### M.Sc (Mathematics) (Part-II) Algebra - II

(Paper - I)(OCT-16)

Scheme A (External)] Scheme B (Internal)]

(3 Hours) (2 Hours) [Total Marks:100 [Total Marks: 40

QP Code: 74673

#### Instructions:

- Mention on the top of the answer book the scheme under which you are appearing
- Scheme A students should attempt any five questions
- Scheme B students should attempt any three questions
- All questions carry equal marks
- 1. (a) Let G be a finite group of order n and p be a prime such that  $p^k$  divides n and  $p^{k+1}$  does not divide n. Prove that G has a subgroup of order  $p^k$ .
  - (b) Show that a group of order 42 is not simple.
- 2. (a) If G is a group such that a normal subgroup H and G/H are both solvable then show that G is also solvable.
  - (b) Define a nilpotent group. Show that a group G is nilpotent if and only if there exists a positive integer n such that  $G^n = (e)$  where  $G^0 = G$  and  $G^{i+1} = [G, G^i]$ .
- 3. (a) Let L/F and F/K be field extensions. Prove that [L:K] is finite if and only if [L:F] and [F:K] are finite.
  - (b) Show that the characteristic of a field is either zero or a prime integer. Next, show that if a field is a finite field then Char  $F \neq 0$ . Is the converse true?
- 4. (a) Define a splitting field of a polynomial f(x) over a field K. If f(x) is a monic polynomial over a field K, prove that there exists a splitting field of f(x) over K.
  - (b) Determine the splitting field and its degree over  $\mathbb{Q}$  for the polynomial  $x^{11} 1$ .
- 5. (a) State and prove primitive element theorem.
  - (b) Prove or Disprove: There exists a field having 80 elements. Justify your answer.
- 6. (a) Prove that K is normal extension of F if and only if G(E/K) is normal subgroup of G(E/F). Next, show that in that case, G(E/F)/G(E/K) is isomorphic to G(K/F)
  - (b) Let  $\omega_n$  be a primitive n-throot of unity in  $\mathbb{C}$ . Prove that Galois group of  $\mathbb{Q}(\omega_n)/\mathbb{Q}$  is isomorphic to the multiplicative group of units  $\mathbb{Z}/n\mathbb{Z}$ .
- 7. (a) Show that a submodule of a free module over a PID is free.
  - (b) Define free module and torsion module. Give an example of a free module which is not torsionfree.
- 8. (a) Prove that any Principal ideal domain is Noetherian.
  - (b) R is a commutative ring with unity. M is an R-module. Show that the following are equivalent.
    - (i) Ascending chain condition holds in M (ii) Every submodule is finitely generated.

## M.Sc (Mathematics) (Part-II)

(Paper - II) (OCT-16)

**QP Code: 74681** 

[ 3 hours –Scheme A Idol students]

Total Marks: 100

[ 3 hours –Scheme B]

Total Marks: 40

N.B (1)Scheme A (IDOL) students will attempt any Five questions.

#### Scheme B students will attempt any Three questions

- (2) All Questions Carry Equal Marks. Justify the answers with Mathematical justification.
- Q.1.
- (a) Show that a nonmeasurable Set exists, in the real line
- (b) i) State two differences between the outer measure and measure . Suppose A is a set such that for each  $\epsilon > 0$ , A  $\subset B_\epsilon$  where  $B_\epsilon$  is a set with outer measure  $< \epsilon$ . What can be said about the measurability of the set A?
  - ii) Is Lebesgue measure on the real line complete? Justify your answer.

Q. 2

- (a) Show that,  $\lim_{n\to\infty}\inf f_n$  is a measurable function if each  $(f_m)$  is a measurable function.
- (b) Show that product of measurable functions is a measurable function and  $\sqrt{f}$  is a measurable function, when f is a nonnegative measurable function?

Q. 3

- (a) State and Prove Fatou's lemma? Is the analogous statement true for monotone increasing sequence of functions? Justify your answer.
- (b) Show that for a nonnegative Lebesgue integrable function f if the integral of f over a measurable set is zero then f is zero almost everywhere on the set. Show that for a strictly positive Lebesgue integrable function f,  $\int_a^b f > 0$ , for any closed interval [a, b],  $a \neq b$ .

O:T.9 ]

AQ-Con.4720-16.

2

Q.4

- (a) Is the product of Lebesgue integrable functions Lebesgue integrable? Justify?

  What about the product of a Lebesgue integrable function and a measurable function?
- (b) Show that a Riemann integrable function over a bounded interval is Lebesgue integrable . If |f| is Lebesgue integrable, Is f necessarily Lebesgue integrable? justify

Q. 5

- (a) i) Evaluate  $\int_0^{\pi/2} \int_0^1 x \cos(xy) \, dx \, dy$ . Do both iterated integrals exist? Justify
  - ii) Consider f(x, y) = x y when x, y are integers or y = 0 and f(x, y) = x/y, otherwise. Is f integrable over  $[0, 1] \times [0, 1]$ .
- b) State Tonneli's theorem . Deduce it from Fubini's theorem.

Q. 6

- (a) i)Let  $g(t) = \frac{1+(1+t)\cdot e^{-t}}{1+t^2}$ , t>0,  $t \in \Re$ . Show that g is Lebesgue integrable over  $[0, \infty)$ .
- ii) Give an example of a function so that the improper Riemann integral of f exists over some but the Lebesgue integral of f does not exist.
- b) Show that a Riemann integrable function is Lebesgue integrable

Q. 7

- a) State and Prove Hoder's inequality and Minkowaski's inequality.
- b) i) Define Fourier transform. State Plancharel's theorem for  $\pounds^2$ .
  - ii) Does the Fourier series of a continuous periodic function convergent pointwise to the function. Justify the answers with Mathematical justification.
- Q. 8 (a) State and prove Bessel's inequality and Parsevel's identity for Fourier series.
  - (b) State and Prove Riesz Fischer's theorem for  ${\bf \pounds}^2$  space .

#### AQ-Con.4720-16.

### M.Sc (Mathematics) (Part-II)

#### **Differential Geometry**

(Paper – III) (OCT-16) **QP Code: 74721** 

Duration:[3 Hours] [Marks: 100]

- N.B. 1) All questions carry equal marks.
  - 2) Attempt any five questions.
- 1. (a) (i) Let V is an inner product space then show that V has an orthonormal basis. (5)
  - (ii) For any  $x, y \in V$ , where V is an inner product space, show that  $||x-y||^2 = ||x||^2 + ||y||^2$  if and only if x is orthogonal to y. (5)
  - (a) (i) Find an equation of the plane that passes through the two points (1,0,-1) and (-1,2,1) and is parallel to the line of intersection of the planes 3x + y 2Z = 6 and 4x y + 3z = 0.
    - (ii) Let  $m: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ . Show that m is an isometry which fixes the origin if and only if  $\langle m(x), m(y) \rangle = \langle x, y \rangle$  for all  $x, y \in \mathbb{R}^n$ .
- 2. (a) Explain Picard's scheme of approximation for the solution of initial value problem  $\frac{dy}{dx} = f(x,y) \text{ with } y(x_0) = y_0 \text{ and hence find approximate solution of } \frac{dy}{dx} = x + y \text{ with } y(0) = 1.$  (10)
  - (b) Find approximate solution upto  $t^4$  of the initial value problem  $\frac{dx}{dt} = 2x + ty, \frac{dx}{dt} = xy \text{ with } x(0) = 1 \text{ and } y(0) = 1.$  (10)
- 3. (a) If  $f: U \longrightarrow \mathbb{R}$  is a differentiable function in an open set U of  $\mathbb{R}^2$  then show that the subset of  $\mathbb{R}^3$  given by (x, y, f(x, y)) for  $(x, y) \in U$  is a regular surface and hence or otherwise prove that every plane in  $\mathbb{R}^3$  is a regular surface.
  - (b) (i) Define orientable surface. The surface S be defined by a smooth function f(x, y, z) = 0 such that  $f_x$ ,  $f_y$  and  $f_z$  do not vanish simultaneously at any point of S. Show that the vector  $\nabla f = (f_x, f_y, f_z)$  is perpendicular to the tangent plane at every point of S. Is S is orientable? Justify.
    - (ii) Find the values of c for which the set f(x, y, z) = c is a regular surface, where  $f(x, y, z) = (x + y + z 1)^2$ . (5)
- 4. (a) Let  $\gamma(t)$  be a regular curve in  $\mathbb{R}^3$  with nowhere vanishing curvature. Then show that (10) its torsion is given by  $\tau = \frac{(\dot{\gamma} \times \ddot{\gamma}) \cdot \ddot{\gamma}}{\|\dot{\gamma} \times \ddot{\gamma}\|^2}$ , where  $\cdot$  represent differentiation w.r.t. t and hence compute the torsion of the circular helix  $\gamma(t) = (acost, asint, bt)$ .
  - (b) (i) Write parametric equation of circle and show that the curvature of a circle is inversly proportional to its radius. (5)
    - (ii) Show that the curve  $\gamma(t) = (\frac{1+t^2}{t}, t+1, \frac{1-t}{t})$  is planar. (5)

TURN OVER

**QP Code: 74721** 

- 5. (a) State and prove the generalized Stoke's theorem for the integration of exterior forms. (10)
  - (b) (i) Prove that the local maxima and local minima of function f are critical points of f. (5)
    - (ii) If  $f: \mathbb{R}^n \to \mathbb{R}$  be a differentiable function then show that

$$df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

- 6. (a) (i) Define a self adjoint linear map and show that the differential  $dN_p:T_p(S)\to T_p(S)$  of the Gauss map is a self adjoint linear map. (5)
  - (ii) Define normal curvature and compute normal curvature along a direction of  $T_p(S)$ . (5)
  - (b) Calculate Gaussian curvature and mean curvature of the points of torus  $\sigma(u,v) = ((a+rcosu)cosv, (a+rcosu)sinv, rsinu), \ 0 < u < 2\pi \ \text{and} \ 0 < v < 2\pi.$  (10)
- 7. (a) Define and derive the expression for first fundamental forms of regular surface in  $\mathbb{R}^3$  and hence show that  $\|\sigma_u \times \sigma_v\| = (EG F^2)^{\frac{1}{2}}$  where E, F and G are notations as in first fundamental form.
  - (b) (i) Let  $S_1$  be the infinite strip in the xy plane given by  $0 < x < 2\pi$  and  $S_2$  be the circular surface  $x^2 + y^2 = 1$  with the rulling given by x = 1, y = 0 removed. Prove or disprove the map  $f: S_1 \to S_2$  is an isometry.
    - (ii) Find a unit speed reparametrization of the curve  $\gamma(t) = (e^t cost, e^t sint)$ . (5)
- 8. (a) Compute curvature k, torsion  $\tau$ , tangent t, normal n and binormal b for parametrized curve  $\gamma(t) = (\frac{4}{5}cost, 1 sint, \frac{-3}{5}cost)$ . (5)
  - (b) Find the equation of tangent plane to the surface patch  $\sigma(u, v) = (u, v, u^2 v^2)$  at (1, 1, 0). (5)
  - (c) Define an isometry of  $\mathbb{R}^n$ . Prove or disprove composition of an isometry is an isometry. (5)
  - (d) Find the length of the part of the curve  $\sigma(u,v)=(ucosv,usinv,u)$  with  $0 \le t \le \pi$  where  $u=e^{\lambda t}, v=t$  and  $\lambda$  is constant. (5)

\*\*\*\*\*\*\*\*

## M.Sc (Mathematics) (Part-II) <u>Graph Theory</u> (OCT 46)

(OCT-16)

External (Scheme A) (3 Hours) Total marks: 100
Internal/External (Scheme B) (2Hours) Total marks: 40

**QP Code: 74795** 

- N.B. 1) Scheme A students answer any five questions.
  - 2) Scheme B students answer any three questions.
  - 3) All questions carry equal marks.
  - 4) Write on top of your answer book the scheme under which you are appearing.
- 1. (a) Show that a simple (p,q) graph G with  $q > p^2/4$  contains a triangle. State clearly the theorem used.
  - (b) Prove that graph is bipartite if and only if it has no odd cycle.
- 2. (a) State and prove Kruskal's algorithm for finding a minimum weight spanning tree.
  - (b) State Erdos-Gallai conditions for existence of degree sequence to be graphic and show that these conditions are necessary.
- **3.** (a) Prove that the matching in a graph G is maximum if and only if G contains no M augmenting path.
  - (b) Which is the Hall's matching condition for bipartite graph? Prove it.
- **4.** (a) What is the Purfer code for a labeled tree? Draw a labeled tree with Purfer code 7,2,4,5,3,3,1.
  - (b) State Menger's theorem and give one of its application.
- 5. (a) Define chromatic number of graph G. Prove that if G contains complete graph Kn then  $\chi(G) \geq n$ 
  - (b) Show that there is no graph with chromatic polynomial  $\lambda^3 4\lambda^2 + 3\lambda$ .
- 6. (a) Prove that a connected graph is isomorphic to its line graph if and only if it is a cycle.
  - (b) If G is a (p, q) graph with at least three vertices and  $\delta(G) \ge \frac{p}{2}$  then prove that G is hamiltonian
- 7. (a) Prove that every planar graph G with p≥4 has at least four points of degree not exceeding 5.
  - (b) Prove that edges in a plane graph G form a cycle in G if and only if the corresponding dual edges form a bond in G\*(G\* is planar dual).
- 8. (a) Define Ramsey Number R(p,q) for  $p, q \ge 2$ . Show that  $R(p,q) \le R(p+1,q) + R(p,q-1)$  if  $p, q \ge 3$ .
  - (b) If T is an m-vertex tree then prove that  $R(T, K_n) = (m-1)(n-1) + 1$ .

\*\*\*\*\*\*\*

## M.Sc (Mathematics) (Part-II) <u>Numerical Analysis</u> (OCT-16)

**QP Code: 74663** 

External (Scheme A) (3 Hours) Internal (Scheme B) (2 Hours) Note: [Total Marks:100 [Total Marks:40

- (1) External (Scheme A) students answer any five questions.
- (2) Internal (Scheme B) students answer any three questions.
- (3) All questions carry equal marks. Scientific calculator can be used.
- (4) Write on top of your answer book the scheme under which you are appearing.
- Que. 1 (a) Define: Absolute error, Relative error and Percentage error.

  Round-off the number 658394 upto four significant figures and find the absolute error, relative error and percentage error.
  - (b) Convert the hexadecimal number  $(BBC.10)_{16}$  to the binary form and then convert to the octal form.
- Que. 2 (a) Derive the Chebyshev iteration formula to find a root of the algebraic or transcendental equation f(x) = 0.
  - (b) Perform two iterations of the Bairstow method to extract a quadratic factor  $x^2 + px + q$  correct upto four decimal places from the equation  $x^4 + 5x^3 + 3x^2 5x 9 = 0$ . Use initial approximations  $p_0 = 3$ ,  $q_0 = -5$ .
- Que. 3 (a) Let  $A = [a_{ij}]$  be a real matrix of order  $m \times n$  with  $m \ge n$ . Derive a formula giving Singular Value Decomposition of a matrix A.
  - (b) Find the inverse of a following matrix by Gauss elimination method

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}.$$

- Que. 4 (a) Derive Lagrange's interpolation formula for unequal intervals.
  - (b) Use Newton's divided difference formula to find the fourth degree curve passing through the points (2,3), (4,43), (5,138), (7,778) and (8,1515).
- Que. 5 (a) Derive Newton-Cotes quadrature formula and use it to derive Simpson's rule for numerical integration.
  - (b) Evaluate  $\int_0^1 \int_0^1 \frac{\sin xy}{1+xy} dx dy$  using Trapezoidal rule with h=k=0.5.
- Que. 6 (a) Use Gram-Schmidt orthogonalizing process to determine first two orthogonal polynomials which are orthogonal on [0,1] with respect to the weight function w(x) = 1. Using these polynomials, obtain the least squares approximation of first degree for the function  $f(x) = e^x$  on [0,1].
  - (b) Explain the term Discrete Fourier Transform (D.F.T.) and compute the (4-point) inverse D.F.T. of the sequence X=(2.5,-0.5i,-0.5,0.5i).

TURN OVER

- Que. 7 (a) Derive the Milne's corrector formula to solve the differential equation  $\frac{dy}{dx} = f(x, y)$ with  $y(x_0) = y_0$ .
  - (b) Solve

$$\frac{dy}{dx} = yz + x$$

$$\frac{dz}{dx} = xz + y$$

$$\frac{dz}{dx} = xz + y$$

given that y(0) = 1, z(0) = -1 for y(0.1), z(0.1) by Runge-Kutta method.

- (a) Derive a Bender-Schmidt numerical method to obtain the numerical solution of one dimensional heat equation with initial and boundary conditions.
  - (b) Use Liebmann's method to solve the Laplace equation  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$  at the interior mesh points of the square region with boundary values given in the following figure.



[ Take 2 iterations and obtain result correct upto three decimal places.]

# M.Sc (Mathematics) (Part-II) <u>Functional Analysis</u> (OCT-16)

**QP Code: 74768** 

(3 Hours)

[Total Marks : 100

- N.B. 1) Solve any Five questions from question number 1 to 8.
  - 2) All questions carry equal marks.
  - 3) K denote either  $\mathbb{R}$ , the set of real numbers or  $\mathbb{C}$ , the set of complex numbers.
- 1. (a) (i) Define the normed linear space, Banach Space. Verify that  $\mathbb{R}^n$  is a Banach space with norm defined by:

$$x = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$$
 and  $||x|| = \left(\sum_{j=1}^n |\xi_j|^2\right)^{1/2}$ .

- (ii) Let X be a normed space, Y be a closed subspace of X and  $Y \neq X$ . Let r be a real number such that 0 < r < 1. Then show that there exists some  $x_r \in X$  such that  $||x_r|| = 1$  and  $r \leq d(x_r, Y) \leq 1$ .
- (b) Let X be a normed space. Prove that the following conditions are equivalent. (10)
  - (i) Every closed and bounded subset of X is compact.
  - (ii) The subset  $\{x \in X : ||x|| \le 1\}$  of X is compact.
  - (iii) X is finite dimensional.
- 2. (a) (i) Prove that every finite dimensional subspace of Y of normed space X is complete. (5)
  - (ii) Define equivalent norms. Hence prove that on a finite dimensional vector space X, any norm ||.|| is equivalent to any other norm  $||.||_0$ .
  - (b) (i) Give example of subspaces of  $l_{\infty}$  and  $l_2$  which are not closed. (5)
    - (ii) If ||.|| and  $||.||_0$  are equivalent norms on X, show that the Cauchy sequences in (X, ||.||) and  $(X, ||.||_0)$  are the same.
- 3. (a) (i) Let Y and Z be subspaces of normed space X, and suppose that Y is a closed and is a proper subset of Z. Then show that for every real number  $\theta$  in the interval (0,1) there is a  $z \in Z$  such that ||z|| = 1,  $||z y|| \ge \theta$  for all  $y \in X$ .
  - (ii) Let  $X = \mathbb{R}^3$ . For  $x = (x(1), x(2), x(3)) \in X$ , let

$$||x|| = \left[ \left( |x(1)|^2 + |x(2)|^2 \right)^{3/2} + |x(3)|^3 \right]^{1/3}.$$

Then show that ||.|| is a norm on  $\mathbb{R}^3$ .

(b) Let X be a linear space over  $\mathbb{R}$  and Y be a subspace of X which is not a hyperspace in X. If  $x_1$  and  $x_2$  are in X but not in Y, then prove that there is some x in X such that for all  $t \in [0,1]$ ,  $tx_1 + (1-t)x \notin Y$  and  $tx_2 + (1-t)x \notin Y$ . Hence prove that if X is normed space, then compliment  $Y^c$  is connected.

- 4. (a) Let E be a non empty convex subset of a normed space X over K. Prove that:
  - (i) If  $a \in X$  but  $a \notin \bar{E}$ , then there are  $f \in X'$  (dual of a normed space X) and  $t \in \mathbb{R}$  such that  $\text{Re}f(x) \le t < \text{Re}f(a)$  for all  $x \in \bar{E}$ .
  - (ii) If  $E^0 \neq \phi$  (Interior of E) and b belongs to the boundary of E in X, then there is non zero  $f \in X'$  such that  $\text{Re}f(x) \leq \text{Re}f(b)$  for all  $x \in \bar{E}$ .
  - (b) (i) Let X = C([a, b]) with sup norm, Y be the subspace of X consisting of all constant functions and g(y) = y(a) for  $y \in Y$ . For a nondecreasing function on [a, b] such that z(b) z(a) = 1, define

$$f_z(x) = \int_a^b x dz, \quad x \in X.$$

Then show that  $f_z$  is a Hahn-Banach extension of g.

- (ii) Prove that a normed space Y, BL(X,Y) space of bounded linear maps from a normed space X to a normed space Y,  $BL(X,Y) = \{0\}$  if and only if  $Y = \{0\}$ .
- 5. (a) State and prove Uniform Boundedeness Principle. (10)
  - (b) (i) Let X be a normed space, E be the subset of X. Then prove that E is bounded in X if and only if f(E) is bounded in K for every  $f \in X'$  (dual of normed space X).
    - (ii) Let X and Y be normed spaces and  $F: X \to Y$  be a linear. Then prove that F is continuous if and only if  $g \circ F$  is continuous for every  $g \in Y'$  (dual of normed space Y).
- 6. (a) (i) Define the terms continuous map and closed map. Hence prove that continuous map is closed. Does the converse is true? Justify your answer.
  - (ii) Let X be a linear space over K. Consider subsets U and V of X, and  $k \in K$  such that  $U \subset V + kV$ . Then prove that for every  $x \in U$ , there is a sequence  $(v_n)$  in V such that

$$x - (v_1 + kv_2 + \ldots + k^{n-1}v_n) \in k^n U, \quad n = 1, 2, 3, \ldots$$

- (b) (i) Let X and Y be normed spaces and  $F: X \to Y$  be a linear. Then prove that F is an open map if and only if there exists some  $\gamma > 0$  such that for every  $y \in Y$ , there is some  $x \in X$  with F(x) = y and  $||x|| \le \gamma ||y||$ .
  - (ii) Let X and Y be normed spaces. Prove that if Z is closed subspace of X, then the quotient map Q from X to X|Z is continuous and open.
- 7. (a) (i) Define an inner product space and Hilbert space. Show that the Unitary space  $\mathbb{C}^n$  is a Hilbert space with inner product given by

$$\langle x,y\rangle = \xi_1\bar{\eta_1} + \xi_2\bar{\eta_2} + \ldots + \xi_n\bar{\eta_n}$$

where  $x = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{C}^n$ ,  $y = (\eta_1, \eta_2, \dots, \eta_n) \in \mathbb{C}^n$ .

(4)

- (ii) Give an example of Banach Space which is not a Hilbert space. Verify your answer. (4)
- (b) (i) If a linear operator T is defined on all of a complex Hilbert Space H and satisfies  $\langle Tx, y \rangle = \langle x, Ty \rangle$  for all  $x, y \in H$ , then show that T is bounded.
  - (ii) Let S and T be linear operators which are defined on all of Hilbert space H and satisfy  $\langle Tx, y \rangle = \langle y, Sx \rangle$  for all  $x, y \in H$ , then show that T is bounded and S is its Hilbert adjoint operator. (4)
- 8. (a) (i) Define Fredholm alternative. Let  $T: X \to X$  be a compact linear operator on a normed space X, and let  $\lambda \neq 0$ . Then show that  $T_{\lambda} = T \lambda I$  satisfies the Fredholm alternatives.
  - (ii) Formulate the Fredholm alternative for a system of n linear algebraic equations in n unknowns. (4)
  - (b) Solve the following linear integral equation. (10)

$$x(s) - \mu \int_0^1 x(t)dt = 1$$

Find all solutions of the corresponding homogeneous equation.

**克克西克克克克克克克克克**