M.Sc (Comp.Sci.) [Part - I] Principles of Complier Design I & Principles of Complier Design II (May-2017) Marks: 75 6 6 6 O. P. Code: 10406 #### N.B: - 1. Attempt any three questions from each section - 2. Answers to the two sections must be written in same answer sheet. - 3. Figures to the right indicate full marks. - 4. Assume additional data if necessary but state the same clearly. - 5. Symbols have their usual meanings and tables have their usual standard design unless stated otherwise. - 6. Use of Simple calculators and statistical tables is allowed. #### Section I - 1 A Define: 1) Ambiguity 2) Finite Automata 3) Parser - B Define regular expression and draw the transition diagram for the following 6 expressions - 1) ab*cbb 2) $(0*+1) \cdot (01*)$ - 2 A Explain call by reference, call by value and call by Name. 6 - B Explain backtracking with suitable example 6 - 3 A Consider the following grammar. S-> iCtS S->iCtSeS S-> a C->b Show the step by step derivation of the string ibtibtaea and also draw the parse tree for the string. B What is left recursion? Eliminate the left recursion from the following grammar. 6 S->Aa | b $A \rightarrow Ac \mid Sd \mid \varepsilon$ 4 A Consider the following grammar. E->TE' E'->+TE' $|\epsilon$ T->FT' T->*FT'| ε $F->(E)\mid id$ Define and compute FIRST and FOLLOW for each non-terminal. B Write the method for finding precedence function. Consider the matrix and find the precedence function for the same. | | id | 76. + S. | *** | \$ | |-----------------|--------|--------------|---------|-------| | id | | .9 | | 20.27 | | \$ \ | 27 < | `.≽``∖ | 3. × 10 | × ××> | | * | 60 | - .≫, | | ·> | | \$ | , ,2,6 | 35.7 | \?<\\`\ | | 5 A Explain recursive descent parser with suitable example. B Consider the operator precedence relation matrix of Q 4(b) and parse the string: id + id * id 1 #### **Section II** | 6 | Α | Illustrate the evaluation of postfix expression using stack. | 0 | |----|---|---|---| | | В | Write and explain the quadruple code for following expressions/statement: P < Q OR T > S OR T < U | | | 7 | A | Explain the advantage and disadvantages of self- organizing list | 6 | | | В | Explain briefly the symbol table | | | 8 | A | Explain loop optimization with suitable example. | 6 | | | В | What is code motion? List various conditions imposed to make the code motion legal. | | | 9 | A | Write the code sequence for the following expression W:=(A-B) +(A-C) +(A-C) | 6 | | | В | Explain constant folding by giving example. | 7 | | 10 | A | What is loop unrolling? Give example | 6 | | | В | Differentiate between machine dependant and machine independent optimization? | 7 | ****** # M.Sc (Comp.Sci.) [Part - I] # Digital Signal Processing I & Digital Signal Processing II (May-2017) **QP Code: 75549** Section Name: I (3 Hours) [Total Marks: 75 #### N.B: - 1. Attempt any three questions from each section - 2. Answers to the two sections must be written in same answer sheet. - 3. Figures to the right indicate full marks. - 4. Assume additional data if necessary but state the same clearly. - 5. Symbols have their usual meanings and tables have their usual standard design unless stated otherwise - 6. Use of Simple calculators and statistical tables is allowed. #### Section I | 1 | A | Define twiddle, factor. Also find | U | |-----|-----|--|----| | | | i. IDFT of a sequence $\{10,-2+2,-2,-2-2\}$ | | | • | | ii. DFT of a sequence $\{2,1,1,2\}$ | | | | В | Define Z-transform. Assume two finite duration sequences x1(n) and x2(n) | 6 | | | | are linearly 6 combined. Let $x3(n)=a x1(n)+bx2(n)$. What is Z-transform of | | | | | x3(n)? Establish relation between DFT and Z-transform. Explain the relation | • | | | | between the Z-transform and fourier transform | | | 2 | Ā | Give advantages and disadvantages of FIR filters. State and explain at | 6 | | | | least three characteristics of FIR filters | | | | В | Explain in brief the Remez Exchange Algorithm in the design of optimal | 6 | | | • | FIR filter | | | 3 | Α | Explain the Types of Quantization in digital filter. Explain each. | 6 | | | ·B | Explain the forward difference method for mapping of differential | 6 | | 4 . | Α | Draw the 4-point DITFFT butterfly diagram Calculate the DFT of | ·6 | | | | x(n)=[2,1,0,2] | • | | | B | Write the short note of the chirp- Z transform algorithm and write its | 6 | | | • | advantage. | { | | 5 | Α ' | Write Short note on Blueinstiens Algorithm | 6 | | | В | Write the short note of decimation in frequency Algorithm | 6 | **[TURN OVER** ## Section II | 6 | Α | Design the eight bit parity tree by generating a logical one for even parity and a logical zero for odd parity | 5 | |----|--------|--|--------| | | В | What is fan-in and fan our? Design a system to determine largest of two -3 bit numbers. Assume the number system deals with only positive numbers | 7 | | 7 | A
B | Discuss implementation of FiR finer using Booth algorithm. Differentiate between TTL and CMOS logic Family | 6
7 | | 8 | A
B | What are the advantages and disadvantage of FDP structure Write a note on MOS Chip | 6
7 | | 9 | Α | Explain how real time convolution is carried by FFT using a Single RAM and One Arithmetic Element | 6 | | | В | Explain FFT indexing with respect to bit reversal and digital reversal of fixed indices | 7 | | 10 | A
B | Write a note on Radar Application: Air Traffic Control(ATC) Radar System Explain with neat labeled diagram pitch period estimation algorithm. Write a note on Pitch measurements for extreme conditions. | 6
 | ## M.Sc (Comp.Sci.) [Part – I] <u>Mobile Computing</u> <u>And Computer Simulation Modelling</u> (May-2017) **QP Code: 75603** (3 Hours) [75 marks] #### N.B: - 1. attempt any three questions from each section - 2. Answers to the two sections must be written in same answer sheet. - 3. Figures to the right indicate full marks. - 4. Assume additional data if necessary but state the same clearly. - 5. Symbols have their usual meanings and tables have their usual standard design unless stated otherwise. - 6. Use of Simple calculators and statistical tables is allowed. #### Section I | | | Section 1 | | |---|----------|---|--------| | 1 | A | Differentiate between portability and mobility. Give examples of mobile and wireless devices. | 6 | | | В | Write a short note on code division multiplexing. | 6 | | 2 | A | What are near and far terminal? And write problems cause by near and far terminals. | 6 | | | В | Write short note on Functional architecture of GSM system | 6 | | 3 | A
B | Write applications of satellite and also explain different handovers in satellite. Explain digital audio broadcasting. | 6
6 | | 4 | A
B | Write a note on Bluetooth. Explain Dynamic host configuration protocol. | 6
6 | | 5 | A
B | Explain Indirect TCP. Write note on wireless datagram protocol. | 6
6 | | | | Section II | | | 6 | A
B | Write down the pdf, mean, mode and cdf of Triangular distribution A cola-dispensing machine set of dispensing on average 7.00 ounces of cola per cup. The standard deviation is 0.10 ounces. The distribution amounts dispended follows a normal distribution (Given area under slandered normal curves; from $z=-\infty$ to 2.5 is 0.9938 and from $z=-\infty$ to 1 is 0.8413) | 7
6 | | | | i) What is the probability that the machine will dispense between 7.10 And 7.25 ounces of cola?ii) What is the probability that the machine will dispense 7.25 ounces Of cola or more? | | | 7 | A | A barber shop has two barbers. Assumes that the customer arrive in a Poisson fashion at the rate of 5 per hour. Each barber serves customers according to an exponential distribution with the mean of 15 minutes. i) What is the probability that a customer will not have to wait for heir aut? | 7 | | | В | for hair cut? ii) What is the expected number of customers in the queue? The time intervals between dial up connation to an Internet service provider are exponentially distributed with a mean of 15 seconds. Find the probability that the | 6 | **[TURN OVER** third dial up connection occurs after 30 seconds have elapsed. | 8 | A | What is Pseudo-Random Number? What are the properties and considerations of Pseudo-Random Number? | 6 | |----|---|--|-----| | | В | Test whether the 3rd, 8th 13th and so on, numbers in the following sequencing are auto correlated, use $\alpha = 0.05$ and table value = 1.96 Observations: | 7 | | | | 0.12, 0.01, 0.23, 0.28, 0.89, 0.31, 0.64, 0.28, 0.83, 0.93, 0.99, 0.15, 0.33, 0.35, | | | | | 0.91, 0.41, 0.60, 0.27, 0.75, 0.88, 0.68, 0.49, 0.05, 0.43, 0.95, 0.58, 0.19, 0.36, 0.69, 0.87. | • | | | | | | | 9 | A | Write an algorithm to generate a sequence of 2-digit random numbers using Linear Congruential method. Also generate three random numbers between 0 and 1 with $X0 = 37$, $a=7$, $c=29$ and $m=100$. | 6 | | | B | Discuss the steps in model building. Write an algorithm to generate stationary AR(1) time series model. | 7 | | 10 | A | What are discrete and continuous systems? Using examples, write the difference between them. | 6 | | | В | Explain Kolmogorov Smirnov test to validate uniformity of generated random numbers. | . 7 | ## M.Sc (Comp.Sci.) [Part – I] Data Warehousing and Mining and Advanced Database Systems (May-2017) Marks: 75 Q. P. Code: 10409 - 1. Attempt any three questions from each section - 2. Answers to the two sections must be written in same answer sheet. - 3. Figures to the right indicate full marks. - 4. Assume additional data if necessary but state the same clearly. - 5. Symbols have their usual meanings and tables have their usual standard design unless stated otherwise. - 6. Use of Simple calculators and statistical tables is allowed. #### Section I | | | Section P. A. C. S. | 200 | |---|---|---|-----| | 1 | A | Identify and describe the phases in KDD process. How does KDD differ from data mining? | 6 | | | В | List the functions of data warehouse tools and utilities and describe each one briefly. | 6 | | 2 | A | What is a difference between OLAP and OLTP? List the functions of data warehouse tools and utilities. | 6 | | | В | Explain ETL process with its components? Explain the common design for ETL system? Explain the ETL Architecture with the help of diagram? | 6 | | 3 | A | Discuss distance based classification algorithms. | 6 | | | В | What is clustering? Explain k-means method. Discuss its strengths and weaknesses | 6 | | 4 | A | Define a star schema. How is it different from a snowflake schema? Consider the following fact table Market (Market_Id, Product_ Id, Time_Id, Sales_Amt) Draw a cube containing entities with dimensions of your choice and locate Dimension tables. Depict the relation between the fact and dimension tables using star schema and snow flake schema. | 6 | | | В | What is Association Rule? Explain the aprioro candidate generation and test. | 6 | | 5 | A | What is Data Generalization? Explain it with two approaches? | 6 | | | В | Explain the concept market basket analysis. Support your answer by giving two examples. | 6 | | | | Section II | | | 6 | A | What are temporal databases? Compare Valid time and transaction time. Illustrate with example. | 6 | | | B | | 7 | | 7 | A | What is Parallel Database? Explain vertical fragmentation for parallel databases? | 6 | |----|---|---|----| | | В | How are multimedia sources indexed for content-based retrieval? | 7 | | 8 | A | Write a short note on Active Databases .Explain it with the help of example. | 6 | | | В | What are characteristics of spatial data? What are the difference between spatial range queries and nearest neighbour queries and spatial join queries? Give example. | | | 9 | A | Describe and explain any two architectures supported by distributed DBMS. | 6 | | | В | Explain with example dead locks in distributed database? | 27 | | 10 | A | Define the terms speed up and scale up. What is the importance of linearity in speed up and scale up? | 6 | | | В | Describe how XML data can be stored in relational DBMS. How do we map XML data to relations? Give an example. | 7 |