4

T =c-7 0 10 26 0 -4

4l

The basic solution given by table 3 is
X1=9-3\x2=0,%x3=0, X4 =-6+6A, X5 =0, Zmax = 36 - 12A.
This solution is optimal as long as the basic variables X4 and X3
remain non-negative i.e., aslongas x1 =9-3A20o0r A <3,
Xo=-6+6A=200rA=1.

Thus the above solution is optimal for all 1 <A < 3.

For A < 3, the basic variable x; becomes negative. As there is no
negative coefficient in the first row, the primal solution is infeasible.
Hence there exists no optimal solution to the problem for all A > 3.

For A < -1/5, the basic variable x4 in table 2 becomes negative.
Although this makes table 2 infeasible for the primal, it remains
feasible for the dual, since all coefficient CJ coefficients are non-
positive. Dual simplex method can, therefore, be applied to find the
new optimal solution for A < -1/5. Evidently x4 is the variable that
leaves the basis. The ratios of non-basic variables are 6, -5/2, 2.
Thus, variable x5 is the entering variable and -1/3 is the key
element. This element is made unity in table 4. Also x4 is replaced
by Xs.

Table 4
C, 4 6 2 0 0
CB Basis X1 X2 X3 X4 X5 E E'
0 Xs -3 0 3 -4 1 3 15
6 Xo 1 1 1 1 0 3 3
Z,=%cg 6 6 6 6 0
_ &
€ =c-7, 2 0 4 6 0

The basic solution given by table 4 is
X1=0,%x2=3+3\x3=0,X%X4=0,X5=-3-15\, Znax = 18 + 18A.
This solution is optimal so long as
X2=3+3A200rA 2-1,
X3=-3-15A20o0r A<-1/5.

Thus the above solution is optimal for all -1 <A <-1/5.

For A [1 -1, the basic variable x; in the table 4 becomes negative.
As there is no negative coefficient in the second row, the primal
solution is infeasible. Hence there exists no optimal solution to the
problem for all A 11 -1. Thus tables 2, 3 and 4 give families of
optimal solutions for -1/5 < A <1, 1 <A< 3 and -1 A < -1/5
respectively.

72

4.4 EXERCISES

1. Explain parametric linear programming. How does it differ from
sensitivity analysis?

2. What are different types of parametric linear programming
problems? Explain their solution procedures.

Solve the following

Q1. Consider the parametric problem

maximise Z = (3-6 A)xq + (2-2 A)xz + (5 + 5A)x3
X1+ 2X2 + X3 430

3x1 + 2x3 £ 460

X1 + 4x2 <420

X1, X2, X3 0.

Perform a complete parametric analysis and identify all the critical
values of the parameter A.

Q2. Consider the parametric problem
maximise Z = 3x4 + 2Xo + 5x3

X1+ 2X2+X35430+ 0

3xq + 2x3 <460 - 46

X1+ 4x,<420-406

X1, X2, X3 0.

Determine the critical values (range) of 6 for which the solution
remains optimal basic feasible.

Q3. Q1. Consider the parametric problem

maximise Z = (3+ 3 0)x1 + 2x2 + (5 - 6 0)x3

X1+ 2Xo + X3 <430

3xq + 2x3 <460

Xq + 4x, <420

X1, X2, X3 0.

where 0 is a non-negative parameter. Perform a complete
parametric analysis.

73

NON-LINEAR PROGRAMMING

Unit Structure

5.1 Introduction

5.2 lllustrative examples

5.3 Transportation problem

5.4 Problem formulation examples

5.5 Types od non-linear programming problems
5.6 Graphical method

5.7 Quadratic programming

5.8 Wolf's modified simplex method

5.9 Exercises

5.1 INTRODUCTION

In linear programming models, the characteristic assumption
is the linearity of the objective and constraint functions. Although
this assumptions holds in numerous practical situations, yet we
come across many situations where the objective function and/or
some or all of the constraints are non-linear functions. In some
cases, it is possible to formulate a non-linear programming problem
into a linear programming model, but generally, specific algorithms
are employed for tackling the non-linearity.

A linear programming problem is expressed as

Maximise or minimise Z = (X1, X2, X3, -.-,Xn)

Subject to the constraints g' (x1, X2, X3,Xn) <, =, 2 b1
92 (X1,X2,X3,...)S =2b
g™ (X1, X2, X3, -, Xn) S, =, 2 bm
x20,j=1,2,3, ...,

If either the objective function and/or one or more of the
constraints are non-linear in X (x4, X2, X3, ...,Xn) the problem is called
a non-linear programming problem. In other words, the general
non-linear programming problem (NLPP) is to determine the n-tuple
X = (X4, X2, X3, ...,Xn) SO as to

74

maximise or minimise Z = f(X),

subject to g X<, =2b,i=1,2,...m.
X220,

where f(X) or some g' (X) or both are non-linear.

The non-linearity of the functions makes the solution of the
problem much more involved as compared to linear programming
problems, and there is no single algorithm like the simplex method,
which can be employed for this purpose. A number of algorithms
have been developed by the researchers, each applicable to a
specific type of NLPP only. However, an efficient method for the
solution of general non-linear programming problem is still a subject
of research.

5.2 ILLUSTRATIVE EXAMPLES

The number of applications of non-linear programming are
very large and it is not possible to give a comprehensive survey of
all of them. However, some examples illustrating a few of the many
situations, where non-linear programming can be applied are given
below:

The Product Mix Problem

In the product mix problem, the objective was to determine
the product mix, so as to maximise the profits, subject to the
constraints on the availability of resources. The objective function
was linear as we assumed that there was fixed unit profit
associated with each product. This, however, is not always true. In
case of large manufacturers, the price of a product is dependent on
the quantity demanded. More the volume of sales, lesser the per
unit price, which is called advantage of scale. In other words, there
is price elasticity. The price-demand curve is not linear, but may
look like the one shown in Figure 1, where the price p(x) is very
high when x is very small and the price drops rapidly as x increases
and then tends to stabilise.

If we assume that unit production and distribution cost of the
product is fixed at C, then the profit from x units is given by
P(x) = x[p(x) - c] = xp(x) -cx, which is a non-linear function.
If the manufacturing firm produces n products x; (j = 1, 2, ..., n)
which identical profit functions P; (xj), then the overall objective
function is the sum of n non-linear functions.

75

Y Pitx))
f(X) = j=12 j=1,2, ...,n.

In addition to price elasticity, there can be a number of other
reasons for the objective function to be non-linear. The unit
production cost may decrease with increase in volume of
production because of the learning curve effect or it may increase if
some special steps are required to be taken to increase the
production level.

The constraint functions g' (X) can also be non-linear, when
the use of resources is not strictly proportional to the production
levels of respective products.

P(X)4

100 P[x] = x[p(x) - c]

60

40
Price p[x]
20

0 20 40 60 80 100

5.3 TRANSPORTATION PROBLEM

In the transportation problems, it was assumed that the per
unit transportation cost from a given source to a given distribution
centre was fixed, irrespective of the quantity transported. But in
actual practice volume or quantity discounts are generally available.
With the increase in volume, the unit transportation cost decreases,
as shown in figure 2(i). The resulting total cost C(x) of transporting
x units will be shown in figure 2(ii), which is non-linear. This curve is
a piece-wise linear function with slope at a point giving the marginal
cost at that point. Thus, if each combination of m sources and a
destinations has a similar cost function, that is, the cost of
transporting x; units from source i to destination j is given by a non-
linear function C; (X;), then the overall objective function is

v

76

maximise f(x) = =1 =1 GCj (X)),
wherei=1,,3, ..., m,
ji=1,2,3,....,n.

The constraints due to the availability at the sources and
requirements at the destinations, may remain linear functions.

v
8

v

0 2 4 6 8 10 12 14
Quantity Transported
Y = Marginal Cost

A

50

40

30

20

10

v

0 2 4 6 8 10 12 14

v

Quantity Transported
Y = Total Cost

77

5.4 PROBLEM FORMULATION EXAMPLES

A manufacturing unit produces two products, the radios and
TV sets. The production cost of each product depends upon the
number of units being produced. If x; and x; are the number of
radios and TV sets produced, then the production costs are 200 x4
+ 0.2 x,° and 300 x, + 0.2 x,° respectively. There is restriction on
the production capacity of the radios and TV sets to 100 and 80
units respectively. Similarly, there is restriction on the manpower
available. A total 520 man-days are available. The production of
one piece of radio requires 2 man-days and one TV set requires 3
man-days.

The sale price is dependent upon the quantity to be
produced and the sale relationships are given in table 1.

Product Quantity Demanded Unit Price
Radios 2,000 - 5p P
TV Sets 4,000 - 10q Q

The problem is to determine the number of radios
and TV sets which should be produced to maximise the profits.

Formulation of Mathematical Model
Since x4 and x; are the quantities of radios and TV sets to be
produced by the firm,
X1 =2,000-5porp=400-0.2 x4
and x2 =4, 000 -10g Or q =400 - 0.1 x2

If the total production cost of x4 unit of radios and x, units of
TV sets is denoted by C1 and C, respectively, then it is also given
that
Cy =200 x4 + 0.2 x°
Cz =300 x + 0.2 x2°

The total revenue = Revenue of radios + Revenue of TV sets.
i.e., R=pxs+qgx2
= (400 - 0.2 x1) x1 + (400 - 0.1 x2) X2
= 400 x1 - 0.2 x5 + 400 x2 - 0.1 x2%.

78

] Total profit P is,
P=r- (C1 + Cz)
=400 X1 - 0.2 x4% + 400 X2 - 0.1 x4% - 200x1 - 0.2 x4% - 300 X - 0.2 X2
=200 X1 - 0.4 x42 + 100 Xz - 0.3 x°.

There are constraints on the production capacity:
X1 < 100
Xo < 80

Similarly, man-days available are also limited to 520. Since
one unit of radio requires 2 man-days and one unit of TV requires 3
man-days.
2 x1 + 3 x2=< 520.

Since x1 and x; cannot take negative values,
X1, X2 2 0.

Thus the model is
Maximise f (x1,X2) = 200 x4 - 0.4 x4 + 100 x; - 0.3 x5°,
subject to the constraints
2 x4+ 3 x,< 520
X1 < 100
Xo < 80
X1, X2 = 0.

EXAMPLE 2

A company manufactures two products A and B. It takes 30
minutes to process one unit of product A and 15 minutes for one
unit of product B. The maximum machine time available is 35 hours
per week. One unit of product A requires 2 kg of raw material, while
product B requires 3 kg of raw material per unit. The available raw
material is limited to 180 kg per week.

The products A and B have unlimited market potential and
sell for Rs. 200 and Rs. 500 per unit respectively. If the
manufacturing costs for products A and B are 2x* and 3y?
respectively, find how much of each product should be produced
per week, where x and y are respectively the quantities of A and B
to be produced.

79

Formulation of Mathematical Model
Here x and y are the quantities of products A and B
respectively, which are to manufactured per week. The selling price
of products A and B is Rs. 200 and Rs. 500 per unit respectively.
1 Total revenue per week = 200x + 500y.

The manufacturing cost of A is 2x* and B is 3y? per unit.
Thus total manufacturing cost per week = 2x? + 3y?
"1 Profit per week = 200x + 500y - 2x° - 3y

The machining of product A requires 30 minutes per unit, while
product B requires 15 minutes per unit. Since a maximum of 35
hours of machining time are available,
30x + 15y < 35 x 60
or 2x +y < 140.

Constraint on the availability of raw material is expressed as

2x + 3y <180

Since x and y cannot take negative values,
x,y20.

Thus the problem can be expressed as,
maximise f(x, y) = 200x + 500y - 2x? - 3y?
Subject to 2x +y <140

2x + 3y <180

x,y=0.

Here the objective function is non-linear, while constraints are
linear.

55 TYPES OD NON-LINEAR PROGRAMMING
PROBLEMS

There is a wide variety of non-linear programming problems.
Some of the most important types are briefly introduced here.
Unlike the linear programming, no standard algorithm like the
simplex method can be employed to solve the non-linear
programming problems. Many different algorithms have been
developed to solve the different class of problems.

1. Unconstrained Optimisation
In case of unconstrained optimisation problems, there are no
constraints, but only the objective function. The problem is simply to
Maximise f (X)

80

over all values of X = (x4, Xz,, Xn)- The necessary condition for a
particular solution to be optimal is
of

dxj =0atx=X forj=1,2,...n.

where f(X) is differentiable. This condition is also sufficient
conditions when f(X) is a concave function. Thus the solution can
be obtained by solving n equations obtained by setting the n partial
derivatives equal to zero. However, it is not that simple. For a non-
linear function, these equations are often non-linear, and it
becomes impossible to solve these equations analytically. Some
search procedures have been developed by researchers to solve
such problems.

Linearly Constrained Optimisation

As the name indicates, in this type of NLPP, all the
constraints g' (X) are of linear type, while the objective function f (X)
is non-linear. Since only one non-linear function is to be handled,
the problem becomes comparatively simple to solve. A number of
special algorithms have been developed, by extending the simplex
method, to handle the non-linear objective function.

Quadratic Programming

This again is a linearly constrained problem, but the
objective function f(X) is quadratic. In other words, the objective
function contains the terms which are either square of a variable or
product of two variables. The general structure of a quadratic
programming problem is as follows:

-
& n

iy ed Ailr alr
ZQ XJ Z Z.t, AjK XK

Optimise (Max or Min) z = {/=1 +1/2 =1 =2

atj xj
Subject to /=1 <bi=1,2,3,....n
andx;20,j=1,2,3, , N.

Since, such problems arise very frequently in practical
situations, quadratic programming is an important class of NLPP.
Many algorithms are available to solve quadratic programming
problems.

Convex Programming
Convex programming covers special cases of various types
of NLPP, where the objective function f(X) is a concave function

81

and each of the constraints g' (X) is a convex function. These
assumptions ensure that a local maximum is also a global
maximum.

Separable Programming

Separable Programming is a special case of convex
programming. One additional assumption made here is that all the
f(X) and g (X) are separable functions.

A function is called separable, when it can be expressed as
a sum of functions of individual variables. For example, if f(X) is a
separable function, it can be expressed as

Zlf ii)

f(X) = i=1
where each fj (x;) is a function comprising of terms involving only x;.
Consider the two-variable objective function

f(X1, X2) = 4 X1 + 9 Xp - X1 - %22,
which can be expressed as,
f(x1, X2) = (4 X1 - X12) + (9 X2 - X2°)
= f(xq) + f (x2),
where f(x1) = 4 X1 - X12
and f (x2) = 9 X - Xp°

The separable programming problems are solved by
methods which are extensions of the simplex method.

Non-Convex Programming

All NLPP that do not satisfy the assumptions of convex
programming, fall in this category of non-convex programming.
There is no algorithm that can result into global optimal solution of
such problems. Some algorithms attempt to find the local minima in
case the problem does not deviate much from the assumptions of
convex programming.

Some specific types of non-convex programming problems
can be solved by employing specific methods. Two important types
of NLPP under this category are Geometric Programming and
Fractional Programming.

5.6 GRAPHICAL METHOD

In linear programming, the solution point is generally a
corner point of convex solution space, while in non-linear

82

programming, the solution point is net necessarily a corner or an
edge. In other words, the optimal solution is a corner point feasible
(CPF) solution.

EXAMPLE 1
Determine the values of x4 and x, so as to
minimise Z = X412 + x5°
subject to X1+ Xo 2 8,
X1 + 2x2 2 10,
2X1 + x2210
X1, X2 2 0.
Solution

The constraint equations in this case are all linear and give
the solution space bounded by a convex region ABCD as shown in
the figure 1.

The objective function in this case is non-linear and
represents a circle. If r is the radius of the circle, Z = r* - x4% + xo*
then the objective is to determine the minimum value of r, so that
the circle with centre (0, 0) and radius r just touches the solution
space. In figure 1 desired solution point (4, 4) lies on the line x4 + X,
= 8, and the line is tangent to the circle at this point.

A
X5
12 Zmin =32 minimise Z=x,%+x,7
subject to X; +X; > 8,
X1 + 2X2 > 10,
2X1 + X, > 10
X1, X2 > 0.
10
Al
&
6 B
4 \ C
2 \ D

b
/]
/

83

Note: Since the circle will touch one of the sides of the convex
region, one of the sides of the convex solution space would be
tangential to the circle and thus the solution can also be obtained
as follows:

Differentiate the equation of the circle x4 + x,° = r*
[] 2x1dx4 + 2X2dx2 = 0

dx2
or m = X1/ D (1)

Differentiate the constraint equations which form the sides of the
convex space.

dx2
dx1 +dxo=00rdel = -1, cooeooeieeeeeeeeeee, (2)
dx2
dxq +2dX, =0 0r dxl =-1/2, covveeeeeeeeeeeeeee (3)
dx2
20X1 + X2 = 0 OF FxT = =20 eovvoeeeeeeseeeeeeeenees (4)

Three solution can be obtained.

Solution 1: Taking equation (1) and (2) and constraints x4 + x2 = 8,
dx2
dvl = - X4/ X2 = -1 Or X4 = X, which gives x4 = x, = 4.

This solution satisfies all the constraint equations and is thus
feasible.

Solution 2: Taking equation (1) and (3) and constraints x; + xo = 10
dx2
dv1 = - X4/ Xo = -1/2, which gives x; = 2 and x, = 4,

This solution does not satisfy the constraints and is discarded.

Solution 3: Taking equation (1) and (4) and constraints
2x4 + X2 =10,

dx2

dvl = - X4/ X2 = -2 Or X2 = X1/2 , which gives x; =4 and xz = 2.

The solution again, does not satisfy the constraints and is
discarded. Therefore, optimal solution is x4 = 4; x, = 4 giving

84

5.7 QUADRATIC PROGRAMMING

The quadratic programming problem is expressed as

cj xjf

Maximise f(X) = j=1 +1/2 j=1

atj xj
Subject to i=1 <
o SRS (2)
aNd Xj 2 0, (3)
wherei=1,2,3, ... ,mandj=1,2,3,...,n.

KUHN-TRUCKER CONDITIONS

The necessary and sufficient conditions for an optimal
solution of quadratic programming problem with objective function
of maximisation type and linear constraints, can be obtained as
under:

Introduce slack variables s and r,-2 in constraints (2)
and (3). The problem modifies to

Z cj xj Z Z xj djk xk
Maximise f(X) = i=1 +1/2 i=1 k=1
Z aij xj
subject to =1 +s?=b;i=1,23,...,m
-x+r7=0;7=1,2,3, ..., n.

Now Lagrange function can be written as
Ai Z u)
LG s, A p)=f(X)-J= (apg+s-by)- =2 (x+1f)
Z cj xj Z Z xj dik xk Z)-i
= j=1 +1/2 ji=1 =1 - j=1 (ainj + Si2 - b)) -

n

uj
=1 (-Xj + rj2).
To derive the Kuhn-Trucker necessary conditions, differentiate the
Lagrange function partially with respect to its constraint variables
and equate each partial derivative to zero.

85

Differentiating L (X, s, r, A, p) with respect to X = (x4, X2, X3 ...-, Xn)
n "

1 1

Z xkdjk z Al

Cj- k=1 - =1 a;+ }.]J':O;j: 1,2,3, ...,

Differentiating with respect to x
2As=00rASI =0 0r ASZ = 0. (2)

Differentiating w.r.to r.
2 Ur =0, OF Pj = 0 (3)
MiX; = 0,] =1,2,3,....,n.
Differentiating w.r.to A,

Z aij xj Z aij xj

=1 +s?-b;=0or =1 <b,i=1,23 Mo, (4)
Differentiating with respect to p,

- X + rj2 =0

orxj20,j=1,2,3, oM (5)

And all the variables are non-negative,

Xj, Si, Ij, “1, n; 2 0.

The conditions number (2) Aisi = 0 and (3) y; */ = 0 are called
complementary slackness conditions. Ais; = y; */ = 0 implies that

the variables */ p; and s; cannot become basic variables
simultaneously. Other conditions (1), (4), (5) and (6) are nothing but
linear programming constraints in 2(n + m) variables.

5.8 WOLF'S MODIFIED SIMPLEX METHOD

Wolf's method is an extension of the simplex method, where
the two phase simplex method has been modified to solve the non-
linear programming problem. The method comprises of following
iterative steps:

Step 1: Convert the inequality constraints to equations by
introducing slack variables s? and r? into constraints as discussed
earlier.

Step 2: Form the Lagrange function and derive the Kuhn-Trucker
conditions.

86

Step 3: Introduce the artificial variables A;, j = 1, 2, ..., nin the
Kuhn-Trucker conditions and construct an objective function of the

5

type, minimise Z = j=1

Step 4: Obtain an initial basic feasible solution to the problem

S

minimise Z = ;=1
Z vkdjk Zx’.i
Subject to the constraints k=1 +:=1 a@- M +tA=C;j=1, 2,
3, ..., n.
Z aij xj
j=1 +s?=b;i=1,2,3,...,m

N, X, 4;, SiyAj 2 0 for all i and j.
Ai Si= 0, Complementary slackness conditions.
M;X; = 0 Complementary slackness conditions.

Step 5: Apply two-phase simplex method to obtain the optimal
solution to the above problem. This optimal solution is also the
optimal solution to the given quadratic programming problem.

EXAMPLE 1:
Solve the following QPP using Wolf's method:
Maximise Z = 15x; + 30X, + 4 X1 Xp - 2 X¢° - 4xp°
Subjectto xq + 2 x2 <30,

X1, X22 0.

Solution: Consider, non-negativity constraints x;, x =2 0 as
inequality constraints, and add slack variables to all the inequality
constraints. The problem becomes

Maximise ~ Z = 15x1 + 30x2 + 4 X1 X2 - 2 X4° - 4%5°

Subjectto x1+2x, + S4°< 30,
- X1 + 142 =0,
-X2 t I'22 =0
X1, X2. 51,11, 12 2 0.

87

Now, construct the Lagrange function
L (X1‘ X2, 81‘)\1, M1, M2, I1, r2) - (15X1 + 30xs + 4 X4 Xo - 2 X12 - 4X22) -
M(X1 + 2x2+ S4% - 30) - (- X1 + 11?) = pz(- X2 + 12°).

The necessary and sufficient conditions for the maximisation of L
and hence of Z are:

oL

3x1= 15+4 x-4 x4-M + M1 =0,

oL

m= 30 + 4 x4 - 8Xs - 2\ + U2 =0,

dL

9v1= 2%+ X1+ S$42-30=0,

oL

ds1 =2M S1=0,

oL oL

dul =- x4 +r12=0, du2 =-X2+I’22=0,
dL dlL

m =-2U1 I’1=O,m =-2U2I’2=0.

After simplification of these equations, we get
4X1-4X2+)\1-|J1 =15,

-4 X1+ 8y + 2\ - Mo = 30,

X1 + 2 %z + S4% = 30,

AMS1=0 Complementary slackness conditions.
M1 X1 =H2X%2=0

X1, X2, M, Y1, M2, S12 0.

Now introduce artificial variables A1 and A; in the first two constraint
equations and replace S{? in the third constraint equation. The
modified LPP becomes

minimise Z = A1 + Az

subject to the constraints 4 x4 -4 xo + Ay - gy + A1 =15,

-4 X4+ 8%y + 2\ - |J2+A2= 30,

X1+ 2Xx+Sq =30,

X1, X2, A1, M1, M2, Aq, A2, S120.

The artificial variables A1 and A, and the slack variable S4
can be taken as initial basic feasible solution with x4 = x; = A1 = Ay =
M1 =Md2=0, A;=15, A, = 30 and S1 = 30. The initial basic solution
is now put in the tabular form 1.

88

TABLE 1

C; 0 |0 0 |0 |O |O |O |1
CB Basis X1 X2)\1 M1 M2 S1 A1 Az B ¢]
1 A4 4 (-4 |1 [-1]0 |0 |1 0 |15 |-
1 A, |-4]8) |2 110 |o |1 |30]|15/4?
0 S 112 0 |0 JO |1 0O |0 |30]15/2
Z; = 0 3 |-1|-1]10 |1 1
ZCBﬂij
Cij-Zj 0O |4 [|-3]1 1 10 [0 |O

f

From the above table X, in the entering variable and A, is the
leaving variable. Hence replace

A, by X, in the basis and perform the necessary transformation to
obtain table 2.

TABLE 2
C; 0 0 |0 0 |o0 0o |1
CB Basis X1 X2)\1 M1 M2 S1 A1 B S]
1 A4 2 -0 |2 -1 |- 0 1 30 15
1/2
1 Xz - 1 174 10 |- 0O |0 |30/8]-
1/2 1/8
0 si @ o |- |o [1a|1 |o |45/2]45/4
1/2
Z; = 2 0 |2 -1 |- 0 1
z{.‘Baij 12
Ci-Zj -2 |0 |-2 |1 1/2 10 |0

89

Replace the leaving variable S¢ by entering variable x; in the
current basic solution and write the new table 3.
TABLE 3
C; 0|0 |O 0 jo 0 1
CB Basis X1 X2)\1 M1 M2 S1 A1 B 0
1 A 0 |0 [|(2)]-1|-34 |1 [1 15/2 1 3
1 X2 0 |1 1/8 |10 |- - 0 |75/8]75
3/16 | 1/4
0 X1 1 10 [-1/4 |10 [1/8 [1/2 |0 |45/4]-
Z; = 0 52 -1 1-3/4 |-1 |1
ZCBm;
Ci-Zj 0 |0 |-52 |1 |34 |1 0
3
Replace A1 by A and obtain table 4.
TABLE 4
Cj 0 0 0 0 0 0
CB Basis X1 Xz)\1 M1 M2 S1
0 A\ 0 0 1 -2/5 |- -2/5
3/10
0 X2 0 1 0 1/20 | - -1/5 |19
3/20
0 X1 1 0 0 - 1/20 | 1/20 | 12
1/10
Z; = 0 0 0 0 0 0
Z{Tﬂmj
Ci-Zj 0 0 0 0 0 0
?
Since all C;- Zj values are zero, the solution obtained above is
optimal.

[1x1=12, X2 =9,

90

and Zmax = 15 x4 + 30 Xz + 4 x¢ X2-2X12-4x22
=180 + 270 + 432 - 288 - 324
= 270.

5.9 EXERCISES

1. What is meant by Non-Linear Programming.
2. Explain in detail different types of non-linear programming.
Solve the following:

1. Employing graphical method, minimise the distance of the origin
from the concave region bounded by the constraints:

X1+ X224,

2Xq + Xo 2 5,

X1, X2 2 0.

2. Determine graphically the values of x4 and x, so as to
maximise Z = 2xq1 + 3Xo,

subject to x4, X2 < 8,

X1 + X2 < 20,

X1, X2 2 0.

Verify that the Kuhn-Tucker conditions hold for the maxima.

3. Use Wolf's method to solve the following quadratic programming
problem:
maximise Z = 2x1 + Xp- X¢°
Subjectto 2xs + 3x, + S¢% <86,
2x1+ 3x2 <4
X1, X2 2 0.

91

6

SOFTWARE APPLICATIONS IN OR

Unit Structure :

6.1 Introduction

6.2 Technical Details

6.3 Linear Programming with Bounds or Tableau
6.4 How to Solve Equations in Excel using Solver
6.5 Understanding Optimization

6.6 Data Structures and Input Formats

6.7 Installation and Technical Support

6.8 Exercises

6.1 INTRODUCTION

Operations research uses various optimization algorithms to
help make decisions related to highly complex problems. Linear
Programming (LP) and Mixed Integer Programming (MIP) are often
used to solve these highly complex decision-making problems. The
operations research procedures available in the NCSS are
described below.

6.2 TECHNICAL DETAILS

This page is designed to give a general overview of the
capabilities of NCSS for operations research. If you would like to
examine the formulas and technical details relating to a specific
NCSS procedure, click on the corresponding ‘[Documentation
PDF] link under each heading to load the complete procedure
documentation. There you will find formulas, references,
discussions, and examples or tutorials describing the procedure in
detail.

92

6.3 LINEAR PROGRAMMING WITH BOUNDS OR
TABLEAU

Linear Programming (LP) maximizes (or minimizes) a linear
objective function subject to one or more constraints. The technique
finds broad use in operations research and is occasionally of use in
statistical work.

The mathematical representation of the linear programming (LP)
problem is to maximize (or minimize) the objective function
z=CX

subject to m constraints

AX<b,X20
The values in the X vector are called decision variables (the
unknowns), and the values in the b vector are often called right-
hand sides (RHS).
NCSS solves a particular linear program using a revised dual
simplex method available in the Extreme Optimization
mathematical subroutine package.

SAMPLE DATA

M NCSSDat - [rample D LP 1] B |
Fle Edt Vew Deta Avalyss Grahcs Toos Window Hep B

| n H) ; fx T [Jrmscie - ‘ ,J 8.
Wi O st S St R Tme A RS hlns Fawks Rt el Ot Gl
ki O [f)

Cabd Tpe Loge RS X X X0 M O o0 o t2oCs o

4L b i 1 1 3

20m ¢ m 2
R 0) :]
bl ¢ 1 EE

5 om O IR

i

il

Rawrc1 ok 1% v |= +

93

PROCEDURE INPUT

Linear Programmang with Bounds - 2N

Fie Aun Vew Anayos Graphcs Tools Window Hep uu.
= 0 H | = PN O == = B T
Duts Feesdye Femem "1 Detys Galary

St o e

Ciptimaians. Typw 0 voamenizom
Type o Diptirirerm: Masim v @ Dampley
Coeffickests of the Ohjectie foncton, Canstrints, and sounds - Oy By Timiplatn
Rpss Tyge Cbrran: T i T en P By
Venatres Colamms EEC) IT Generat
[- EL R
= O itrstection (e Gragtess i

Letetls of Coiteresic Cokamn Clabal
IO i Traerg e
Logh [5. &, =] wid Constiainl Bsunds [HHS)

= £ Quex St Domareeiatios -
Loyt Carkasrm: Lrge I
Conuraint Soads (R¥S) Columal |G e __ SptienTnfo
Vasiables Columins. -
 3pmoly e i it

Iitdi. Pl e wlie i ol ie i
¢ mocoiding o M Coie et waieas al
it R Type calumn.

The coeffidents a0 be either posive o
egerer, Hite that Shanks pre Trated o
o

il b A T B O

e, Mo BT G0 W1 503 e

ugper toands 35 skt for Be leer
|, baungs.

e s, o o probisin by i

SAMPLE OUTPUT
-

bjactive Funcion and Solution for Maximum

:’
20
an

20
10

94

MIXED INTEGER PROGRAMMING

Linear programming maximizes (or minimizes) a linear
objective function subject to one or more constraints. Mixed Integer
Programming (MIP) adds one additional condition that at least one
of the variables can only take on integer values. The technique
finds broad use in operations research.

NCSS solves a particular mixed integer programming
problem using the branch and bound algorithm available in the
Extreme Optimization mathematical subroutine package.

SAMPLE OUTPUT

NCSS Ditput ==
Fie EM Vew Asllyss Oraghcs Thols Window Ml oo
o Y L [= - -
e - 1 o
Hreraron P 4 F
o lemager Prograrmvving Ropost |
Obpating functon esd Sehten b Massun| | Mined iingus Frogrsmming feport
f:‘:‘::mur ot Sevier for ey | ObjecEve Furetion and Solution for Maximum
Ciogactres Valus
Function at
Variabie Tyoe Coefoent Makkmum
xr riesger 14 1004
K2 I imesgpen id A D0
X3 Imeger] 2000
na Imesgar 20 1000
MR of Dt Funoton 004

Souton Satus. The oplmacabon model & cplms

Canatraints

Row, Logic Xy X2 a 04 RHE
il | 1.0 0o 20 no ety
e H 0o 20 agn i 1)
42 0.0 1.0 248 10 LD
5= 10 1] in 10 100

‘Values of Constraints at Solution for Maxmum

RHS at

Row, Logc RHS Solution
2% oD 1000
: 4 (1] 0000
i & LH] 1 0
5, = 0 10000

- - s - 1 v =

QUADRATIC PROGRAMMING

Quadratic Programming maximizes (or minimizes) a quadratic
objective function subject to one or more constraints. The technique
finds broad use in operations research and is occasionally of use in
statistical work.

The mathematical representation of the quadratic programming
(QP) problem is to maximize the objective function

z = CX + (1/2)X’HX or z = CX + X’DX

95

subject to m constraints
AX<b,X20

The values in the X vector are called decision variables (the
unknowns), and the values in the b vector are often called right-
hand sides (RHS).

NCSS solves a particular quadratic program using a primal
active set method available in the Extreme Optimization
mathematical subroutine package.

SAMPLE OUTPUT

BG5S ORIl - &
e B Vew dealyen Oraphes Tosl Window Sele oo

H = i o e f e

Rirergation: Tarm
Gumsew Frogrameres Fapurs Gusdratic Pragramming Fapart

| Objacthve Function snd Sclstion for Minimum

Cnpctive Ve

Fumetion at Lot Uppsee
‘Varistie Coafficiamt Mirsmum Baourd Bownd
Hi i 0200 o4 S0
B3 2 i 1213 i0 L
3 a0 [a0 n0
Bmmum o O eciun Funrimn 1 Ty
Soksun Stebus: Th AR O Ttk i Gl
Cansbraints
LEh#, Lagic X x3 x3 RMS
Coml, 30 an 7 mo
ol & 111 21 18 2o
i i} 50 da o
Values of Cormimmints st Solution for Winimum

HHS at

iLatisd, Lagiz RS Snlrfion
Canl, £ BT a5
Genr, = 24 22000
Ceond 5.0 1000
Headlan Watris
Warisbinn ®i 3 ®a
R zn] 1@
kv (1] i o

40
3 1.0 oo b

Quamratic Fortion of the Copective Funntion

Variaties X x3 Ha
AR (1 oo 1a
#3 2 d

=3 adg

ASSIGNMENT

The object of the Assignment algorithm is to assign n objects
(workers, machines, etc.) to the same number of jobs (tasks) in
such a way that will minimize the total cost. The problem assumes
that only one task is assigned to each object. NCSS solves the
problem using the mixed integer programming algorithm available
in the Extreme Optimization mathematical subroutine package.

96

SAMPLE OUTPUT
NCHS Ourtpeit =
Fie Edi View feolyws Goaghics Tools Window Heip oo
ol A ol Intlie = - 2 =
st P e B R e Dais Fumem = By
Mg e il :
uysl\.-m B iR T Mo Assignaeni Rapart

ok P SugRee t Mnrape G
hsicm brmyzruant ot Vramers Comf

Casts lar Warksrs Assgned fo Jobs
Pasaitile Jobs
Wariar Jobd ohd Jobd Jubd
A 100 1300 1825 N
8 Lz el 1350 165 1000
< L] 1400 1700 £
o B LR 1300 L101] 1350
Job A i Sokition to Minimize Cost
Aanigrved
WWharier Task Coat
& b faes
B ok PO
c Jabt PO
L1} Job2 13m0
Bhamum Cost 4535
Sohdion Snivs:. The model s optamal|
Warkar Axrignment Solulion to Mimmizs Cost
Banigned
TH Worker Cost
Josh ¥ o o
Jubi2 o 1300
Jobd A 1825
Jobd [(R1A]
Minaniam Cosi 4905
Solbon Sabus. The model s sobihal
srmssa g . S T 5

MAXIMUM FLOW

Given a directed network defined by nodes, arcs, and flow
capacities, this procedure finds the maximum flow that can occur
between a source node and a sink node. An example of this is the
flow of oil through a pipeline with several junctions. NCSS uses the
linear programming approach to solve the problem as outlined in
Taha (2011) and Hillier and Lieberman (2015).

SAMPLE OUTPUT

Fie Edl Vew Asalysis Gaphes

How S

KAt Fae

v P Seport
Mamrure e
Fromze etwrrk Sy

o

Tooks Window el

Maximum Florw

E e e -Es

M
Floa
Through
Arc

2

']

"

25

1

18

232

85

Possible Network Are

Mrc
{Row)
1

Wi T L ek

97

INCSS Gutpet

Flow
I?'-‘;lpldt'rl
3

1

12
e

Moged

| Stari}

W1 [Source)
N1 [Soureoy
Wi [Source)
N2

Mazimum Fiow Repert

Nedat
(8tart)

NT (Source)
1 (Goirea)
M1 [Bource)
N2

N3

N3

N4

MedeZ

(Erd)
M2
3

hid
[T}

ME [Sk)

e £k

M

NE ¢Bmk)

*The stamed as are part of T masanum Fow

€

MINIMUM COST CAPACITATED FLOW

Hodel
[End]

Wy

e

H

N5 [Sin)
L]

Wb (Sink)
KA [Sini)

The Minimum Cost Capacitated Flow model is prominent among
network flow models because so many other network models are
special cases. The maximum flow, shortest-path, transportation,
transhipment, and assignment models are all special cases of this
model. NCSS uses the linear programming approach to solve the
problem as outlined in Hillier and Lieberman (2015).

98

SAMPLE OUTPUT

Fia Edi Vew Aealyes Ooaphics Tosls Window Hele oo

Moo= e i

HCSS Cutpat =

Minimus Cosd Capacitated Ficw Bepart

Solubion
e Bolution Total
RowW Flow moCost Cost UpparBrad Mode1 Node?
2 (13} a1 Mo Faciorgs wWnamhouss
3 =] [L] Fainigt Sacia
4 A0 3 7o Faclong? Wamhoiess
3] 1] B Wershooms Homl
B (2] 3 180 Sl Baniad
Tokwl 230 B0
Fhes solabon i optmal
Hode Report
Flow' Flow Mat Flow
Type Hode n ol -
Source Factury! il 50 &l
Source Facong Ul 4o &
T ranza hiprreei Wamhouse i oo a
Destination Hioiw) (1] M
(Dt ination Elora? L] o £
Bodel Meraors firce
Hre
R ImeConi UppanBnd Hodel Hodal
1 2 L[] Fackry!! Fackey®
i Fastny 1! Vipnivkrn
3 o Factoryi! Bborw i
| 3 ¥ actoryZ" Wisrnhoma
-3 i . i Wanshirs Sxemni*
] 3 Elnrei” =
¥ 2 Sinras Sorsl”

! Soulne {Suepply) Hoda
¥ Dt {Dmand) Hode

MINIMUM SPANNING TREE

A Minimum Spanning Tree links all nodes (points or vertices)
of a network with the minimum length among all the arcs. This
procedure finds the minimum spanning tree of a network using a
greedy algorithm. If the network is not connected, the solution,
called a minimum spanning forest, is a combination of minimum
spanning trees formed on the connected subsets.

The algorithm can be used in applications such as
transportation networks, computer networks, and water networks
where a tree connecting all nodes must have minimum length.

The algorithm proceeds as follows:

« 1. Start with any node.

e 2. Connect this node to its nearest neighbor using any of the
available branches.

e 3. Find the unconnected node that is closest any of the
connected nodes. Connect these nodes.

e 4. Repeat steps 2 and 3 until all nodes have been
connected.

99

SAMPLE OUTPUT

WSS Dbyt - =3
Fis Ei Veew Aveiyms Goapnca Thol Wiisdww S oo -
- i e o = _ o =
—— - e e e = T TLTIEE Cmr— | m— —
]
- ks rea, Mpmpntng Tres Saport
sart s g Minimum Sasnning Fareas
Ars: Langih it Sita2
Tres L] {Langtij fHosts 1) fHoda 21
1 T an At Az
(] 2 3 Al A
1] w1 Az By
1 5 T3 Az na
1 H L8 At 1
1 19 o1 (] £
7 {3 on n F'r 2
¥ i X Eal I3
[oy

Connscten
Hedes
i A A
a2 AT ETC AT B
At A1 A2, BF, T
o #2E, a2
L Mgt B, A3, CR
o1 AS Bd
o2 BEr A
1 29* Xy
i ik
3 ZE T

ase Lengih Bitm1 Bited
Tres (Fow) (Lesgon) Uhidiate 1) Haita 21
1 1 2] Af L
] . iz oy A7
1 ¥ a1 A2 Y
- as L g
1 - r? a na
n 103 B B
r 148 L) L F
w a8 A [=)
“ E] B2 &1
1 1o 21 B2 =
" s (=] (=]
r 13 as #1 ro]
(=] 34 = &3
? (K} 27 Fa i

* T WlareEl S2ER B N TR PRI e

SHORTEST ROUTE

Given a directed network defined by nodes and arcs, this procedure
finds the shortest route between two specified nodes. One example
of the need for such an algorithm is to be used in a GPS device to
find the shortest route between two locations. NCSS uses the linear
programming approach to solve the problem as outlined in Taha
(2011).

100

SAMPLE OUTPUT

NESS Output -0
Fie EM Vew hesyss Graghcs Took Window bel oo
'J . +J| Ot bn Sl I_' " |
b St Lo ol — art " namia ‘twoemy Fmam i = U
et Fare
st A REsl
Sharkiat Path Ehortes! Rowls Reper
ool Metatil ATes hn.ﬂﬂ.m
Are Distance City1 Clty
|Rera) (Length) |Start) {End)
1 B8 W [Starl) A
3 12 B E
(1] 04 E G (End)
Tma 234

Possible Network Ancs

Are Distaree Cityt city2

(R} (Lengthi [Starg) [End)

1 ig A (B]

" B2 A (Sharl) D

3 89 b C

1 &5 B b

5 e B E

L] 13 c E

7 a8 0 E

B 5.6 1] F

L | 25 E F

10 LN E G{End)
1 123 F G (End)

= The slarrnd arcs are o Mo shones path

€ »

TRANSPORTATION

The object of the Transportation algorithm is to find the
amounts shipped from m sources to n destinations that will
minimize the total cost of distribution while meeting the demands at
each destination and staying within the amount that can be
supplied from each source. The problem assumes that only whole
units can be shipped. NCSS solves the problem using the Mixed
Integer Programming algorithm available in the Extreme
Optimization mathematical subroutine package.

101

SAMPLE OUTPUT

WSS Cutput

Fie Ed Vew fesys Graphcs Tool Vilndow Nep

el Fare.
Trasportaton Fepo
\Zasts o Seercs o Delenias
Sauter (e TrROEIT]

'J - pla it
. S fam el iy

—

Costs from Sourcs to Dastination

Destination
Source Denver Aslanta
Ciakdand L] 50
Chicago . 2
Fitssburgh i by
Schution [Amount Transported)

Destination
Source Denver Aslarita.
Dakiand 1500 0
Cheago pii) e
Pisbungn a 1900
Toid 200 00
Total Gost 158100

Sokion Sietes: The mooed & optmal

TRANSSHIPMENT

The Transshipment model is a special case of the minimum
cost capacitated flow model in which there are no capacities or
minimums on the arc flows. The transshipment model is similar to a
transportation model, except that it allows the more realistic
assumption that all nodes can transfer to and from all other nodes,
no matter what their node type. Hence, it allows product to be
shipped between sources and between destinations, an ability that
is missing in the transportation model. NCSS uses the linear
programming approach to solve the problem as outlined in Hillier
and Lieberman (2015).

Transperislion Report

Total
1500
1800
OO0
6200

102

SAMPLE OUTPUT

Parsypadion Fure
r'"_-_"l':‘"m—" Tranashipmand Repr
-
kil b Badu on
Are Boluwtion Tosal
Row Flaw IheCoat Tl Nadal Haote
2 50 4 o0 Fazinng AU
4 & 3 120 Factorg2 ‘Wantouse
. Eal H Warshomss Slon |
i ' WO Siom) Shore?
i 4 B0
he soloton |5 oplmal
Hots Hepart
Flaw Floar Nt Flow

Hode in Ot Dt <

Mode| Matwark Arce
e

Row InoCost
1 2
2

|
4

Sirse (Eupply) hoos
* Dasanatie {Dmasdy Nods

6.4 HOW TO SOLVE EQUATIONS IN EXCEL USING
SOLVER ADD-IN

Microsoft Excel is a great Office application from Microsoft
and it does not need any introduction. It helps every one of us, in
many ways by making our tasks simpler. In this post we will see
how to solve Equations in Excel, using Solver Add-in.

Some or the other day, you might have come across the
need to carry out reverse calculations. For example, you might
need to calculate values of two variables which satisfy the given
two equations. You will try to figure out the values of variables
satisfying the equations. Another example would be — the exact
marks needed in the last semester to complete your graduation.
So, we have total marks needed to complete the graduation and
the sum of all marks of the previous semesters. We use these
inputs and perform some mathematical calculations to figure out
the exact marks needed in the last semester. This entire process
and calculations can be simple and easily made with the help of
Excel using Solver Add-in.

103

SOLVE EQUATIONS IN EXCEL

Solver Add-in powerful and useful tool of Excel which
performs calculations to give the optimal solutions meeting the
specified criteria. So, let us see how to use Solver Add-in for Excel.
Solver Add-in is not loaded in to excel by default and we need to
load it as follows, Open Excel and click on File or Office Button,
then click on Excel Options.

= S = T a Tm Boeokl - Microcott Escel T
o Beurioper
& L _.
b=w e i Iraert - X
i .-.jh Delete = | [§]
Dpen = L] Forman - L
Calbi
bl s !
| & Hi i
H':i Caiw A r
'__':J Prirt
.3-"" PIgDare
_ﬂ Send
o PuBnsn w
]
Lhoae
—— I e e e —— g ! . T
v S e L - — - I EECim ERmi™

Excel Options dialog box opens up and click on Add-ins on
the left side. Then, select Solver Add-in from the list and Click on
“Go” button.

Pl i
= = View and manage Merosoft Office add-ins.

Formuilas

Procfing Sdd-ms

Saue | Name Location Type

Nt | Leokup Wizard , loghup alam Exced Ada-in
lﬂlsmm A Lapanicn By

Curtomize Sohver Add-n S SOVERsohversiam _ Excel Addin

B -T-[-Aryl] v Document Belated Agdd s
- Add-in: Sabver Add-in
Trusl Centar Psblsher:
Besources Location: CiProgram FaerMicrasoft OMice Officel DL ibran’ SOLVER 4o lver, il

Deseription: Teol for optimization and equation saling

Manage: | Excsl Add-ins El | Gea. i W —

L m

Add-ins dialog box shows list of add-ins. Select the Solver
Add-in and click “Ok” button.

T S e R
Add-Tn o — w e Whewy Developer
5 g .
: L] Tenito Hemour [E- 'lﬂl.ﬂll
1 o " Calhsmns Duaplicates lﬂﬁi' || -
— Dista Taoly il
[Automaton... | PR [T —

Solver fdid-in
Toal for optmizabson and souabon sokving

Now, Solver Add-in got added to the Excel sheet. Tap on the
“‘Data” tab and on the extreme right, you can see the added Solver
Add-in.

nser Fage Layoul Formudes als Raview Wiew Developer B-=- 2
[C5] Connections 3 E . i Claar ? E - - @ | ‘TaSoer
= Mgt |:I'.'|'|. | .;. Rk ey =] — ;
i il_ sort Fitter .., Textie Remore Cidline
= Pl Lins JGracmnced | Columne Dupbates S8 A
jon meClars Sort & Fifbet Drats Tepls Anghysid
v o =3 |
=] c D | E F (5] H | | K

HOW TO USE SOLVER ADD-IN

We added Solver Add-in to Excel and now we will see how
to use it. To understand it better, let us take an example of
calculating the profit of a product. See the Excel sheet below with
some sample data in it. To find the profit %, we use the
formula profit %=((Selling price-Cost price)/Cost price)*100

105

- Hams Erias] e Lapoul Foimulad [Hayvipay I Tewelopar
& Calibai =11 ’ o o = General - A S lrvcert = E = 4
- B S U N EESE -] T : 3% Deiete Y .-J
Fn:\.rr - . ﬁ' i.:'!'-l . "}3 ap Sy __'-'_r-'.-m.1r' 2=
Font . ligmim e . iumnei] wii I
B85 - T4 | = |B4-B3)/B3)* 100
A 3] [[3 F = H
1
. Product & Product B Prodoct ©
3 Cost Price Pes Linit 18,000 12,000 12,000
A | Seling Price Per Uinft 21,000 15,000 16,006
5 Profit (%) I 16.666657 I 25 I3 OTEI2
6
7
B
5
10
i1
12
13
-4 % ® Sheetl Shestd - Sheatd - ©J, TH
n = T 1 AT

We can see that there are three products as Product A,
Product B and Product C with Cost Price, Selling Price and Profit
(%) of respective products. Now, our target is to take the profit (%)
of Product A to 20%. We need to find out the Cost Price and Selling
Price values of Product A needed to make the profit as 20%. Here,
we also have the constraint that Cost Price should be greater than
or equal to 16,000 and Selling Price should be less than or equal
top 22,000. So, first we need to list down the below information
based on the example we took.

Target Cell: B5 (Profit %)
Variable Cells for Product A: B3 (Cost Price) and B4
(Selling Price)

Constraints: B3 >= 16,000 and B4 <= 22,000
Formula used to calculate profit %: ((Selling price-Cost
price)/Cost price)*100

Target Value: 20
Place the formula in the target cell (B5) to calculate the profit
%.

This is the required information we need to solve any sort of
equation using Solver Add-in in Excel.

Now, launch the Solver Add-in by clicking on the Data tab
and click on Solver.

STEP 1: Specify the “Target Cell” as B5, “Value of” as the targeted
profit % as 20 and specify the cells which need to be changed to
meet the required profit %. In our case, B3 (C.P)and B4

106

(S.P) need to be specified as B3:B4 in “By changing variable

cells”.
h‘llll‘l‘ Page Layout Farmuiaz Dats Renew Wi Dayelpper '-ﬂ' -
sl Conmerbone || & i Cleae :) = & ?‘. Salver
T Praprily e Ly Rrapp —— =
T :'I '. orf Fifer £ Savmced Tenk 10 I..f.l.r. _'I.: = 'D'l.l‘.ll.llr-lE
pninéctiong Soit & Fiter Oafn Tooh Anafyile
i fe | =(Ba-B3)/B3)*100
_ okver Parampters o - ﬂ' :
Producta || seTeetcar [mes) <
¥ Linlt : 18,000 Equal To: [Mg @ Yelue af o l?
fer Uit} _ 21,000 Colw: e
) 1666667 W | || sess-msd | [pues |

STEP 2: Now, it's time to add constraints. In our case, Cost Price
(B3) >=16,000 and Selling Price (B4) <=22,000. Click on the “Add”

button and add constraints as follows.

N |
|| SetTarget Cell: EBS5
oduct A Equal To: O Max (O Mn @ Value of: 20
18,000 By Chanaging Cells:
21,000 =
5853:5854 Guess
—— [Guess

Subject to the Constraints:

k. H ™

e

Add

Change
Delete

-"g

STEP 3: Once you entered all the required data, click on the
“Solve” button. It asks, whether you want to keep the solver solution
along with some options. Select based on your requirement and

click on “Ok” button.

107

| Conedion: tent & Fiter Dt fonl Anakis
e 3 =
BS ¥ [i | =|{B4-83)/B3)*100
Wl i o ¢ [o | & LF | & [M |
1 "
2
3
4
5
b
2z
L
g
10|
.
1
H
LA}

Now, you will see that the latest Cost Price and Selling Price
has been changed to 17, 708 and 21, 250 respectively to get the
20% Profit.

_ FRgE T P _
|l canneatians ml & Qe E = iz

L hu !ﬂﬁ F rrantedie: 4l ;"‘ f ¥ Ressipy o E

e rnal 2]e] m to e |.|1||1

Dt = A== E L i P!M"ﬂ cnlmmnumw‘

& | Commatdions Sort 4 Fitter Diska Teols =]
S (2. % ={B483)/B3)"100

d A L@ [« o £ | ¢ | & | M

1

2 Product & Produtt B Prodsct ©

3 CostPricePerUnit 17,708 12,000 13,000

4 Selling Price Per Unit [15,1000 16,000

5 pompy [@] » 2o

L]

7

L

3

L

1

Iz

i3 11—

-4 kW Shestl - Ghest? ' Sheetd - 7 ST] ! "

e e

This is the way to use Solver Add-in to solve equations in
Excel. Explore it and you can get more out of it. Share with us how
best you made use of Solver Add-in.

108

6.5 UNDERSTANDING OPTIMIZATION

Optimization technology is based on applied mathematics
and computer science, and is widely used to help business people
make better decisions. It can quickly determine how to most
effectively allocate resources, automatically balancing trade-offs
and business constraints. It eliminates the need to manually work
out plans and schedules, so you get maximum operational
efficiency. You provide the information, and IBM ILOG Optimization
does the work.

WHY IBM ILOG OPTIMIZATION?

IBM is a leader in the field of Operations Research, and
specifically in the discipline of optimization. We offer some of the
world's most advanced optimization technologies for solving tough
business and research problems—Ilonger than anyone. Our award-
winning tools and engines speak for our high standards and belief
in innovation. And we're always thinking of something new.

See for yourself why more than 1,000 universities use IBM
ILOG Optimization for research and teaching, and more than 1,000
commercial customers, including over 160 of the Global 500, use
IBM ILOG Optimization in some of their most important planning
and scheduling applications.

KEY BENEFITS

¢ Maximum operational efficiency: Improve utilization for any
sort of resource: capital, personnel, equipment, vehicles,
facilities. Assign the best resources to each task, at the best
possible time.

e Uncover solutions to the toughest challenges: Explore
alternatives in minutes. Cope with the most difficult trade-offs
that nobody had ever considered. Extract the maximum vyield
from every resource. Cope with the toughest conflicts.

e Measurable return on investment, fast: See results within
months, or even weeks. Costs drop, earnings increase and
service improves. Customers are happier, and so are your
employees. Some applications save thousands of dollars a
year, and others save millions—but there is always a return on
investment (ROI).

e Applications in every industry: Optimization is at work
everywhere: manufacturing, transportation, logistics, financial
services, utilities, energy, telecommunications, government,
defense and retail.

109

HOW OPTIMIZATION WORKS

Optimization technology helps organizations make better
plans and schedules.

A model captures your complex planning or scheduling
problem. Then a mathematical engine applies the model to a
scenario find the best possible solution.

When optimization models are embedded in applications,
planners and operations managers can perform what-if analysis,
and compare scenarios.

Equipped with intelligent alternatives, you make better
decisions, dramatically improving operational efficiency.

OPTIMIZATION CAN HELP YOU:

o Cut operating costs

« Avoid capital expenses

e Shorten delivery times

o Offer flexible, precise customer service
e Provide personalized work schedules

o Manage risk

e Maximize profitability

e Understand future scenarios

There's no mystery to optimization. It's a straightforward
process that achieves measurable results:

¢ An optimization model defines and structures your problem

e An optimization engine applies your model to data and searches
for a solution

e The output is the best plan or schedule

IT ALL STARTS WITH AN OPTIMIZATION MODEL

An optimization model is a set of equations that define all of
the components in a planning or scheduling problem, such as:

e Resources available

e Demand to be filled or services to be performed
e Operating and capital costs

e Yield and throughput assumptions

e Global operating constraints

110

¢ Individual operating constraints and preferences

e Goals, either individual or in weighted combination

¢ Key performance indicators (information about the plan)
e Decisions to be made

INPUTS

Damand to-ba Met:
MATHEMATICAL

Hegomres fallable

2,
Spoctie 4 SCHEDULE £
Costs, Vidds & Recipes = = { Mrommized

st .
emety] ORPLAN (i

Dpeational Conlralnta e TN Y WITHMETRICS

A Customer Piefamsnces:
Business Goals

OPTIMIZATION ENGINES PRODUCE PLANS OR SCHEDULES

What's especially significant is the sheer amount of
information that an optimization model can process. A well-built
optimization model is capable of evaluating millions of possibilities,
and recommending thousands of individual decisions.

An optimization model's output can take any number of
forms. Examples include:
e General six month production plan
e Detailed one week production schedule
e One month workforce schedule
e Truck loading plan
e Set of routes to deliver a day's worth of goods or services

e Number of trades to bring a stock index fund back into
compliance

e Marketing-offer assignments for a marketing campaign
e Best loan package at the best price
e Bids to accept in a procurement management system

e When to release airplane seats or hotel nights at a lower price.

PLANS AND SCHEDULES DELIVER ASTONISHING RESULTS

Nothing can prepare you for the effect optimization can have
on operational efficiency. Plans or schedules you once labored over
for days appear in just minutes—without errors. After you've

111

integrated optimization into your planning and scheduling, your
costs will be greatly reduced.
For example:

e A car manufacturer increased productivity by 30%

e Chile's two largest forest-products companies reduced their
truck fleets by 30%

¢ A semiconductor manufacturer cut wafer-processing cycle time
in half, to just 30 days

e A major airline responded to unexpected delays with efficient
crew rescheduling, saving $40 million in one year

e A package-delivery company cut costs by $87 million

e A television network increased annual advertising revenue by
$50 million

e An investment firm cut transaction costs by $100 million

e A major consumer packaged goods (CPG) manufacturer
dramatically increased the direct loading of trucks off its
packaging lines

Often, optimization uncovers decisions you might never have
considered. No one can analyze so many options, so fast.
Optimization's speed gives you time to experiment with different
assumptions. You're free to study a range of scenarios, applying
your judgment to all your options.

What is SPSS?

SPSS is a Windows based program that can be used to
perform data entry and analysis and to create tables and graphs.
SPSS is capable of handling large amounts of data and can
perform all of the analyses covered in the text and much more.
SPSS is commonly used in the Social Sciences and in the
Business World, so familiarity with this program should serve you
well in future. SPSS is updated often. This document was written
around an earlier version, but the differences should not cause any
problems. If you want to go further and learn much more about
SPSS, I strongly recommend Discovering Statistics using SPSS.

OPENING SPSS
Depending upon how the computer you are working on is
structured, you can open SPSS in one of the following two ways:

SPss
1. If there is SPSS shortcut like this .on the desktop, simply
put the cursor on it and double click the left mouse button.

112

2. Click the left mouse button on the start button on your screen,
then put your cursor on Programs or All Programs and left click the
mouse. Select SPSS 17.0 for Windows by clicking the left mouse
button. Either approach will launch the program.

You will see a screen that looks like the image on the next
page. The dialog box that appears offers choices of running the
tutorial, typing in data, running queries or opening an existing data
source. The Window behind this is the Data Editor Window which is
used to display the data from whatever file you are using. You
could select any one of the options on the start-up dialog box and
click OK, or you could simply hit Cancel. If you hit Cancel, you can
either enter new data in the blank Data Editor or you could open an
existing file using File Menu bar as explained later.

LAYOUT OF SPSS

The Data Editor Window has two views that can be selected
from the lower left hand-side of the screen. Data Views is where
you see the data you are using. Variable View is where you can
specify the format of your data when you are creating a file or
where you can check the format of a pre-existing file. The Data in
the Data Editor is saved in a file with the extension .sav.

The other most commonly used SPSS Window is the SPSS
Viewer window which displays the output from any analyses that
have been run and any error messages. Information from the
Output Viewer is saved in a file with the extension .spo.

On the File Menu, click Open and select Output. Select
appendixoutput.spo from the files that can be found at
http://www.uvm.edu/~dhowell/fundamentals7/SPSSManual/SPSSL

113

ongerManual/DataForSPSS/. Click OK. The following will appear.
The left-hand-side is an outline of the output in the file. The right
side is the actual output. To shrink or enlarge either side put your
cursor on the line that divides them. When the double headed
arrow appears, hold the left mouse button and move the line in
either direction. Release the button and the size will be adjusted.

i

i 3

Finally there is the Syntax window which displays the
command language used to run various operations. Typically, you
will simply use the dialog boxes to set up commands, and would
not see the Syntax window. The Syntax window would be activated
if you pasted the commands from the dialog box to it, or if you
wrote your own Syntax-something we will not focus here. Syntax
files end in the extension .sps.

SPSS MENUS AND ICONS
Review the options listed under each Menu Bar by clicking
them one at a time. Follow the given descriptions.

File includes all of the options you typically use in other
programs, such as open, save and exit. Notice, that you can open
or create multiple types as illustrated on the right of the dialog box.

Edit includes the typical cut, copy and paste commands, and
allows you to specify various options for displaying data and output.

Click on Options, you will see the dialog box to the left. You
can use this to format the data, output, charts etc. These choices
are rather overwhelming, and you can simply take the default
options for now.

114

View allows you to select the toolbars you want to show,
select font size, add or remove the gridlines that separate each
piece of data, and to select whether or not to display your raw data
or the data labels.

Data allows you to select several options to change current
variables. For example, you can change continuous variables to
categorical variables, change scores into rank scores, add a
constant to variables etc.

Analyse includes all of the commands to carry out statistical
analyses and to calculate descriptive statistics.

Graphs includes the commands to create various types of
graphs including box plots, histograms, line graphs and bar charts.

Utilities allows you list file information which is a list of all
variables, their labels, values, locations in the data file and type.

Add-ons are programs that can be added to the base SPSS
package.

Windows can be used to select which window you want to
view (for example, Data Viewer, Data Editor etc).

Help has many useful options including the link to SPSS
homepage, a statistics coach and a Syntax guide. Using topics, you
can use the index option to type in any key word and get a list of
options, or you can view these categories and sub categories
available under contents. This is an excellent tool and can be used
to troubleshoot most problems.

The Icons directly under the Menu bar provide shortcuts to
many common commands that are available in specific menus.

Place your cursor over these Icons for a few seconds, and
the description of the underlying command will appear.

EXITING SPSS

To close SPSS either you can click on the close button,
located on the upper right hand corner of the Screen or Select Exit
from the File Menu. Choose one of these approaches.

A dialog box will appear for every open window asking you if
you want to save it before exiting. You almost always want to save
data files. Output files may be large, so you should ask yourself if

115

you need to save them or if you simply want to print them. Click No
on the dialog box since we do not have any new files or changed
files to save.

LINDO (Linear, Interactive, Discrete Optimiser): Is a software
package for linear programming, integer programming, non-linear
programming, stochastic programming and global optimisation.

LINDO also create "What's Best!" which is an add-in for
linear, integer and non-linear optimisation. First released for Lotus
1-2-3 and later also for Micro Soft Excel.

LINDO can be used:

1. To solve interactive linear, quadratic, general integer and zero-
one integer programming programs up to 500 rows and 1000
columns.

2. To perform sensitivity analysis and parametric programming.

HOW TO RUN LINDO
To start an interactive session, type /indo.

When the program is ready for you to type a LINDO
command, it displays its prompt character ":". Commands may be
typed in upper or lower case. The only exception is when you type
a file name since UNIX filenames are case-sensitive.

To obtain interactive help, type help.
To terminate LINDO, type quit.

LINDO displays all of its output without stopping. If you want,
LINDO to pause after every 24 lines of output type, page 24.

ACCESSING UNIX DISK FILES

Many LINDO commands, such as take, save, retr, dvrt, and
rvrt, read from or write information to UNIX disk files. The general
form of these commands is
LINDO-command-name filename

When you omit the filename, LINDO prompts you with the message

116

FILENAME

The filename you type must match the name of file exactly.
Case is important, therefore you may not refer to a file named
transport. model as TRANSPORT.MODEL. The filename cannot
use name-expansion such as ~smith/LPmodels/prob1, since
"~smith" will be rejected. However, if user "smith" were in his home
directory, he could refer to that file as LPmodels/prob1.

TYPICAL COMMANDS

Take xmplfile - reads a file named "xmplfile" in the current
directory which contains LINDO commands or a model formulation.
The "take" command is typically used to input files created by an
editor like vi or pico. Long lines in this file that must continue on
subsequent lines can be broken at any place and immediately
continued on the next line. For example, max 2a + 3.5b + 4.1c -
26d+3.3e-6.2f+83g+4.6h-7.7]+ 5.6k
st
a+tb+c+d+e+f+g+h+j+k1etc.
Lines in this file may not exceed 71 characters.

Save model 2
Saves the current model formulation in the UNIX file named
model2 in the current directory.

retr model2
Retrieves the previously saved model stored in the UNIX file
model2 in the current directory.

dvrt output3

Diverts LINDO's subsequent output from the terminal screen to the
UNIX file named output3. This is useful for saving the results for
later printing using the qpr command. For this example, you would
later type the UNIX command

gpr -q smips output3

to print the output in Smith Hall.

rvrt

(revert) causes the subsequent output to be directed to the screen
again.

SAMPLE INTERACTIVE SESSIONS

The following three examples illustrate how to:

1. To state and solve a linear programming problem, and save the
formulation in a disk file;

117

2. Recover the formulation in a later session, modify the model and
find the optimal solution and
3. State and solve a zero-one integer programming problem.

LINDO's responses are displayed in upper-text; the user
commands and responses are in lower-case.

The average optimization software reviewed in OR/MS
Today has two parts: the graphical user interface (GUI) and the
mathematical engine. LINDO Application Programming Interface
(AP1) is solely an engine that has been purposely separated from
the GUI. This makes LINDO API a useful tool to a very focused set
of Operations Research/Management Science practitioners —
namely, those who write their own computer code.

(In this article, we use the word programming in its classical sense
to mean the act of planning activities for a large organization using
mathematical optimization. A program is a mathematical model of
such a situation. Code is used to describe instructions to a
computer in any of the common compiled languages: C, C++,
Fortran, Java, etc.)

LINDO API, from Chicago-based LINDO Systems, Inc., is a library
of functions that may be called from within many coding
environments. It offers well-organized data structures and powerful
linear, mixed integer and quadratic solvers in a linked library. But
LINDO API was not intended for those who want to point and click
their way through a model to a solution.

The intended users of LINDO API are those who wish to access
from within their own application the same linear, mixed integer,
and quadratic solver engines that are available from other LINDO
software. Such users might have their own proprietary modeling
environment, or they might be coding a large algorithm that has
need for such solvers within, or they might need greater control of
the solvers than they have in the other LINDO software.

LINDO API is supported on Windows, Linux and Solaris operating
systems. In addition to standard hardware requirements (see
Product Information box), one needs a coding environment that can
link to external libraries. Most C, C++, Fortran, Java and Visual
Basic environments fit this need. Alternatively, LINDO API can be
called from MATLAB.

118

My own experience with LINDO API has been positive. For two
years, LINDO Systems has allowed my research group to use
LINDO API inside our own software, CPA. This software
implements a generalized cutting plane algorithm for two stage
stochastic linear programs. You can try out CPA at the NEOS
site: www-neos.mcs.anl.gov.

SOLVERS

With LINDO API, what's under the hood is all you get. Three
solvers are available: a primal simplex solver, a dual simplex solver
and a barrier solver. These solvers are simply the engine from the
software LINDO, which offers a graphical front end as well. The
barrier solver can handle quadratic objective and constraint
functions, while the others are limited to linear functions. The model
input data type for each solver is the same, so changing from one
solver to another is a simple matter of changing the function call.
Each solver can operate within a branch and bound solver for
solving mixed integer programs.

6.6 DATA STRUCTURES AND INPUT FORMATS

The basic data structures used within LINDO API are
flexible, easy to interface and intuitive. The topmost structure is a
modeling environment, called LSenv. The environment contains
one or more model structures, called LSmodel. Each model is a
single linear or quadratic program, complete with model options,
data and eventually solutions. The macro-data structure is well
thought out and implemented, so that many options may be set
globally in the environment wrapper, or superceded at the model
level.

Model data (the actual LP or QP coefficients) may be placed
directly into memory by the calling code, or specified in a file in
MPS or LINDO format. Direct entry involves placing your data into a
sparse matrix and vector representation that is easy to use and well
explained in the documentation. The internal structures appear to
make efficient use of computer memory. The software can also
write LP (primal or dual) data out in MPS or LINDO format.

Users of MATLAB will be glad to know that all LINDO API
functions may be called from within MATLAB by using the MATLAB
executable MXLINDO. Unfortunately, LINDO API cannot currently

119

interface with mathematical modeling languages like AMPL or
GAMS.

EXAMPLES OF FUNCTION CALLS

The user of LINDO API has many functions that may be
called from within a coding environment. The housekeeping
routines — license handling, allocation, error handling — are
numerous and well organized. It is easy to use quality coding
techniques when using LINDO API.

Figure 1 shows a minimal coding example, where the
environment is created, the data is loaded, and the LP is solved. In
addition to these basic calls, LINDO API provides a group of
functions for modifying the model. One may add, delete or modify
any of the model features: constraints, variables, quadratic data,
integer data, right hand side coefficients, etc. Warm starts can be
implemented by specification of a starting basis.

Minimal Coding Example
/* myexample.c
A C code example for solving the following LP:

Maximize 3 x1 + 4 x2
subj. tox1 +x2 <=6

x1<=4
x1+2x2<=11
-X1 +x2>=-2
x1>=0
x2>=0

This is meant to be a minimal example, with very little with respect
to error checking, memory management, etc.

*/

#include <stdlib.h>
#include <stdio.h>

/* LINDO API header file */
#include "lindo.h"

120

/* license.h must be edited to include the license key that came with
your software */
#include "license.h"

/* main entry point */
int main()

{

int nErrorCode;

/* Number of constraints */
int nM = 4;

/* Number of variables */
int nN = 2;

/* declare an instance of the LINDO environment object */
pLSenv pEnvy;

/* declare an instance of the LINDO model object */
pLSmodel pModel;

/*

*>>> Step 1 <<< Create a LINDO environment.

*/

pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

/*
*>>> Step 2 <<< Create a model in the environment.
*/
Minimal Coding Example
/* myexample.c

A C code example for solving the following LP:

Maximize 3 x1 + 4 x2
subj. to x1 + x2 <=6

x1 <=4
x1+2x2<=11
X1+ x2>=-2
x1>=0

x2>=0

121

This is meant to be a minimal example, with very little with
respect to error checking, memory management, etc.

*/

#include <stdlib.h>
#include <stdio.h>

/* LINDO API header file */
#include "lindo.h"

/* license.h must be edited to include the license key that
came with your software */
#include "license.h"

/* main entry point */
int main()

{

int nErrorCode;

/* Number of constraints */
int nM = 4;

/* Number of variables */
int NN = 2;

/* declare an instance of the LINDO environment object */
pLSenv pEny;

/* declare an instance of the LINDO model object */
pLSmodel pModel;

/*

*>>> Step 1 <<< Create a LINDO environment.

*/

pEnv = LScreateEnv (&nErrorCode, MY_LICENSE_KEY);

/*

*>>> Step 2 <<< Create a model in the environment.

*/

pModel = LScreateModel (pEnv, &nErrorCode);

/*

* >>>> Step 3 <<< Specify the linear portion of the model.
*/

/* The direction of optimization */

122

int objsense = LS_MAX;

/* The objective's constant term */
double objconst = 0.;

/* The objective's linear term */
double c[2] ={ 3., 4. };

/* The right-hand sides of the constraints */
double rhs[4] ={6.0, 4., 11.,-2. };

/* The constraint types */
char contype[4] = {'L",'L",'L','/G" };

/* The number of nonzeros in the constraint matrix */
int Anz =7;

/* The indices of the first nonzero in each column */
int Abegcol[3] ={0, 4, Anz };

/* The last entry is always the number of nonzeros */

/* The length of each column. We can set this to NULL if we
do not expect to add rows later. */

int *Alencol = NULL;

/* The nonzero coefficients by column */
double A[7]1={1.,1.,1.,-1.,1,2.,1. };

/* The row indices of the nonzero coefficients */
int Arowndx[7]={0,1,2,3,0,2,3};

/* By default, all variables have a lower bound of zero
* and an upper bound of infinity. Therefore pass NULL
* pointers in order to use these default values. */
double *Ib = NULL, *ub = NULL;

/* Pass the linear portion of the data to problem structure
* by a call to LSloadLPData() */

nErrorCode = LSloadLPData(pModel, nM, nN, objsense,
objconst,c, rhs, contype, Anz, Abegcol, Alencol, A,
Arowndx, Ib, ub);

[* >>>Step 4<<< Pass the integrality restriction to problem

123

structure
* by a call to LSloadMIPData() */
char vartype[14] ={'C",'l'};

/* C means continuous, | means integer, B means binary */
nErrorCode = LSloadMIPData(pModel, vartype);

/*
* >>> Step 5 <<< Invoke the Branch & Bound solver*/
nErrorCode = LSsolveMIP(pModel, NULL);

[* >>> Step 6 <<< Retrieve the MIP solution */
int i;
double x[2], MipObj;

/* Get the value of the objective and solution */
LSgetMIPSolution(pModel, &MipObj, x) ;

printf ("*** Optimal Objective Value= %f\n", MipObj);

for (i=0;i<nN;i++)

printf("Optimal solution for variable %d: %5.2f \n", i+1, X]i]
);

printf ("\n");

* >>> Step 7 <<< Delete the LINDO environment */
nErrorCode = LSdeleteEnv(pEnv);

}
For those working on very large codes, the callback feature may be
useful. If this feature is set, the solver periodically checks in with the
calling function, at which time the current status may be probed,
adjustments made or the solver terminated.

6.7 INSTALLATION AND TECHNICAL SUPPORT

The installation of LINDO API is straightforward on one hand
and tricky on the other. On a Windows system, an install wizard
makes installation easy. In Linux, a README file takes the user
through an easy three-step installation process. LINDO has
certainly done their part to make the setup of LINDO API easy.

However, there is a certain level of difficulty inherent in the
use of callable libraries in general. The problems usually arise
during the linking phase, when the compiler tries to find and use the
LINDO libraries. Here, the user must wade through the swamp of
compiler settings, environment variables and standard library

124

version compatibility to try to find the magic setup that works. This
can be daunting for the inexperienced code warrior.

The good news is that LINDO Systems provides excellent
technical support. There is a real phone number that is answered
by a real person (do | sound jaded?), and in a single transfer the
caller finds that he/she is talking to a real developer of LINDO API.
The service is prompt and effective. The developers even listen to
suggestions. Last spring, | suggested a small change in the format
of one of the function calls. It was implemented in the next few
months.

DOCUMENTATION

The documentation that accompanies LINDO API is
extensive and well written. Each callable function and parameter is
described, and several examples of calling code are given. The
examples show a variety of calling languages (C, C++, Java, Visual
Basic and MATLAB). The examples given in the documentation are
supposed to match files that are distributed with the library.
However, some of these (probably the accompanying files) have
been changed, so that the user should treat the accompanying files
as additional examples, rather than exact implementations of the
examples in the documentation. In addition, appendices on MPS
and LINDO file formats are provided.

CONCLUSION

LINDO Systems has put forward a solid competitor in the
callable optimization library market. LINDO API does not have as
many features as some of its competitors (e.g. stochastic
optimization solver and parallel computing), but if you only want a
basic LP, MIP or QP solver, you can get a great value with LINDO
API.

6.8 EXERCISES

Q1. What are the different software’s available for OR? Explain two
of them.

Q2. How does solver add-in is used to solve OR problems?

Q3. What is SPSS and how does it work?

Q4. What is LINDO? and Describe the working of LINDO software.

