$\bigcup_{i=1}^{n}$

(3 Hours)

[Total Marks: 100]

Note: (i) All questions are compulsory.

(ii) Figures to the right indicate marks for respective parts.

Q.1	Choo	se correct alternative in	each of the following	(20)			
i.	The n	umber of elements in S_{ϵ}	is				
	(a)	6	(b) 120				
	(c)	720	(d) 36				
	Ans	(c) 720					
ii.	If σ =	$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 4 & 2 & 1 \end{pmatrix}, \pi$	$= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} $ then	$(\sigma \circ \pi)(4) = \underline{\hspace{1cm}}$			
	(a)	3	(b) 1				
	(b)	2	(d) 5				
	Ans	(b) 1					
iii.	Signa	iture of identity permuta	tion in S_n is				
	(a)		(b) 0				
	(c)	1	(d) Depends on n				
	Ans	(c) 1					
iv.	For t	he sequence $a_n = 6(1/$	3) ⁿ , a_4 is				
<u></u>	(a)	2/25	(b)	2/27			
<u>-</u>	(c)	2/19	(d)	2/13			
	Ans (h) 2/27						
· v.	If X	Y are finite sets and the	e is an injective function f	$: X \rightarrow Y \text{ then}$			
<u>v.</u>	(a)	X = Y	$ (b) X \leq Y$				
	(c)	$ X \ge Y $	(d) None of these				
	Ane	$(b) X \leq Y $					
vi.	Tet 9	S(n,k) denote the Stirling	number of second kind on	<i>n</i> -set into <i>k</i> -disjoint			
Vi.	non-	empty unordered subse	ts, then $S(n, n)$ is				
	(a)	1	(b) 0				
	(c)	n	(d) None of these				
	Ama	(a) 1					
vii.	Who	t is the minimum numb	er of students required in a	discrete mathematics			
va.	class	s to be sure that at least	six will receive the same gr	ade, if there are five			
	noss	sible grades, A, B, C, D,	and F?				
	(a)	25	(b) 6				
	(c)	26	(d) None of these				
	+ ` , '-	() 26					
viii.	In h	now many ways can the	e letters of the word HAN	IMER be arranged in			
viii	row						

2)				
			(b) 144	
	a)	72	(d) None of the	above
1	(c)	360	(u) 110110	
	Ans	(c) 360		
ix.	For 7	$n > 2$, $\phi(n)$ is	(b) Even number	er
1	(a)	Prime number	(d) None of the	above
	(0)	Odd number		
	Ans	(b) Even number	derangement of the perm	utation 12345?
\overline{x} .	Whi	ich of the following	derangomen	
1	l			
		To1542	(b) 21453	
	(a)	21543	(d) None of th	e above
	(c)	12345		(08)
	An	s (b) 21453	ion from the following:	
Q2.	Att	tempt any OND 435		e expressed as a product of
	 -	Prove that any	ermutation in S_n can be	expressor -
(a)	i.	disjoint cycles.	t of all permutation on S =	$= \{1, 2,, n\}.$
	$\frac{1}{\lambda_1}$	ns Let S _n denotes s	t of all permutation on 3.	
		Let $\sigma \in S_n$.	$ \sigma = (1)(2) (n) [req] $	uired disjoint cycles].
1		If σ is identity	$ en \sigma = (1)(2) (n) [104] $	
	1	1		I 1
		If σ is not ident	y then, ycles of length one with the	ne help of element which
		first put down	ycles of length one was a	
1	Ì	are remain unc	anged under o.	x (other than cycles of
		Now choose ar	anged under σ . The element from the set say The energy on runtil we reach	th to x again.
1	1	length one). Pe	mule of on a same	
			on takes all the element th	en we get a cycle say
\	1	If the permuta	on takes an integral $\sigma^2(x), \sigma^r(x)$.	11.1. ava
1	1	$C_x = (x, \sigma(x))$	$\sigma^2(x), \sigma^r(x)$. the along with cycles of let	ngth one which are
1	1	required disjo	at eveles.	
	1	required disjo	it of order	than chaose the
	\	re di eve nerr	utation does not take all el	lements, then choose and repeat the
		If above peri	utation does not take all entry take all entry which is not alread a finite numb	dy used and repeat the
1		anounce cross	nt say y which is not alreat occess. After a finite numb	er of steps, the pro-
Ì				ement III 5.
1		ter arranet	roduct or arsjoint	of degree n.
}_		~ Time!	HAMBSCHOORS TO THE	$x^2 - a_1 x - a_2 = 0$ of the a_{n-2} has a single non-zero roots
\		ا المسائد السال ا	ne characteris	a single house to to
1		recurrence r	$lation h_n = a_1 h_{n-1} + a_2 h$	$x^2 - a_1x - a_2 = 0$ of the a_{n-2} has a single non-zero roots eral solution of the recurrence
1				a _{n-2} has a single non-
	1	relationh _n	$a_1 h_{n-1} + a_2 h_{n-2}.$	
	L		-	

	Ans	Definition: (2 marks) Given recurrence relation $h_n = a_1 h_{n-1} + a_2 h_{n-2}$ (1)
-		Given recurrence relation $n_n = u_1 n_{n-1} + u_2 n_{n-2}$ $x_1 = u_1 n_2 + u_3 n_4 + u_4 n_4 + u_5 n_5 n_5 + u_5 n_5 n_5 + u_5 n_5 n_5 n_5 n_5 n_5 n_5 n_5 n_5 n_5 n$
		Its characteristic equation $x^2 - a_1x - a_2 = 0$ (2)
		Its characteristic equation x As q_1 is root of (2) then $q_1^2 - a_1q_1 - a_2 = 0$ $\Rightarrow q_1^2 = a_1q_1 + a_2$
		$h_n = c_1 q_1^n + c_2 n q_1^n$
		$\begin{vmatrix} n_n - c_1 q_1 + c_2 nq_1 \\ = c_1 q_1^{n-2} \cdot q_1^2 + c_2 nq_1^{n-2} \cdot q_1^2 \\ = c_1 q_1^{n-2} \cdot (a_1 q_1 + a_2) + c_2 nq_1^{n-2} \cdot (a_1 q_1 + a_2) \end{vmatrix}$
		$=c_1q_1^{n-2}.(a_1q_1+a_2)+c_2nq_1+c_3nq_1$
1		
		$= c_1 h_{n-1} + c_2 h_{n-2} \qquad \dots (3)$ $= c_1 h_{n-1} + c_2 h_{n-2} \qquad \dots (3)$
		$= c_1 n_{n-1} + c_2 n_{n-2}$ Equation (3) satisfies the equation (1).
		Equation (3) satisfies the equation (2)
		empt any TWO questions from the following: (12)
.2	Atte	empt any 1 WO questions in the
		(1 2 3 4 5 6 7 8 9)
<u>)</u>	i.	For the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 5 & 1 & 8 & 3 & 7 & 9 & 6 & 2 \end{pmatrix}$
~).	1	a and the comment of the
		(III) Express σ as a product of transposition and find the sign of σ .
	Ar	$\frac{1}{1}$ (2M+2M+2M)
		$ \begin{array}{l} \text{(I) } \sigma = (148679253) \\ \text{(II) } \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 9 & 5 & 1 & 2 & 8 & 6 & 4 & 7 \end{pmatrix} \\ \text{(II) } \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 9 & 5 & 1 & 2 & 8 & 6 & 4 & 7 \end{pmatrix} $
		$(II) \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 3 & 6 & 4 & 7 \end{pmatrix}$
		$(III) \sigma = (1\ 3)(1\ 5)(1\ 2)(1\ 9)(1\ 7)(1\ 6)(1\ 8)(1\ 4)$
		Or $\sigma = (14)(48)(86)(67)(79)(92)(25)(53)$
	− ii	t
	11	
	1	Show that:
		(I) A product of two even permutations is an even permutation.
		(II) A product of even permutation and odd permutation is an odd
	-	
		permutation.
	-	Ans Def.: Even permutation (1 mark)
		Def.: Odd permutation (1 mark)
		a marmitations, with the approximations
		Where n k are no. of transpositions.
1	- 1	$\alpha \beta = 2p + 2k = 2(p+k)$

		1
f	U	
(ノ	/

ŤΤ		$\alpha \beta$ is even.	
		(II) (2 arks)	
		ρ – even permutations and σ – odd permutation,	
		then $=2n$, $\sigma = 2m+1$	
ļ		Where p , k are no. of transpositions.	
	l		
ļ	ļ		
	iii.	= t to relation and give initial conditions for the number of the	oit
	111.	Find recurrence relation and give initial consecutive 0's. How many sustrings of length n that do not have two consecutive 0's. How many su	ich
!		bit strings are there of length five?	
		Of strings are trick of $a = 2$, $a = 3$	
ļ	Ans	$a_n = a_{n-1} + a_{n-2}$, $a_1 = 2$, $a_2 = 3$	
			_
	iv.	Solve the linear homogeneous recurrence relation	n.
	_	Solve the linear homogeneous recurrence relation $h_n = 5h_{n-1} - 6h_{n-2}, h_0 = 1, h_1 = 0$ by using characteristic equation $h_n = 5h_{n-1} - 6h_{n-2}, h_0 = 1, h_1 = 0$	
	Ans	$a_n = 3 \times 2^n + (-2) \times 3^n$	
		,	
	 	ONE question from the following:	(08)
Q3.	Atte	empt any ONE question from the following:	(08)
Q3.	Atte	empt any ONE question from the following.	
Q3.	Atte	Define countable set and give an example of the same. Also show the	
		Define countable set and give an example of the same Also show the set of all integers is countable.	(08) nat
		Define countable set and give an example of the same Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called	nat
	i.	Define countable set and give an example of the same Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called	nat
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set.	nat 2
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set.	nat 2
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set.	nat 2
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set. If we show that there is a one-to-one correspondence between N to	nat 2
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set. If we show that there is a one-to-one correspondence between N to	nat 2
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set. If we show that there is a one-to-one correspondence between N to Z then Z will be countably infinite.	nat 2
	i.	Define countable set and give an example of the same Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set. If we show that there is a one-to-one correspondence between N to Z then Z will be countably infinite. Define $f: \mathbb{N} \to \mathbb{Z}$ as	nat 2
	i.	Define countable set and give an example of the same Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set. If we show that there is a one-to-one correspondence between N to Z then Z will be countably infinite. Define $f: \mathbb{N} \to \mathbb{Z}$ as	nat 2
	i.	Define countable set and give an example of the same Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set. If we show that there is a one-to-one correspondence between N to Z then Z will be countably infinite. Define $f: \mathbb{N} \to \mathbb{Z}$ as	nat 2
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set. If we show that there is a one-to-one correspondence between N to Z then Z will be countably infinite.	nat 2
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set \mathbb{Z} is infinite set. If we show that there is a one-to-one correspondence between \mathbb{N} to \mathbb{Z} then \mathbb{Z} will be countably infinite. Define $f: \mathbb{N} \to \mathbb{Z}$ as $f(n) = \frac{n}{2} \text{if } n \text{ is even}$ $= \frac{n-1}{2} \text{if } n \text{ is odd}$	2 1 1 1 1
	i.	Define countable set and give an example of the same Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set Zis infinite set. If we show that there is a one-to-one correspondence between N to Z then Z will be countably infinite. Define $f: \mathbb{N} \to \mathbb{Z}$ as	2 1 1 1 1
	i.	Define countable set and give an example of the same Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set \mathbb{Z} is infinite set. If we show that there is a one-to-one correspondence between \mathbb{N} to \mathbb{Z} then \mathbb{Z} will be countably infinite. Define $f: \mathbb{N} \to \mathbb{Z}$ as $f(n) = \frac{n}{2} \text{if } n \text{ is even}$ $= \frac{n-1}{2} \text{if } n \text{ is odd}$ We can show that function $f: \mathbb{N} \to \mathbb{Z}$ is one-one and onto	2 1 1 1 1
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set \mathbb{Z} is infinite set. If we show that there is a one-to-one correspondence between \mathbb{N} to \mathbb{Z} then \mathbb{Z} will be countably infinite. Define $f: \mathbb{N} \to \mathbb{Z}$ as $f(n) = \frac{n}{2} \text{if } n \text{ is even}$ $= \frac{n-1}{2} \text{if } n \text{ is odd}$ We can show that function $f: \mathbb{N} \to \mathbb{Z}$ is one-one and onto	1 1 4
	i.	Define countable set and give an example of the same. Also show the set of all integers is countable. Def: A set which is empty, finite or denumerable is called countable set. The set of integers is a countable set. The set \mathbb{Z} is infinite set. If we show that there is a one-to-one correspondence between \mathbb{N} to \mathbb{Z} then \mathbb{Z} will be countably infinite. Define $f: \mathbb{N} \to \mathbb{Z}$ as $f(n) = \frac{n}{2} \text{if } n \text{ is even}$ $= \frac{n-1}{2} \text{if } n \text{ is odd}$ We can show that function $f: \mathbb{N} \to \mathbb{Z}$ is one-one and onto Therefore, \mathbb{Z} is countable.	1 1 4

(5·)

1	Ans	$S(n,k) = \overline{S(n-1,k-1) + kS(n-1,k)}, \text{ where } 2 \le k \le n-1$ $S(7,4) = S(6,3) + 4S(6,4)$	1
		S(6,3) = S(5,2) + 3S(5,3)	1
		Now $S(5,2) = 2^{5-1} - 1 = 15$	
		S(5,3) = S(4,2) + 3S(4,3)	
		Now $S(4,2) = 2^{4-1} - 1 = 7$	
		Also, $S(4,3) = C(4,2) = 6$	
1 1		Thus, $S(5,3) = 7 + 3 \times 6 = 25$ Hence, $S(6,3) = 15 + 3 \times 25 = 90$	3
		Hence, $S(6,3) = 13 + 3 \times 23$	
		Now, $S(6,4) = S(5,3) + 4S(5,4)$	
		S(5,3) = 25, calculated already.	
1 1		$A_{\text{and }}S(5,4)=C(5,2)=10.$	
1		So, $S(6,4) = 25 + 4 \times 10 = 65$.	
		Hence, $S(7,4) = 90 + 4 \times 65 = 90 + 260 = 350$	3
			(12)
Q3.	Atte	empt any TWO questions from the following:	
<u>b)</u>	i	Show that interval [0,1] is uncountable.	
	 	s Consider a set $A = \{ 1/n, n \in \mathbb{N} \}$	1
1	An	N is infinite so A is also infinite	
		Therefore 4 is infinite then [0, 1] is infinite.	4
		1	
	ii.	$f(at A = \{a, b, c, d\})$. Find Stirling number of second kind for $a = 1$	2, 2,
		4 by actually partitioning of A into k parts.	
	<u> </u>	Let $k = 1$. Then $\{\{a, b, c, d\}\}\$ is the only partition possible. Hence	, 1
	Ar	Let $k = 1$. Then $\{\{a, b, c, a\}\}$ is the only part $S(4, 1) = 1$.	
		Let $k = 2$. Then, $\{\{a\}, \{b, c, d\}\}, \{\{b\}, \{a, c, d\}\}, \{\{c\}, \{a, b, d\}\}\}$ $\{\{d\}, \{a, b, c\}\}, \{\{a, b\}, \{c, d\}\}, \{\{a, c\}\}, \{b, d\}\}, \{\{a, d\}, \{b, c\}\}$ are the only partitions. Hence, $S(4, 2) = 7$.	}, 2
		Let $k = 3$. Then, $\{\{a, b\}, \{c\}, \{d\}\}, \{\{a, c\}, \{b\}, \{d\}\}, \{\{a, d\}, \{b\}, \{c\}\}, \{\{b, c\}, \{d\}, \{a\}\}, \{\{b, d\}, \{a\}, \{c\}\}, \{\{c, d\}, \{a\}, \{b\}\}$ are the only partitions. Hence, $S(4, 3) = 6$.	2
	- !		

	Finally, let $k = 4$. Then $\{\{a\}, \{b\}, \{c\}, \{d\}\}\$ is the only partition	1
	possible. Therefore, $S(4, 4) = 1$.	
iii.	Prove by mathematical induction $S(n, n-1) = {}^{n}C_{2}$.	
Ans	P(1) is true, P(2) is true Assume the result is true for p(m) Hence prove p(m+1)	1 1 4
	How many different 4-letter radio station call letters (upper case) car	ı be
iv.	made a) if the first letter must be a K or W and no letter may be repeated? b) if repeats are allowed (but the first letter is a K or W). c) starting with K or W) with no repeats and ending in R?	
Any	a) $2 \times 25 \times 24 \times 23 = 27,600$	2
And	b) $2 \times 26 \times 26 \times 26 = 35,152$ c) $2 \times 24 \times 23 = 1,104$	2 2
Q4. Att	empt any ONE question from the following:	(08)
a) i.	Prove by giving Combinatorial argument: $\sum_{k=0}^{r} {m \choose k} {n \choose r-k} = {m+n \choose r}.$	
Ar	Let T be a $(m + n)$ -set with m objects of type I and the remaining n objects of type II. We will find the number of r-subsets of T in two different ways.	

	the number of r-subsets of T is $\sum_{k=0}^{r} {m \choose k} {n \choose r-k} \dots {**}$
	From (*) and (**) we have $\sum_{k=0}^{r} {m \choose k} {n \choose r-k} = {m+n \choose r}$.
- .	Show that number of non-negative integer solutions to the equation
	$x_1 + x_2 + + x_k = n is {n+k-1 \choose k-1}$
Aı	Above problem is equivalent to, distributing n undistinguishable
	balls among k persons, each one getting $x_1, x_2,, x_k$ balls
	respectively. First let us consider the case when each person gets at least one ball,
	i e r > 1 for $i = 1, 2,, k$.
	tree in all andictinguishable balls in a line.
	If we consider a gap between two consecutive balls, then there are,
	a total of $n-1$ gaps. $\otimes \otimes $
	Now out of $n-1$ gaps if we select any $k-1$ gaps, there will be k
	partitions.
	This can be done by $\binom{n-1}{k-1}$ numbers of ways.
	\therefore number of ways n undistinguishable balls are distributed among k
	persons are $\binom{n-1}{2}(1)$
	Now we shall discuss the case when each $x_i \leq 0$ (non-negative).
	Adding k to both sides of the equation, $x_1 + x_2 + + x_k = n$
	we get, $x_1 + x_2 + + x_k + k = n + k$
	$x_1 + x_2 + \dots + x_k$ $x_1 + x_2 + \dots + x_k + $
}	$ P_{\text{int}} _{x_1} + 1 = y_1, x_2 + 1 = y_2, \dots, x_k + 1 = y_k \text{ we get,}$
	$ y_1 + y_2 + \dots + y_k = n + k, (2)$
	here each $y_i \ge 1$, $i = 1, 2,k$, (n + k - 1) with integer solutions. [by (1)]
ı	equation (2) has $\binom{n+k-1}{k-1}$ positive integer solutions, [by (1)]
	As each $y_i = x_i + 1, i = 1, 2,, k. i. e. y_i \ge 1$
	$\Rightarrow x_i + 1 \ge 1, i = 1, 2, k$ $\Rightarrow x_i \ge 0 \forall i = 1, 2, n$
	\therefore number of non-negative integer solutions to the equation
	$x_1 + x_2 + + x_k = n$ is $\binom{n+k-1}{k-1}$
	$\begin{bmatrix} x_1 + x_2 + \dots + x_k - \dots \\ k - 1 \end{bmatrix}$
Q4.	Attempt any TWO questions from the following:

15	<u>, </u>	State Base	ol'o idan	tits: ·	and pr	enare	Pasc	al's tr	ianole	e un f	0 n		
b)	1.	i. State Pascal's identity and prepare Pascal's triangle up to $n = 7$.											
	Ans	Pascal Ide	entity: Le	t n a	md k	be pos	sitive	integ	ers, th	en			ļ
		$\binom{n}{k} = \binom{n}{n}$	· ^{- 1}) +	$\binom{n}{i}$	1).							,	
		- NI V /		\ <u>k -</u>	- 1/ 2	3	4	5	6	7	8]	
		\frac{\gamma}{1}	$\mathbf{i}: \mathbf{k} \mid 0$	1	<u> </u>	3	 	-	├	1.	1	1	
		$\frac{1}{2}$	$-\frac{1}{1}$	2	1	<u> </u>	-		-		+	-	
		$\frac{2}{3}$		3	3	1	 	 	-	+			
	-	4		4	6	4	1		†	†		1	
!		5		5	10	10	5	1 -				1	
		6		6	15	20	15	6	1			1	
		1 7	1	7	21	35	35	21	7	1			<u> </u>
-	ii.	10 people	includii	1g 2	who d	o not	wish	to sit	next	to eac	ch ot	her are to	be be
	""	seated on	a round	table	e. Hov	v man	y circ	ular s	seatin	g arra	ange	ments are	ë
		there for	them to	sit?									
			_										
	Ans	Let the ten people be P_1, P_2, \dots, P_{10} , where P_1 and P_2 are the two											
		people who do not wishto sit together. The total number of circular permutations is $(10-1)! = 9!$.											
		The tota	ıl number	rofo	rcula	r pen	nutati	ons i	3 (TU	— 1) muto	: — tions	vin	
		Now fir	st we wil	ll fin	d the i	iumb(er of c	rcur	ar per	muia	HOIE	, пі	
		which P_1 and P_2 are together. If we want the number of circular permutations in which P_1 and											
İ		If we wa	ant the n gether, v	umbe	er or c	consi	n pen derD	and i	P _n to o	ether	as o	ne	
		_	gemer, v	vė na	ive to	COHST	de17 1	and i	2 108	Ç ÇIIOI			
		person.	there ar	e 9 r	eonle	and t	here a	are 8!	ways	by w	vhick	we can	
		he arrar	ige them	in ci	rcular	arran	gemei	nt.	•	•			
		Now the	ese 2peo	ple c	an be	arran	ged at	mong	them	selve	s in	2 ways.	
		So the	total nun	nber	of wa	ys by	which	n we	can ar	range	e the	se 10	
		people	in a circu	ılar r	nanne	r so tl	$natP_1$	and P	2 are	alwa	ys to	gether is	
		$1.2 \times 8!$											
		Hence,	the total	num	ber of	circu	ılar ar	range	ments	s in v	vhich	P_1 and	
		P ₂ are n	ot togeth	er is	9! – :	2×8	s! = ·	8! (9	– 2)	= 8	! × 7	' •	
						Cat :		مامد		20.01	t o f	rm eskir	_ <u></u>
	iii.	A profes	ssor in a	Disc	rete M	iather	natics	ciass	omni	ts ou iter S	ca II Icien	orm askir ce cours	-5 ≥S
		students	to check	(all 1	me Mi	amem ho fin	ding	and C	ompo	nt's te	otal a	ce course of 50 stud	dents
		they have	e recent	iy tal	SCII. I Drecai:	onlas. ue mi	16 to	ok be	oth Pr	ecale	ulus	and Java	; 18
		in the ci	ass, av t Ionine: 8	JUK I tonk	hoth	Calci	ilus ai	nd Jav	va; 26	took	Java	a, 9 took	both
		Precalci	iculus, o	Calc	ulus a	nd 6 t	ook a	ll thre	ee cou	irses.	Hov	v many	
		students	did not	take	any o	f the t	hree (course	es?				
L		Students	, with 11074		<u>)</u>	_							

(9)	
		Let $A = \text{Set of students who have taken Precalculus.}$
	Ans	Let $A = Set of students$ who have taken Calculus. $B = set of students who have taken Calculus.$
		1 a 1, 1, 4, 4, 4, 1,0,00 1,037,91 (3.1111,036)
		1
		$ A = 30, B = 18, C = 20, A = 16, B = 16, B = 16, B = 16, B = 16$ $ A \cap B = 9, A \cap C = 16, B \cap C = 8$ $ A \cap B = 9, A \cap C = 16, B \cap C = 8$ $ A \cap B = 9, A \cap C = 16, B \cap C = 8$
		$ A \cap B = 9$, $ A \cap B$
	1	$ A \cap B = 9$, $ A \cap C = 16$, $ B $ \therefore By inclusion exclusion principle, number of students who have
1		taken atleast one of the courses are
		$ A \cup B \cup C $ $= A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $ $= A + B + C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $
		= A + B + C - A B - A A B - A A A A A A A A A
}		= 30 + 18 + 20 - 9 13 $= 47$
1		
		Total number of students are 50.
}		to a sef atudents who ald not take any or
		=50-47
		= 3
		oi a selections of
	$-+\frac{1}{i}$	Determine the total number of integral solutions of $x_1 = x_2 = x_3 = 4$ and $x_3 = 2$.
	1,	Determine the total number of integral $x_1 + x_2 + x_3 = 12$ with $x_1 \ge -2$, $x_2 \ge 4$ and $x_3 \ge 2$.
-		Ans Given that $x_1 \ge -2$, $x_2 \ge 4$ and $x_3 \ge 2$ Ans $x_1 \ge -2$, $x_2 \ge 4$ and $x_3 \ge 2$,
		Given that $x_1 \ge -2$, $x_2 \ge 1$ and $x_3 = y_3 + 2$, Let $x_1 = y_1 - 2$, $x_2 = y_2 + 4$, and $x_3 = y_3 + 2$, $y_1, y_2, y_3 \ge 0$
		1. y ₁ , y ₂ , y ₃ =
		$\therefore x_1 + x_2 + x_3 = 12 \text{ becomes},$
1		$y_1 + y_2 + y_3 = 8$, We have,
1		R = 3, $R = 3$, $R = 3$
\		k = 3, $n = 0\therefore number of non-negative integral solutions for y_1 + y_2 + y_3 = 8$
		$(n+k-1)=\binom{8+3-1}{2}$
}		are $\binom{n+k-1}{k-1} = \binom{8+3-1}{3-1} = \binom{10}{3-1}$
}		$= \binom{10}{2}$
}		= 45
Ì		(20)
1		Attempt any FOUR questions from the following:
l	Q5.	Attempt any FOOR question
	_	If $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$ find whether $\alpha \circ \beta = \beta \circ \alpha$.
	(a)	If $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 2 \end{pmatrix}$ and $\beta = \begin{pmatrix} 2 & 4 & 1 & 3 \end{pmatrix}$ mine
		(3 4 1 2)
	Ans	$\alpha\beta \neq \beta\alpha$
	1	account at a Dalik
	47	Suppose that a person deposits Rs 10,000 in a saving account at a yielding 11 percent per year with interest compounded annually. How much yielding 11 percent per year with interest compounded annually. How much yielding 11 percent per year with interest compounded annually.
	b)	vielding 11 percent per year with interest composition an appropriate recurrence
		Suppose that a person service with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually. The vielding 11 percent per year with interest compounded annually interest per year with interest compounded annually interest per year with interest compounded annually interest per year with year with interest per year with interest per year with year
		relation.
		9

<u> </u>		
Ans	$a_n = (1.11)^n a_{n-1}$ $a_{30} = 10000 \times (1.11)^{30} \approx 228923$	
c)	In Algebra class, 32 of the students are boys. Each boy knows five of the gin the class and each girl knows eight of the boys. How many girls are in the class?	
Ans	If we put each boy in rows and each girl in column. Then total of each row is 5 and there are 32 rows.	2
	total number = $32 \times 5 = 160$ Since each girl knows eight boys,. Let there are n girls total number = $8n$	2
	8n = 160 Number of girls = 20.	1
<i>d</i>)	State strong form of Pigeonhole Principle (Extended Pigeonhole Principle) Show that among any five points inside an equilateral triangle of side leng there exist at least two points whose distance is at most $\frac{1}{2}$.	
Ans	Let q_1, q_2, \ldots, q_n be positive integers. If $q_1 + q_2 + \ldots + q_n - n + 1 > 0$ objects are put into n boxes, then either the first box contains at least q_1 objects, or the second box contains at least q_2 objects, or the n^{th} box contains at least q_n objects.	1
	Split the equilateral triangle ABC into 4 smaller triangles by connecting the midpoints.	1
	Each of these small triangles is a pigeonhole and the five points are pigeons. Therefore, at least one of these small triangles must contain at least two points.	2
	Obviously the distance between such two points is at the most $\frac{1}{2}$.	1
e)	Find the term that does not contain x in the complete expansion of $\left(x^2 + x + \frac{1}{x}\right)^4$.	<u> </u>
Ans	By Multinomial theorem $\left(x^2 + x + \frac{1}{x}\right)^4 = \sum_{\substack{n_1 + n_2 + n_3 = 4 \\ n_1, n_2, n_3 (\geq 0)}} {\binom{4}{n_1, n_2, n_3}} (x^2)^{n_1} x^{n_2} \left(\frac{1}{x}\right)^{n_3} = \sum_{\substack{n_1 + n_2 + n_3 = 4 \\ n_1, n_2, n_3 (\geq 0)}} {\binom{4}{n_1, n_2, n_3}} x^{2n_1 + n_2 - n_3}.$	
	$\sum_{\substack{n_1+n_2+n_3=4\\n_1,n_2,n_3(\geq 0)}} {4 \choose n_1,n_2,n_3} x^{2n_1+n_2-n_3}.$;

, 3 · · ·

1)		
$\stackrel{\sim}{ o}$	To find the term that does not contain x we must have $2n_1 + n_2 - n_3 = -4$ and $n_1 \cdot n_2 \cdot n_3 < 0$.	
	To find the term that does not constraint that does not find that does not do not not constraint that does not find that does not constraint that does not find that does not constraint that does	
١	$0, n_2 = 2, n_3 = 2.$ the only term that does not contain x in the complete expansion of	
	$\left(x^2 + x + \frac{1}{x}\right)^{10} \text{ is } \left(\frac{4}{0.2.2}\right) = \frac{4!}{0!2!2!} = 6.$	
	(N x) (0,2,2) 0.2.2.	<u> </u>
\overline{f}	Find ϕ (2400).	
	$\phi(2400)$	T
Ans	$=\phi(2^5,3^1,5^2)$	
	$= \phi(2^{\circ})\phi(3^{\circ})\phi(5^{\circ})$	
	$= 2400 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right)$	
	$=2400\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)$	
	$\frac{-2.05}{4} \frac{(2)(3)(5)}{4}$	
	$= 2400 \times \frac{4}{15}$	
	= 640	_l
