(3 Hours)

[Total Marks: 100

Note: (i) All questions are compulsory.

(ii) Figures to the right indicate marks for respective parts.

i.	(a) (c) Ans The e is (a) (c) Ans	rating factor of $(2x \log x - xy)c$ $\frac{1}{x}$ i.(a) quation of the orthogonal traject $\frac{y^2}{2} + x^2 = c$ $y^2 + x^2 = c$	(b)	$\frac{1}{x^2}$ None of the above. The family of parabolas $y^2 = kx$ $y = ce^{2x}$	
	(c) Ans The e is (a) (c) Ans	i.(a) quation of the orthogonal traject	(d)	None of the above. The family of parabolas $y^2 = kx$	
	Ans The e is (a) (c) Ans	i.(a) quation of the orthogonal traject	tories to 1	None of the above. The family of parabolas $y^2 = kx$	
	The e is (a) (c) Ans	quation of the orthogonal traject		the family of parabolas $y^2 = kx$	
	is (a) (c) Ans			_	
iii.	(c) Ans	$\frac{y^2}{2} + x^2 = c$ $y^2 + x^2 = c$	(b)	$v = ce^{2x}$	-
iii.	Ans	$y^2 + x^2 = c$			
iii.		-	(d)	None of these	
iii.		ii(a)			1
	The d	egree of the O.D.E. $y' + x = (y)$	y - xy'	⁻² is	1
	(a)	1	(b)	2	
	(c)	3	(d)	None of these	
	Ans	iii(b)			
iv.	Whic	h of the following is a homogene	ous first	order differential equation?	
	(a)	$\frac{dy}{dx} = \frac{2x + 3y}{2x - 3y}$ $\frac{dy}{dx} = \frac{2x + 3y}{2x - 3y + 1}$	(b)	$\frac{dy}{dx} = \frac{2x + 3y + 1}{2x - 3y}$	
	(c)	$\frac{dy}{dx} = \frac{2x + 3y}{2x - 3y + 1}$	(d)	$\frac{dy}{dx} = \frac{2x + 3y + 1}{2x - 3y - 1}$	
	Ans	iv.(a)			
v.	Gene	ral solution of $y'' + 16y =$	0 is v =	=	
	(a)	$c_1 e^{4x} + c_2 e^{-4x}$	(b)	$(c_1 + c_2 x)e^{4x}$	
	(c)	$c_1 \sin 4x + c_2 \cos 4x$	(d)	$ (c_1 + c_2 x)e^{4x} $ $ c_1 x^4 + c_2 x^{-4} $	
	Ans	v.(c)	(4)	c ₁ x - x c ₂ x	
vi.	Gene	ral solution for differential	equation	y'' + y' = 0 is	
	(a)	$y = c_1 e^x + c_2 e^{-x}$	(b)	$y = c_1 + c_2 e^{-x}$	
	(c)	$y = c_1 \cos x + c_2 \sin x$	(d)	$y = c_1 + c_2 e^x$	
	Ans	vi.(b)			
ii.	Wron	skian determinant $W(y_1, y_2)$) with	4	
	(a)	$y_1y_2' - y_2y_1'$	(b)	$y_1y_2' + y_2y_1'$	
	(c)	$y_1y_1' - y_2y_2'$	(d)	$y_1y_1' + y_2y_2'$	
- 1	Ans	vii. (a)			
iii.		tions $\begin{cases} \frac{dx}{dt} = 3x \\ \frac{dy}{dt} = 4y \end{cases}$ is	geneous	linear system of differential	
	(a)	$x = 3e^{3t}$	(b)	$\begin{cases} x = 3e^t \\ x = 4e^t \end{cases}$	
'i i	i.	Ans i. One o	Ans vii. (a) i. One of the solutions of the homo equations $\begin{cases} \frac{dx}{dt} = 3x \\ \frac{dy}{dt} = 4y \end{cases}$ is	Ans $vii. (a)$ i. One of the solutions of the homogeneous equations $\begin{cases} \frac{dx}{dt} = 3x \\ \frac{dy}{dt} = 4y \end{cases}$ (a) $x = 3e^{3t}$ (b)	Ans vii. (a) i. One of the solutions of the homogeneous linear system of differential equations $\begin{cases} \frac{dx}{dt} = 3x \\ \frac{dy}{dt} = 4y \end{cases}$ (a) $x = 3e^{3t}$ (b) $(x = 3e^t)$

		(c)	$\begin{cases} x = 3e^{2t} \\ y = 5e^{3t} \end{cases}$	(d)	None of these			
		Ans	viii.(a)					
	ix.	Amor	ngst the following, the pair of	linear	y independent solutions is			
		(a)	$\begin{cases} x = e^t \\ y = e^t \end{cases} \text{ and } \begin{cases} x = e^{-t} \\ y = 2e^{-t} \end{cases}$	(b)	$\begin{cases} x = e^t \\ y = e^t \end{cases} \text{ and } \begin{cases} x = 3e^t \\ y = 3e^t \end{cases}$			
*		(c)	$\begin{cases} x = e^t \\ y = -e^{3t} \end{cases} \text{ and } \begin{cases} x = -e^t \\ y = e^{3t} \end{cases}$	(d)	None of these			
		Ans	ix.(a)	24	24			
	х.	1	Wronskian of two solutions $\begin{cases} x \\ y \end{cases}$		V			
			geneous linear system of diffe		l equations, is equal to			
		(a)	4e ^{5t}	(b)	2e ^{2t}			
		(c)	0	(d)	None of these			
0.2	- \	Attorn	X. (c)	lowina		(08)		
Q.2	a)		pt any ONE question from the fol		day	(00)		
		İv	Show that the general solution $Py = Q$, P and Q are in $e^{-\int Pdx} \left(\int Qe^{\int Pdx} dx + c \right)$, c be the Q D E $\frac{dy}{dx} + \frac{y}{dx} = x^2 - x$	tegrabl	e functions of x , is $y =$			
			the O.D.E. $\frac{dy}{dx} + \frac{y}{1-x} = x^2 - x$.			1		
			Consider $\frac{d}{dx}(ye^{\int Pdx})$.			1		
			We have by the product rule of differentiation $\frac{d}{dx}(ye^{\int Pdx}) = \frac{dy}{dx}e^{\int Pdx} + y\frac{d}{dx}(e^{\int Pdx})$					
			$\begin{vmatrix} \frac{dx}{dx} (ye^{x}) - \frac{dx}{dx} e^{x} + y \frac{dx}{dx} \\ = \frac{dy}{dx} e^{\int Pdx} + y e^{\int Pdx} \frac{dx}{dx} (\int P(x) dx + y e^{x}) = \frac{dx}{dx} e^{x}$					
			$= \frac{dy}{dx} e^{\int Pdx} + y e^{\int Pdx} P(x)$			1		
			$= e^{\int P dx} \left(\frac{dy}{dx} + P(x)y \right)$					
			$= Q(x)e^{\int Pdx}(\because \frac{dy}{dx} + Py =$			1		
			Hence $ye^{\int Pdx} = \int Q(x)e^{\int Pdx}dx$ $\therefore y = e^{-\int Pdx} \left(\int Qe^{\int Pdx}dx + c\right)$			1		
4			The given O.D.E. is linear with h			1		
			: its solution is given by $y = e^{-1}$ = $e^{-\log(1-x)} (\int (x^2 - x) e^{\log(1-x)})$	$\int Pdx (\int -x) dx -1$	$\begin{array}{l} Qe^{\int Pdx}dx+c) \\ -c) \end{array}$	1		
			$= \frac{1}{1-x} \left(\int (x^2 - x)(1-x) dx \right)$			1		
			$=\frac{1}{1-x}\left(\int \left(-x^3\right)^{-x}\right)$	$+2x^{2}$	-x)dx+c			
			$= \frac{1}{1-x} \left(\left(-\frac{x^4}{4} + \frac{2x^3}{3} - \frac{x^2}{2} \right) + c \right), \text{is}$	the re	quired solution.	1		
		ii.	Verify that the given differentia	l equat	ion is not exact. Further, find an			

		I.F. of the differential equation and solve: $(x^3 - 2y^3 - 3xy)dx + 3x(y^2 + x)dy = 0$.	
	45	Sol: Comparing the given differential equation with $M dx + N dy = 0$, $M = x^3 - 2y^3 - 3xy$ and $N = 3xy^2 + 3x^2$ $\therefore \frac{\partial M}{\partial y} = -6y^2 - 3x$ and $\frac{\partial N}{\partial x} = 3y^2 + 6x$	
		$\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}, \text{ the given differential equation is not exact.}$ $\text{Now, } \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) = \frac{1}{3xy^2 + 3x^2} \left(-6y^2 - 3x - 3y^2 - 6x \right) = \frac{-9(y^2 + x)}{3x(y^2 + x)}$ $= -\frac{3}{x}, \text{ which is a function of } x \text{ alone.}$	2
		$\therefore I. F = e^{\int \frac{-3}{x} dx} = e^{-3\log x} = \frac{1}{3}$	3
		Multiplying the given differential equation by I.F= $\frac{1}{x^3}$ we get the exact	
		differential equation $\frac{(x^3 - 2y^3 - 3xy)}{x^3} dx + \frac{3x(y^2 + x)}{x^3} dy = 0$	
		Its solution is, $\int \frac{(x^3 - 2y^3 - 3xy)}{x^3} \partial x = c$	3
		i.e. $\int dx - 2y^3 \int \frac{1}{x^3} dx - 3y \int \frac{1}{x^2} dx = c$ or that $x + \frac{y^3}{x^2} + \frac{3y}{x} = c$	3
b)	Attem	upt any TWO questions from the following:	(12)
	i.	By Substituting $x + y = v$, solve the differential equation:	
		$(x+y)^2 \frac{dy}{dx} = 1$	
		Sol:- $x + y = v$	
		$1 + \frac{dy}{dx} = \frac{dv}{dx}$	1
		$\therefore \frac{dy}{dx} = \frac{dv}{dx} - 1$	1
		$v^2\left(\frac{dv}{dx}-1\right)=1$	1
		$\therefore \frac{dv}{dx} = \frac{1}{v^2} + 1$ $\therefore \frac{v^2}{v^2 + 1} dv = dx$	1
		$\therefore \frac{1}{v^2 + 1} dv = dx$ $\therefore \left(1 - \frac{1}{v^2 + 1}\right) dv = dx$	
		$\therefore \int \left(1 - \frac{1}{v^2 + 1}\right) dv = \int dx$	1
		$v - \tan^{-1} v = x + c$ $x + y - \tan^{-1} (x + y) = x + c$	1
		$\therefore x + y - \tan^{-1}(x + y) - x + c$ $\therefore y = \tan^{-1}(x + y) + c$	
	ii.	Solve the following non-homogenous differential equation: $\frac{dy}{dx} = \frac{x + 2y - 1}{x + 2y + 1}$	
		$\frac{1}{dx} - \frac{1}{x+2y+1}$	
		Sol;	

	- Y		-
		$\frac{dy}{dx} = \frac{x + 2y - 1}{x + 2y + 1} \dots (1)$	1
		Put x + 2y = v	
		$\therefore \frac{dy}{dx} = \frac{1}{2} \frac{dv}{dx} - \frac{1}{2}$	1
		Substituting in (1), we get,	
			1
		$\frac{dv}{dx} = \frac{3v - 1}{v + 1}$	
		$\frac{v+1}{dv-dx}$	
		$\therefore \frac{x}{v+1} \frac{v+1}{3v-1} dv = dx$,
		$\therefore \frac{1}{3} \left(1 + \frac{4}{3v - 1} \right) dv = dx$	1
		Integrating, we get, $\int \left(1 + \frac{4}{3} \frac{3}{3\nu - 1}\right) d\nu = 3 \int dx + c$	1
		$\therefore v + \frac{4}{3}\log(3v - 1) = 3x + c$	1
		Substituting back $v = x + 2y$, we get,	1
		$3x - 3y - 2\log(3x + 6y - 1) = k$	1
	iii.	Solve the differential equation:	
	2001	J.,	
		$\frac{dy}{dx} + \frac{y}{x} = x^2 y^6$	
		Sol: -	
1		The given differential equation is a Bernoulli's equation	1
		Now, putting $v = y^{-5}$ the equation transforms to $\frac{dv}{dx} - 5\frac{v}{x} = -5x^2$,	2
		which is linear and has solution	1
		$v e^{\int -\frac{5}{x} dx} = -\int 5x^2 e^{\int -\frac{5}{x} dx} dx + c$	
		, ,	
		i.e. $\frac{1}{y^5} \frac{1}{x^5} = -\int 5x^2 \left(\frac{1}{x^5}\right) dx + c$	2
		i.e. $\frac{1}{x^5 + 5} = \frac{5}{2x^2} + c$	
	iv.	An RL circuit has an emf of 15V, a resistance of 90Ω and inductance	
	14.	of 3H, and no initial current. Find the current in the circuit at any time t.	
		Sol: $V = 15$, $R = 90$, $L = 3$	
		We have $\frac{di}{dt} + \frac{R}{L}i = \frac{V(t)}{L}$	
		We have $\frac{1}{dt} + \frac{1}{L} \cdot \frac{1}{L}$	
		$\therefore \frac{di}{dt} + \frac{90}{3}i = \frac{15}{3}$	
		at 3 3	1
		$\therefore \frac{di}{dt} + 30 i = 5$	
		di	
		$\therefore \frac{1}{dt} = 5 - 30 i$	1
		di T(1 (i)	*
		$\therefore \frac{di}{dt} = 5(1 - 6i)$	1
		$\frac{di}{dt} + 30 i = 5$ $\frac{di}{dt} = 5 - 30 i$ $\frac{di}{dt} = 5(1 - 6i)$ $\frac{di}{dt} = 5 dt$	1
		$\therefore \frac{di}{1-6i} = 5 dt$	
		$\therefore \frac{di}{1 - 6i} = 5 dt$ $\therefore \int \frac{di}{1 - 6i} = 5 \int dt$	
		$\therefore \frac{di}{1-6i} = 5 dt$	
		$\therefore \frac{di}{1 - 6i} = 5 dt$ $\therefore \int \frac{di}{1 - 6i} = 5 \int dt$	1

		$\therefore c = 0$	1
		\therefore (1) becomes	
		$\log (1-6i)$	
		$\frac{\log(1-6i)}{-6} = 5t$	
		$\therefore \log(1-6i) = -30t$	
		$\therefore (1-6i) = e^{-30t}$	1
		$: 6i = 1 - e^{-30t}$	
		$1 - e^{-30t}$	
		$\therefore i = \frac{1 - e^{-30t}}{6}$	
Q.3 a	Atten	npt any ONE question from the following:	(08)
2.0	i.	Let $y_1(x)$ be a non-zero solution to the differential equation $y'' +$	
		P(x)y' + Q(x)y = 0 on [a, b] then show that another linearly	
		$\int_{-\infty}^{\infty} e^{\int -p(x)dx} dx$	
		independent solution $y_2(x) = y_1(x) \int \frac{e^{\int -p(x)dx}}{y_1^2(x)} dx$	
	Ans	Let $y_1(x)$ and $y_2(x)$ are two independent solution of the differential	
		equation $y'' + P(x)y' + Q(x)y = 0$	
		\therefore \exists non constant function $V(x)$ such that,	1
		$y_2(x) = V(x)y_1(x) \tag{1}$	1
		$\therefore y_2' = Vy_1' + y_1V'$	1
		$y_2'' = Vy_1'' + 2V'y_1' + V''y_1$	1
		Substituting these values in $y_2'' + P(x)y_2' + Q(x)y_2 = 0$	
		$\therefore Vy_1'' + 2V'y_1' + V''y_1 + P(Vy_1' + y_1V') + QV(x)y_1(x) = 0$	1
		$\therefore V(y_1'' + Py_1' + Q) + V''y_1 + V'(2y_1' + Py_1) = 0 $ (2)	1
		As y_1 is a solution to $y'' + P(x)y' + Q(x)y = 0$	
		$y_1'' + P(x)y_1' + Q(x)y_1 = 0$	
		hence equation (2) becomes	1
		$V''y_1 + V'(2y_1' + Py_1) = 0$	
- 4		$\therefore V''y_1 = -V'(2y_1' + Py_1)$	
		$V''y_{1} = -V'(2y'_{1} + Py_{1})$ $V''_{1} = -\frac{(2y'_{1} + Py_{1})}{y_{1}}$	1
		$V'' = 2y_1' = p$	
		$\therefore \frac{V''}{V'} = -\frac{2y_1'}{y_1} - P$	
		Integrating both sides we get,	
		$\log V' = -2 \log y_1 - \int P dx$	
		$\therefore \log V' + 2 \log y_1 = -\int P dx$	1
		$\therefore \log V' + \log y_1^2 = -\int P dx$	
		$\therefore \log(V'y_1^2) = -\int Pdx$	
		$\therefore V'y_1^2 = e^{-\int Pdx}$	
		$y_1 - \varepsilon$	
		$\therefore V' = \frac{1}{y_1^2} e^{-\int P dx}$	
		. 17	1
		$\therefore V = \int \frac{1}{y_1^2} e^{-\int P dx} dx$	
		: (2) becomes	1
		$y_2(x) = y_1(x) \int \frac{1}{y_1^2} e^{-\int P dx} dx$	1
		Now we shall show that, $y_1(x)$ and $y_2(x)$ are linearly independent.	
		$\therefore W(y_1, y_2) = y_1 y_2' - y_2 y_1'$	

		$= y_1(Vy_1 + V'y_1) - Vy_1y_1'$	
Е		$= V'y_1^2 \text{ as } V' = y_1(x) \int_{y_1^2}^1 e^{-\int P dx} dx \text{ is never zero,}$ and $y_1^2 \neq 0$ $\therefore W(y_1, y_2) \text{ is never zero.}$	
-:		y_1 and y_2 are linearly independent	1
	ii.	Describe the method of variation of parameters to solve a non-homogenous differential equation of the second order.	
	Ans	. Let $y_1(x)$ and $y_2(x)$ are solutions of the differential equation $y'' + py' + qy = 0$ \therefore complementary function is	
		Let particular integral for $y'' + py' + qy = R(x)$ be	1
		$y_p = uy_1 + vy_2$ (1) $y_p = u'y_1 + uy_1' + v'y_2 + vy_2'$ (2)	1
		Let u, v satisfy the equation $u'y_1 + v'y_2 = 0 \qquad (3)$ $\therefore \text{ equation (2) becomes}$	1
		$y_{p}^{'} = uy_{1}^{'} + vy_{2}^{'}$ $y_{p}^{''} = u^{'}y_{1}^{'} + uy_{1}^{''} + v^{'}y_{2}^{'} + vy_{2}^{''}$ Substituting these values in $y_{p}^{''} + py_{p}^{'} + qy_{p} = R(x)$, $y_{1}^{''} + uy_{1}^{''} + v^{'}y_{2}^{'} + vy_{2}^{''} + p(uy_{1}^{'} + vy_{2}^{'}) + q(uy_{1} + vy_{2}) = R(x)$	1
		$\therefore u(y_1'' + py_1' + qy_1) + v(y_2'' + py_2' + qy_2) + (u'y_1' + v'y_2') = R(x)$ [: y_1 and y_2 are solutions for $y'' + py_1' + qy = 0$ $\therefore u(0) + v(0) + (u'y_1' + v'y_2') = R(x)$	1
		$\frac{\left \begin{array}{c} \therefore \left(u'y_1' + v'y_2' \right) - R = 0 \\ \text{Using Crammer's Rule for equations (3) and (4) we get,} \\ \frac{u'}{\left \begin{array}{c} y_2 & 0 \\ y_2' & -R \end{array} \right } = \frac{-v'}{\left \begin{array}{c} y_1 & 0 \\ y_1' & -R \end{array} \right } = \frac{1}{\left \begin{array}{c} y_1 & y_2 \\ y_1' & y_2' \end{array} \right } \\ \frac{u'}{\left \begin{array}{c} y_2 & 0 \\ y_2' & -R \end{array} \right } = \frac{-v'}{\left \begin{array}{c} y_1 & 0 \\ y_1' & -R \end{array} \right } = \frac{1}{W}$	1
2		$\frac{u'}{\begin{vmatrix} y_2 & 0 \\ y_2' & -R \end{vmatrix}} = \frac{\begin{vmatrix} y_1' & -R \\ -v' & 0 \\ y_1' & -R \end{vmatrix}}{\begin{vmatrix} y_1 & 0 \\ y_1' & -R \end{vmatrix}} = \frac{1}{W}$ $\therefore \frac{u'}{-y_2R} = -\frac{v'}{-y_1R} = \frac{1}{W}$ $\therefore u' = -\frac{y_2R}{W} \text{ and } v' = \frac{y_1R}{W}$ $\therefore u = -\int \frac{y_2R}{W} dx \text{ and } v = \int \frac{y_1R}{W} dx$	1

_		
		1
\	J	

b) At	tempt any TWO questions from the following:	1 7
i.	Find the general solution for the differential equation $y'' - 7y' + 12y = 0$	(
An		2 2 2
ii.	Solve the non-homogenous differential equation $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = x + 12.$	
Ans	$\therefore (m+1)(m+4) = 0$	1
	$\therefore m = -1, -4$ $\therefore y_c = c_1 e^{-x} + c_2 e^{-4x}$ Let $y_p = Ax + B$	1
		1
	$0 + 4A + 5(Ax + B) = x + 12$ $A = \frac{1}{5}, 4A + 5B = 12$	
	$\therefore B = \frac{56}{25}$ $\therefore y_p = \frac{1}{5}x + \frac{56}{25}$	1
	∴ general solution is $y = y_c + y_p$ ∴ $y = c_1 e^{-x} + c_2 e^{-4x} + \frac{1}{5}x + \frac{56}{25}$	1 1
iii.	Solve the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = 6e^{4x}$	
Ans	Associated auxiliary equation of homogeneous system is $x^2 + 3x - 10 = 0$ $\therefore x = -5$ & $x = 2$ $\therefore y_1(x) = e^{-5x}$ & $y_2(x) = e^{2x}$ Are linearly independent solutions of associated homogeneous system Take $y_P(x) = Ae^{4x}$ then $A = \frac{1}{3}$ $\therefore y(x) = c_1e^{-5x} + c_2e^{2x} + \frac{1}{3}e^{4x}$ is the general solution of given D.E.	3 1 2
iv.	Using the method of variation of parameters solve $\frac{d^2y}{dx^2} + 4y = \sin x$	
Ans	Auxiliary equation for the differential equation is $m^2 + 4 = 0$ $\therefore m = \pm 2i$	
	$y_c = c_1 \cos 2x + c_2 \sin 2x$ $\therefore \text{ two independent solution for } \frac{d^2y}{dx^2} + 4y = 0 \text{ are}$	1

		$y_1(x) = \cos 2x \text{ and } y_2(x) = \sin 2x$ $\therefore y_1'(x) = -2\cos 2x \text{ and } y_2'(x) = 2\sin 2x$	1
2 21		$y_1(x) = -2\cos 2x \operatorname{and} y_2(x) = 2\sin 2x$ $y_1(x) = -2\cos 2x \operatorname{and} y_2(x) = 2\sin 2x$	
		$ y_1' y_2' $ $ \cos 2x \sin 2x \mid $	
			1
		Here $R = e^x \sin x$	
		$\therefore u = -\int \frac{y_2 R}{W} dx$	
		J 7 17	
		$=-\int \frac{\sin 2x \sin x}{2} dx$	
		$=-\frac{1}{4}\int 2\sin 2x\sin x \ dx$	
		$=\frac{1}{4}\int_{1}^{\pi}(\cos x - \cos 3x)dx$	
		$= \frac{1}{4} \left(-\sin x + \frac{1}{3} \sin 3x \right)$	
		and Cy. R	1
		$v = \int \frac{y_1 R}{W} dx$	
		$= \int \frac{\cos 2x \sin x}{2} dx$	
		J 2	
	-	$= \frac{1}{4} \int 2 \cos 2x \sin x \ dx$	
		$= \frac{1}{4} \int (\sin 3x - \sin x) dx$	
		$=\frac{1}{4}\left(-\frac{1}{3}\cos 3x+\sin x\right)$	
		$\therefore \text{ particular integral is } y_p = uy_1 + vy_2$	
		$y_p = \frac{1}{4}\sin 2x \left(-\frac{1}{3}\cos 3x + \sin x\right)$	1
		$\therefore y_p - \frac{1}{4}\sin 2x \left(-\frac{1}{3}\cos 3x + \sin x\right)$ $\therefore \text{ particular solution is } y = y_c + y_p$	
		1 2 (1 1 1	
		$\therefore y = \frac{1}{4}\cos 2x \left(-\sin x + \frac{1}{3}\sin 3x\right) + \frac{1}{4}\sin 2x \left(-\frac{1}{3}\cos 3x + \sin x\right)$	
			1
Q.4	a)	Attempt any ONE question from the following:	(08)
		i. Prove that the two solutions $\begin{cases} x = x_1(t) \\ y = y_1(t) \end{cases}$ and $\begin{cases} x = x_2(t) \\ y = y_2(t) \end{cases}$	(00)
		of the homogeneous linear system	
		$\int \frac{dx}{dt} = a_1(t)x + b_1(t)y$	
- 1		$\begin{cases} \frac{dx}{dt} = a_1(t)x + b_1(t)y \\ \frac{dy}{dt} = a_2(t)x + b_2(t)y \end{cases}$ are linearly dependent on $[a, b]$ iff their	
		Wronskian is identically zero on $[a, b]$.	
		Solution:	
		If the solutions are linearly dependent, then it means there exists a real $r(t) = kr(t) = r(t)$	
		number k, such that $x_1(t) = kx_2(t)$ and $y_1(t) = ky_2(t)$.	
		Then,	

	$W[T] = \begin{vmatrix} x_1(t) & x_2(t) \\ y_1(t) & y_2(t) \end{vmatrix} = \begin{vmatrix} x_1(t) & x_2(t) \\ kx_1(t) & kx_2(t) \end{vmatrix} = kx_1(t)x_2(t) - kx_2(t)x_1(t) = 0$	0 2
	It should be clear that $W[T] = 0$, if $kx_1(t) = x_2(t)$ and $ky_1(t) = y_2(t)$	
	Now suppose, the Wronskian is identically zero on $[a,b]$. We will show that the solutions are dependent. That is, we will show that there exist real numbers c_1 and c_2 , not both zero, such that	v
	$c_1 x_1(t) + c_2 x_2(t) = 0$	
	$c_1 y_1(t) + c_2 y_2(t) = 0$	
	F -1	3
	Let $t_0 \in [a,b]$. Then $W(t_0) = 0$. Hence, the following system of linear	
	both zero. c_1, c_2 , in which these numbers are not	
	$c_1 x_1 (t_0) + c_2 x_2 (t_0) = 0$	
	$c_1 y_1 \left(t_0 \right) + c_2 y_2 \left(t_0 \right) = 0$	
	$x = c_1 x_1 (t_0) + c_2 x_2 (t_0)$	
	Thus, the solution of the system, given by $y = c_1 y_1(t_0) + c_2 y_2(t_0)$ (*)	
	equals the trivial solution at t_0 . Now from the uniqueness part of the Existence and Uniqueness theorem, it follows that (*) must equal the trivial solution throughout the interval $[a,b]$	3
ii.	State the theorem for existence and uniqueness of first order homogeneous linear system of O.D.E.in two variables. Let $\begin{cases} x = x_1(t) \\ y = y_1(t) \end{cases}$ and $\begin{cases} x = x_2(t) \\ y = y_2(t) \end{cases}$ be two solutions	
-	of the homogeneous system $\begin{cases} \frac{dx}{dt} = a_1(t)x + b_1(t)y \\ \frac{dy}{dt} = a_2(t)x + b_2(t)y \end{cases}$ where	
	a_1, a_2, b_1, b_2 are continuous functions on $[a, b]$. Show that	
	the linear independence and continuity of the colutions	
	on $[a,b]$ implies $\begin{cases} x = c_1x_1(t) + c_2x_2(t) \\ y = c_1y_1(t) + c_2y_2(t) \end{cases}$ to be the general	
	solution of the homogeneous system on $[a,b]$.	
	Solution: The linear system of homogeneous first order ordinary differential	-

	equations given as $\begin{cases} \frac{dx}{dt} = a_1(t)x(t) + b_1(t)y(t) \\ \frac{dy}{dt} = a_1(t)x(t) + b_1(t)y(t) \end{cases}$	 *
ı	$\left(\frac{dy}{dt} = a_2(t)x(t) + b_2(t)y(t)\right)$ where $a_1(t)$ and $a_2(t)$	-1-

where $a_1(t)$, $a_2(t)$, $b_1(t)$, $b_2(t)$ are continuous functions defined on interval [a, b] has a unique solution ((x(t), y(t))) satisfying initial conditions $x(t_0) = x_0 \& y(t_0) = y_0$ for some $t_0 \in [a, b]$.

2

Let $(x_1(t), y_1(t)) & (x_2(t), y_2(t))$ where $x_1(t), y_1(t), x_2(t), y_2(t)$ are continuously differentiable on [a,b], be two linearly independent solutions of * , i.e., $W(t) \neq 0$, $\forall t \in [a, b]$.

Then.

$$\begin{cases} x_1'(t) = a_1(t)x_1(t) + b_1(t)y_1(t) \\ y_1'(t) = a_2(t)x_1(t) + b_2(t)y_1(t) \end{cases} \text{ and }$$

$$\begin{cases} x_2'(t) = a_1(t)x_2(t) + b_1(t)y_2(t) \\ y_2'(t) = a_2(t)x_2(t) + b_2(t)y_2(t) \end{cases}$$

Now
$$(c_1x_1)'(t) = c_1x_1'(t), (c_1y_1)'(t) = c_1y_1'(t),$$

 $(c_2x_2)'(t) = c_2x_2'(t), (c_2y_2)'(t) = c_2y_2'(t)$

$$a_1(t)(c_1x_1)(t) + b_1(t)(c_1y_1)(t) = c_1(a_1(t)x_1(t) + b_1(t)y_1(t))$$

$$a_2(t)(c_1x_1)(t) + b_2(t)(c_1y_1)(t) = c_1(a_1(t)x_2(t) + b_1(t)y_2(t))$$
imilarly for $c_2x_2 \otimes c_2y_2$

Similarly for $c_2x_2 \& c_2y_2$

Thus verifying that $(c_1x_1 + c_2x_2, c_1y_1 + c_2y_2)$ satisfies * Now let ((x(t), y(t))) satisfying initial conditions $x(t_0) = x_0$ & $y(t_0) = y_0$ for some $t_0 \in [a, b]$ be a particular solution to * then consider the equations

$$c_{1}x_{1}(t_{0}) + c_{2}x_{2}(t_{0}) = x_{0}$$

$$c_{1}y_{1}(t_{0}) + c_{2}y_{2}(t_{0}) = y_{0}$$

$$\therefore \begin{bmatrix} x_{1}(t_{0}) & x_{2}(t_{0}) \\ y_{1}(t_{0}) & y_{2}(t_{0}) \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} x_{0} \\ y_{0} \end{bmatrix}$$

The above matrix equation has a unique solution provided

$$det \begin{bmatrix} x_1(t_0) & x_2(t_0) \\ y_1(t_0) & y_2(t_0) \end{bmatrix} \neq 0$$

But as $W(t) \neq 0, \forall t \in [a, b]$ hence $W(t_0) \neq 0$

: For above values of $c_1, c_2, (c_1x_1 + c_2x_2, c_1y_1 + c_2y_2)$ Satisfies * but

)

	due to uniqueness of solution satisfying initial conditions hence	
	$c_1x_1 + c_2x_2 = x & c_1y_1 + c_2y_2 = y.$	
	Thus $(c_1x_1 + c_2x_2, c_1y_1 + c_2y_2)$ is general solution to * for arbitrary constants $c_1 \& c_2$.	
		2
b)	Attempt any TWO questions from the following:	
	i. Chow that 1 if $(x = e^{3t})$ if $(x = e^{2t})$	(12
	Show that both $\begin{cases} x = e^{3t} \\ y = e^{3t} \end{cases}$ and $\begin{cases} x = e^{2t} \\ y = 2e^{2t} \end{cases}$ are solutions of the system $\begin{cases} \frac{dx}{dt} = 4x - y \\ \frac{dy}{dt} = 2x + y \end{cases}$ Hence or otherwise, write general solution of the system.	
	Solution:	
	Consider $\begin{cases} x = e^{3t} \\ y = e^{3t} \end{cases}$. Therefore,	
	dx $dy = c$	
	$\frac{dx}{dt} = 3e^{3t} \qquad \frac{dy}{dt} = 3e^{3t}$	
	$= 4e^{3t} - e^{3t} \text{and} -2e^{3t} + 3t$	1
	$= 4e^{3t} - e^{3t} \text{and} \qquad = 2e^{3t} + e^{3t}$ $= 4x - y \qquad = 2x + y$	
	Thus, $\begin{cases} x = e^{3t} \\ y = e^{3t} \end{cases}$ satisfies the given system. Similarly, consider $\begin{cases} x = e^{2t} \\ y = 2e^{2t} \end{cases}$. Therefore,	2
	$y = 2e^{2t}$. Therefore,	
	$\frac{dx}{dt} = 2e^{2t}$ $= 4e^{2t} - 2e^{2t}$ and $= 2e^{2t} + 2e^{2t}$	
	$= 4e^{2t} - 2e^{2t} \text{and} \qquad = 2e^{2t} + 2e^{2t}$	
	$=4x-y \qquad \qquad =2x+y$	2
	Thus, $\begin{cases} x = e^{2t} \\ y = 2e^{2t} \end{cases}$ too satisfies the given system.	
	Consider the Wronskian of the two solutions: $W = \begin{vmatrix} e^{3t} & e^{2t} \\ e^{3t} & 2e^{2t} \end{vmatrix}$	
	· · ·	
	$=2e^{5t}-e^{5t}$ $=e^{5t}$	
	Since, exponential function never vanishes, $W \neq 0$. Therefore,	
	the two solutions $\begin{cases} x = e^{3t} \\ y = e^{3t} \end{cases}$ and $\begin{cases} x = e^{2t} \\ y = 2e^{2t} \end{cases}$ are linearly	
	independent.	
	Thus, the general solution of the system is	

	$\begin{cases} x = c_1 e^{3t} + c_2 e^{2t} \\ y = c_1 e^{3t} + 2c_2 e^{2t} \end{cases}$	2
i	ii. Solve the system:	
	$\begin{cases} \frac{dx}{dt} = 4x - 2y\\ \frac{dy}{dt} = 5x + 2y \end{cases}$	
	Solution:	
	Auxiliary equation is $m^2 - (4+2)m + 8 + 10 = 0$ Roots are $m = 3 + 3i$	
	Taking $\begin{cases} x(t) = Ae^{mt} \\ y(t) = Be^{mt} & m = 3 + 3i : x'(t) = 4x(t) - 2y(t) \end{cases}$	
	$\therefore mAe^{mt} = 4Ae^{mt} - 2Be^{mt}$	2
	$\therefore (4-m)A - 2B = 0 \text{ as } e^{mt} \neq 0$	
	: using $m = 3 + 3i$ we get $(1 - 3i)A - 2B = 0$	1
	Take $A = 1 + 3i$ then $(1 - 3i)(1 + 3i) = 2B : B = 5$	
	$\therefore \begin{cases} x(t) = (1+3i)e^{(3+3i)t} \\ y(t) = 5e^{(3+3i)t} \end{cases}$	
	$ \begin{cases} x(t) = e^{3t}[\cos 3t - 3\sin 3t + i(3\cos 3t + \sin 3t)] \\ y(t) = e^{3t}[5\cos 3t + i(5\sin 3t)] \end{cases} $ Consider, $ \begin{cases} x_1(t) = e^{3t}[\cos 3t - 3\sin 3t] \\ y_1(t) = e^{3t}[5\cos 3t] \end{cases} $	1
	Then check these solve $y_2(t) = e^{3t} [5sin3t]$	
	$\begin{cases} \frac{dx}{dt} = 4x - 2y\\ \frac{dy}{dt} = 5x + 2y \end{cases}$	1
	Also Wronskian of these solutions $W(t) = \begin{vmatrix} e^{3t}(\cos 3t - \sin 3t) & 5e^{3t}\cos 3t \\ e^{3t}(3\cos 3t + \sin 3t) & 5e^{3t}\sin 3t \end{vmatrix} = -15e^{6t} \neq 0$ Hence these are linearly independent solutions $\begin{cases} x(t) = c_1 e^{3t}[\cos 3t - 3\sin 3t] + c_2 e^{3t}[3\cos 3t + \sin 3t] \\ y(t) = c_1[5e^{3t}\cos 3t] + c_2[5^{3t}\sin 3t] \end{cases}$ is the general solution	
	is the general solution. Solve the following linear system:	1

		(dx	
		$\begin{cases} \frac{dx}{dt} = 4x + 2y \\ \frac{dy}{dt} = 2x + 4y \end{cases}$	
		$\frac{dy}{dx} = 2x + 4y$	
		Solution:	-
		Solution: We know that the auxiliary equation of the system $ \begin{cases} \frac{dx}{dt} = a_1 x + b_1 y \\ \frac{dy}{dt} = a_2 x + b_2 y \end{cases} $	is
		given by $m^2 - (a_1 + b_2)m + (a_1b_2 - a_2b_1) = 0$.	- 4
		Therefore, the auxiliary equation of the given system is $m^2 - (4+4)m + (16-4) = 0$. That is $m^2 - 8m + 12 = 0$.	2
		Thus, the roots of the auxiliary equation are 2 and 6. Consider the equations: $(2A + 2B = 0)$	
		$\begin{cases} 2A + 2B = 0 \\ 2A + 2B = 0 \end{cases}$ by considering $m = 2$.	1
		A nontrivial solution of this system is $A = 1$ and $R = -1$	
		Thus, we have $\begin{cases} x = e^{2t} \\ y = -e^{2t} \text{ as a solution.} \end{cases}$	
		Similarly, by considering $m = 6$, we get $\begin{cases} -2A + 2B = 0 \\ 2A - 2B = 0 \end{cases}$	
		This gives $A = 1$ and $B = 1$ as a nontrivial solution	
		Therefore, we have $\begin{cases} x = e^{6t} \\ y = e^{6t} \end{cases}$ as another solution.	
		Check that these solutions are linearly independent.	1
		Therefore, $\begin{cases} x = c_1 e^{2t} + c_2 e^{6t} \\ y = -c_1 e^{2t} + c_2 e^{6t} \end{cases}$ is the general solution of the	
		system.	$ _{2}$
	iv.	Obtain the general solution of a system of homogeneous linear first order O.D.E. with constant coefficients in two variables, when its auxiliary equation has two real and distinct roots	
		Solution:	+
		Let m_1 and m_2 be distinct roots of auxiliary equation	
		$m^2 - (a_1 + b_2)m + a_1b_2 - a_2b_1 = 0$ for	
		$\begin{cases} x'(t) = a_1 x(t) + b_1 y(t) \\ y'(t) = a_2 x(t) + b_2 y(t) \end{cases} (*)$	2
		Taking,	
		$\begin{cases} x(t) = Ae^{mt} \\ y(t) = Be^{mt} \end{cases}$	
		We get,	
		$mAe^{mt} = a_1Ae^{mt} + b_1Be^{mt} & mBe^{mt} = a_2Ae^{mt} + b_2Be^{mt}$	
		$\therefore (m - a_1)A - b_1B = 0 \& a_2A + (b_2 - m)B = 0$	1
		These are solvable with non-zero values to A & B provided	

	$\begin{bmatrix} m-a_1 & -b_1 \\ a_2 & (b_2-m) \end{bmatrix}$ is singular i.e. provided	
	$\begin{vmatrix} m - a_1 & -b_1 \\ a_2 & (b_2 - m) \end{vmatrix} = 0 \text{ i. e. } m^2 - (a_1 + b_2)m + a_1b_2 - a_2b_1 = 0$	
	Essentially now only one equation is sufficient as the other equation is a	
	multiple of the first.	
	$\therefore (m - a_1)A - b_1B = 0 \text{ gives } \frac{B}{A} = \frac{m - a_1}{b_1} \text{ whenever } b_1 \neq 0$	
	Take $A = b_1$ and $B = m - a_1$	1
	Then	
	$\begin{cases} x(t) = b_1 e^{mt} \\ y(t) = (m - a_1)e^{mt} \end{cases} $ solves *	
	Taking $m = m_1$ and $m = m_2$ we get two solutions with Wronskian $W(t)$	
	$W(t) = \begin{vmatrix} b_1 e^{m_1 t} & (m_1 - a_1) e^{m_1 t} \\ b_1 e^{m_2 t} & (m_2 - a_1) e^{m_2 t} \end{vmatrix} = b_1 (m_2 - m_1) e^{(m_1 + m_2)t} \neq 0$	
	$as b_1 \neq 0 \& m_1 \neq m_2$	
	Gives two linearly independent solutions and a linear combination of these	
	with arbitrary constants $c_1 \& c_2$ gives the general solution	1
	$\begin{cases} x(t) = c_1 b_1 e^{m_1 t} + c_2 b_1 e^{m_2 t} \\ y(t) = c_1 (m_1 - a_1) e^{m_1 t} + c_2 (m_2 - a_1) e^{m_2 t} \end{cases}$	1
	Also $(a_2)A + (b_2 - m)B = 0$ gives $\frac{A}{B} = \frac{m - b_2}{a_2}$ whenever $a_2 \neq 0$	
	Take $A = m - b_2$ and $B = a_2$	
	$\begin{cases} x(t) = (m - b_2)e^{mt} \\ y(t) = a_2e^{mt} \end{cases} $ solves *	
	Gives similarly a general solution if $a_2 \neq 0$	
	But if $b_1 = 0 \& a_2 = 0$ then $m^2 - (a_1 + b_2)m + a_1b_2 - a_2b_1 = 0$ gives	
	$m_1 = a_1 \& m_2 = b_2$	
	$\begin{cases} x(t) = c_1 e^{a_1 t} \\ y(t) = c_2 e^{b_2 t} \end{cases}$ is the general solution to *	1
2.5	Attempt any FOUR questions from the following:	(20)
a)	Verify that the following differential equation is exact and solve:	(20)
	$\left(y\left(1+\frac{1}{x}\right)+\cos y\right)dx+(x+\log x-x\sin y)dy=0.$	
	Here, $\frac{\partial M}{\partial y} = 1 + \frac{1}{x} - \sin y = \frac{\partial N}{\partial x}$: exact	2
	Solution is, $c = \int M\partial x + \int N(\text{terms free from } x)dy$	
	7 18	10
	$= \int (y(1+\frac{1}{x})+\cos y) dx = y(x+\log x) + x\cos y.$	3
b)	$= \int (y\left(1 + \frac{1}{x}\right) + \cos y) \partial x = y(x + \log x) + x\cos y.$ Solve: $\sin^2 y dx + \cos^2 x dy = 0$.	3
b)	$= \int (y\left(1 + \frac{1}{x}\right) + \cos y) dx = y(x + \log x) + x\cos y.$ Solve: $\sin^2 y dx + \cos^2 x dy = 0$. Separating the variables, we get,	2

		$\frac{dx}{\cos^2 x} + \frac{dy}{\sin^2 y} = 0$		
		$\sec^2 x dx + \csc^2 y dy = 0.$		
		Integrating we get town	-	
	c) Solve the differential equation a''			
	 c) Solve the differential equation y" + y = x by the method of variation of parameters. Ans Associated auxiliary equation of homogeneous system is x² + 1 = 0 hen y₁(x) = Cos x and y₂(x) = Sinx are the linearly in the system. 			
		$y_1(x) = \cos x$ and $y_2(x) = \sin x$ are the linearly independent solutions of homogeneous system. $y_p(x) = v_1(x)v_1(x) + v_2(x)v_3(x)$	+-	
1		homogeneous system 22 (22)	2	
		Is particular solution of non-homogeneous system. Now $W(y_1, y_2)=1$	1	
	1	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	1	
1		$v_1(x) = \int -x \sin x dx = x \cos x - \sin x$ $v_2(x) = \int x \cos x dx = x \sin x + C$	1	
		$v_2(x) = \int x \cos x dx = x \sin x + \cos x - \sin x$ $y(x) = \cos x + c_2 \sin x + (x \cos x - \sin x) \cos x + \cos x + \cos x$ $y(x) = \cos x + c_2 \sin x + (x \cos x - \sin x) \cos x + \cos x + \cos x$		
		$y(x) = Cosx + c_2Sinx + (xCosx - Sinx)Cosx + (xSinx + Cosx)Sinx$	1	
	(d)	Show that as	1	
	′	Show that $y = c_1 x + c_2 x^{-2}$ is a solution of		
	Ans	$x^2y'' + 2xy' - 2y = 0 \text{ on any interval not containing the origin}$	1	
		$\lambda y + 2\lambda y - 2y = 0$	+,-	
	1	$\therefore P + Qx = 0, \text{Where } P = \frac{2x}{x^2}, Q = \frac{-2}{x^2} \therefore y_1 = x \text{ is a solution } \therefore y_1' = 1$ And $y_1'' = 0$	1	
		And $y'' = 0$ And $y'' = 0$ And $y'' = 0$	1	
		Clearly $x^2y'' + 2$	1.	
		Clearly, $x^2y_1'' + 2xy_1' - 2y_1 = 0$ therefore y_1 is a solution to given	1 1	
		Similarly, for,	1	
1				
- 1		$y_2 = x^{-2}$ And $y_2'' = 6x^{-4}$ $\dot{y}_2' = -2x^{-3}$	1 1	
		And $y_2 = 6x^{-4}$	1	
		Clearly, $x^2y_2'' + 2xy_2' - 2y_2 = 0$ therefore y_1 is a solution to given		
		Here v _s and v _s are the total		
		Here y_1 and y_2 are linearly independent, also $x \neq 0$ $y = c_1 x^{-1} + c_2 x^{5} = 2 \text{ solution}$	1	
		Containing the case is a solution of $x^2y - 3xy' - 5y = 0$ on any integral		
_	= 1		1	
	e) 9	Show that both $x_1 = 2e^{5t}$, $y_1 = e^{5t}$ and $x_2 = e^{-t}$, $y_2 = -e^{-t}$ are		
		$\int_{0}^{1} dx = \int_{0}^{1} dx = e^{-t}, y_2 = -e^{-t}$ are		
1	s	Solutions of the system $\begin{cases} \frac{dx}{dt} = 3x + 4y \\ \frac{dy}{dt} = 2x + y \end{cases}$	1	
		$\frac{dy}{dt} = 2x + y$		
	A	dso show that these two solutions are linearly independent		
1				
1	$ _{\mathbf{C}}$	onsider. $\begin{cases} x = 2e^{5t} \\ y = e^{5t} \end{cases}$		
		$y = e^{5t}$	1	
1		herefore,	1	
	db	$v = \int_{0}^{\infty} dv$		
	di	$\frac{dy}{dt} = 10e^{5t} \frac{dy}{dt} = 5e^{5t}$		
	8	and $3x + 4y = 6e^{5t} + 4e^{5t} = \frac{dx}{dt} = 10e^{5t}$	1	
		dt 2		
			1	

_		
	$2x + y = 4e^{5t} + e^{5t} = \frac{dy}{dt} = 5e^{5t}$	
	Thus, $\begin{cases} x = 2e^{5t} \\ y = e^{5t} \end{cases}$ satisfies the given system.	
	Similarly, $\begin{cases} x = e^{-t} \\ y = -e^{-t} \end{cases}$ consider. Therefore,	
	$\frac{dx}{dt} = -e^{-t} \text{ and } \frac{dy}{dt} = e^{-t}$	
	$3x + 4y = 3e^{-t} + 4(-e^{-t}) = \frac{dx}{dt} = -e^{-t}$	
	$2x + y = 2e^{-t} + (-e^{-t}) = \frac{dy}{dt} = e^{-t}$	2
	Thus, $\begin{cases} x = e^{-t} \\ y = -e^{-t} \end{cases}$ too satisfies the given system.	
	Consider the Wronskian of the two solutions:	
	$W = \begin{bmatrix} 2e^{5t} & e^{-t} \\ e^{5t} & -e^{-t} \end{bmatrix} = -3e^{4t}$	
	Since, exponential function never vanishes, $W \neq 0$. Thus, these solutions are linearly independent	1
<i>f</i>)	Show that $(-2e^t \sin 2t, e^t \cos 2t)$ and $(2e^t \cos 2t, e^t \sin 2t)$ are	
	linearly independent solutions of $\begin{cases} \frac{dx}{dt} = x - 4y \\ \frac{dy}{dt} = x + y \end{cases}$	
	Solution:	
	Consider $\begin{cases} x = -2e' \sin 2t \\ y = e' \cos 2t \end{cases}$. Therefore,	
	$\frac{dx}{dt} = -2\left(2e^t\cos 2t + e^t\sin 2t\right) \qquad \frac{dy}{dt} = -2e^t\sin 2t + e^t\cos 2t$	
	$= -2e' \sin 2t - 4e' \cos 2t \text{and} = x + y$ $= x - 4y$	
		2
	Thus, $\begin{cases} x = -2e^t \sin 2t \\ y = e^t \cos 2t \end{cases}$ satisfies the given system.	
	Similarly, consider $\begin{cases} x = 2e^t \cos 2t \\ y = e^t \sin 2t \end{cases}$	
	$\frac{dx}{dt} = 2\left(-2e^t \sin 2t + e^t \cos 2t\right) \qquad \frac{dy}{dt} = 2e^t \cos 2t + e^t \sin 2t$ $= 2e^t \cos 2t - 4e^t \sin 2t \qquad \text{and} \qquad = x + y$	
		1
	=x-4y	

i i nus. k	$x = 2e^t \cos 2t$	satisfies th	o givon	arra# a
1145,	$y = e^t \sin 2t$	sausiles (i	ie given	system.

Now consider the Wronskian of the two solutions:

$$W = \begin{vmatrix} -2e^{t} \sin 2t & 2e^{t} \cos 2t \\ e^{t} \cos 2t & e^{t} \sin 2t \end{vmatrix}$$
$$= -2e^{2t} \sin^{2} 2t - 2e^{2t} \cos^{2} 2t$$
$$= -2e^{2t} \left(\sin^{2} 2t + \cos^{2} 2t \right)$$
$$= -2e^{2t}$$

Since, exponential function never vanishes, we have $W \neq 0$. Thus, the solutions are linearly independent.

1

1