SEM-II		F. Y. B. Sc 100 MARKS 3 F	IRS
		PHYSICS – I	1100
*		Answer Key – F.Y. B.Sc., SEM-II, Paper-I, April-2019	
		•	
Q.1	(A)	Select the correct option	12
		i) b ii) a iii) d iv) c v) b vi) a	
	(B)	Answer in one sentence:	03
	i)	A unit vector of the given vector is a vector of unit magnitude and has a direction of the given vector is a vector of unit magnitude and has a direction of the given vector is a vector of unit magnitude and has a direction of the given vector is a vector of unit magnitude and has a direction of the given vector is a vector of unit magnitude and has a direction of the given vector is a vector of unit magnitude and has a direction of unit magnitud	ection
	ii)	as same as that of the given vector. An equation containing the derivatives of one or more dependent variables, w	ith
		respect to one or more independent variables is said to be differential equatio	n.
	iii)	The transverse wave is that wave in which the particles of the medium v about their mean position in a direction at right angle to the directi	
		propagation of the wave.	011 01
	(C)	Fill in the blanks	05
	-	avelength ii) time period iii) L/R iv) Nabla v) Non dispersive	,
Q.2*	\ <i>'</i>	Attempt any one	08
	i)	The scalar product of two vectors \vec{A} and \vec{B} is defined as the product of magni	
		of the two vectors and cosine of angle between of them. Thus $\vec{A} \cdot \vec{B} = \vec{A} \vec{B} $	
		the product is scaler, the product may be +ve or -Ve depending upon the between them.	angie
		1. DOT product is commutative $(\overrightarrow{A} \cdot \overrightarrow{B} = \overrightarrow{B} \cdot \overrightarrow{A})$	
		2. DOT product is distributive $(\vec{A} \cdot (\vec{B} + \vec{C})) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$.	
		3. Dot product of a vector with itself gives square of magnitude.	
		 4. The DOT product of two perpendicular vectors is zero. 5. The DOT product of two vectors may be negative, if angle θ > 90°. 	
		6. \vec{A} is parallel to \vec{B} then, $\vec{A} \cdot \vec{B} = AB \cos 0 = AB$.	
		7. If \vec{A} is antiparallel to B then $\vec{A} \cdot \vec{B} = AB \cos 180 = -AB$. And so on	
	ii)	(a) $\nabla \phi = \frac{\partial \phi}{\partial x} \hat{i} + \frac{\partial \phi}{\partial y} \hat{j} + \frac{\partial \phi}{\partial z} \hat{k} = 2x\hat{i} + (-2y + 2z)\hat{j} + (2y + 2z)\hat{j} +$	4z)k;
		$(\nabla \phi)_{(1,-2,1)} = 2\hat{i} + 6\hat{j} + 0\hat{k} = 2\hat{i} + 6\hat{j}.$	
		(b) $\nabla \cdot \vec{r} = \left(\hat{\imath} \frac{\partial}{\partial x} + \hat{\jmath} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}\right) \left(x\hat{\imath} + y\hat{\jmath} + z\hat{k}\right); \left(\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z}\right) = 1 + 1 + 1 = 1$	= 3
*	(B)	Attempt any one	08
	i)	let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then $ \vec{r} = \sqrt{x^2 + y^2 + z^2} = (x^2 + y^2 + z^2)^{\frac{1}{4}}$	
	ľ		
		$ \ln \vec{r} = \frac{1}{2}\ln(x^2 + y^2 + z^2);$	
		$ \vec{\nabla} \phi = \frac{1}{2} \vec{\nabla} \ln(x^2 + y^2 + z^2)$	
		Ans: $\frac{x\hat{i} + y\hat{j} + z\hat{k}}{x^2 + y^2 + z^2}$	
		$ \overrightarrow{\nabla}\phi = \nabla\left(\frac{1}{r}\right) = \nabla\left\{(x^2 + y^2 + z^2)^{-\frac{1}{2}}\right\};$	
		$= \hat{i} \frac{\partial}{\partial x} (x^2 + y^2 + z^2)^{-\frac{1}{2}} + \hat{j} \frac{\partial}{\partial y} (x^2 + y^2 + z^2)^{-\frac{1}{2}} \hat{k} \frac{\partial}{\partial z} (x^2 + y^2 + z^2)^{-\frac{1}{2}}$	

		$xi + yi + xk$ r \rightarrow
		$= \frac{x\hat{i} + y\hat{j} + z\hat{k}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} = -\frac{\vec{r}}{r^5} \text{In general } \vec{\nabla} r^n = nr^{n-2} \vec{r}$
	ii)	(a) Using Dot product, $\vec{A} \cdot \vec{B} = \vec{A} $ $ \vec{B} \cos \theta$: $\therefore \cos \theta = \frac{\vec{A} \cdot \vec{B}}{ \vec{A} \vec{B} } = \frac{(2i+2j-k)(6i-2j+2k)}{(\sqrt{2^2+2^2+2^2})\sqrt{6^2+2^2+2^2}} = \frac{4}{21}$: $\theta = \cos^{-1}\left(\frac{4}{21}\right) = 79^\circ$
		(b) Let $\hat{\alpha}$ be the unit vector in the direction of \vec{A} then, projection of $\vec{B} + \vec{C}$ on
		\vec{A} = proj. of \vec{B} on \vec{A} + proj. of \vec{C} on \vec{A} ; $(\vec{B} + \vec{C}) \hat{a} = \vec{B} \hat{a} + \vec{C} \hat{a}$, multiplying by \vec{A}
		$(\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{C} \cdot \vec{A}$. By commutative law of for DOT product $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$.
	(C)	A $\cdot (B + C) - A \cdot B + A \cdot C$. Attempt any one
590	i)	$ \vec{A} + \vec{B}' = \sqrt{(A^2 + B^2 + 2AB\cos\theta)}$ and $ \vec{A} - \vec{B}' = \sqrt{(A^2 + B^2 - 2AB\cos\theta)}$
	,	But $ \vec{A} + \vec{B} = \vec{A} - \vec{B} $; $\sqrt{(A^2 + B^2 + 2AB\cos\theta)} = \sqrt{(A^2 + B^2 - 2AB\cos\theta)}$,
		$A^2 + B^2 + 2AB\cos\theta = A^2 + B^2 - 2AB\cos\theta ; \text{ 4AB } \cos\theta = 0, \cos\theta = 0 \theta^{-1}90^{\circ}, (A \perp B)$
	ii)	$4x^{2}\hat{i} + y^{2}\hat{j} + z^{2}\hat{k}$
Q.3	(A)	Attempt any one 08
	i)	The general equation in standard form is $\frac{d^2y}{dx^2} + P_0 \frac{dy}{dx} + q_0 y = 0$
		where p_0 and q_0 are constants. Let us write above eq. in the form of $\frac{d}{dx}$ by D
		$(D^2 + p_0 D + q_0)y = 0,(1)$ The algebraic equation is $D^2 + p_0 D + q_0 = 0$ (2) this
		eqn. Is called auxiliary equation. Its roots are found by the method of factorization. If the roots are real and equal (repeated) Let $m_1 = m_2 = m$, then eqn.(1) is (D-m) (D-m)y = 0(3); let (D-m)y = y_1 . Then eqn.(3) becomes (D-m) $y_1 = 0$; $y_1 = C_1 e^{mx}$, substituting this in above eqn.
		(D-m)y = $C_1 e^{mx}$; $\frac{dy}{dy} - my = C_1 e^{mx}$ the standard form of first order inhomogeneous
3		differential eqn. is $\frac{dy}{dx} + P(x)y = Q(x)$, After comparing, we get
		$P(x) = -m \text{ and } Q(x) = C_1 e^{mx} : I.F. = e^{\int p(x) dx} = e^{\int -mdx} = e^{-mx} \text{ and the solution is: y}$ $x [I.F.] = \int Q(x)[I.F.] dx + C; ye^{-mx} = \int C_1 e^{mx} e^{-mx} dx + C$ $ye^{-mx} = C_1 \int dx + C; ye^{-mx} = C_1 x + C; Ans: y = (C_1 x + C) e^{mx}$
	ii)	circuit Diagram
		Growth of current: when the current is growing, back induced emf $\left(-L\frac{di}{dt}\right)$, then
		resultant emf is in the circuit $\left(E - L \frac{di}{dt}\right)$, using Kirchoff's voltage law the emf eqn.
		for the circuit $E - L \frac{di}{dt} = Ri$; $\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$; $\frac{di}{dt} = \frac{E}{L} - \frac{R}{L}i$, intergrating $-\ln\left(\frac{E}{R} - i\right) = \frac{R}{L}t + C$
		at $t = 0$, $i = 0$; $\therefore -\ln\left(\frac{z}{z}\right) = C$; $\therefore -\ln\left(\frac{z}{z}-i\right) = \frac{z}{t}t\ln\left(\frac{z}{z}\right)$,
		$i_0 = \frac{E}{c}$ final steady state; $i = \frac{E}{c} \left(1 - e^{-\frac{E}{c}t} \right)$
		when the current has reached its final value then the current in the circuit is maximum.
		Decay of current: E = 0, then emf eqn. of circuit $-L \frac{di}{dt} Ri$; $\frac{di}{i} = -\frac{R}{L} dt$, integrating
		both side $\ln i = -\frac{Rt}{L} + C$, $t = 0$, $i = i_0$, $\ln i_0 = C$; $\ln i = -\frac{R}{L}t + \ln i_0$
	(B)	Attempt any one 08
	i)	(a) standard form of this differential equation is $\frac{dy}{dx} + P(x)y = Q(x)$; then
		$P(x) = 1, Q(x) = e^{-x}, I.F. = e^{\int P(x)dx} = e^{\int I dx} = e^{x} \text{ then solution is}$

		$y \times [I.F.] = \int Q(x)[I.F.]dx + C; ye^{x} = x + C; ANS. : y = (x + C)e^{-x}$
		(b) The given DE can be written as: $x^2 dx = e^y dy$, On integrating $\int x^2 dx = \int e^y dy$
-		$e^y = \frac{x^5}{3} - C$ $\therefore y = \ln\left(\frac{x^3}{3} - C\right)$, which is the required solution.C is arbitrary
	1	constant
	ii)	Consider a circuit having an inductance L. a capacitor C and a resistance R placed in series with a steady emf E through the key K(K) or K) as shown age with a steady emf E through the key K(K) or K) as shown age on the capacitor is zero. After the key K(K) or K) as shown age on the capacitor is zero. After the key K(K) or K) as shown age of the capacitor is zero. After the key K(K) or K) as shown age of the capacitor is zero. After the key K(K) or K) as shown age of the capacitor is zero. After the key K(K) or K) as shown age of the capacitor is zero. After the key K(K) or K) as shown age of the capacitor is zero. After the key K(K) or K) as shown age of the capacitor at any instant. The charge on the capacitor slowly grows due to which there is current the data of the capacitor of the circuit is the circuit
*	(C)	$i = \frac{dq}{dt} = \left(-b + \sqrt{b^2 - K^2}\right) A e^{\left(-b + \sqrt{b^2 - K^2}\right)t} + \left(-b - \sqrt{b^2 - K^2}\right) B e^{\left(-b + \sqrt{b^2 - K^2}\right)t}$ $\therefore 0 = \left(-b + \sqrt{b^2 - K^2}\right) A + \left(-b - \sqrt{b^2 - K^2}\right) B - b(A + B) + \sqrt{b^2 - K^2} (A - B) = 0$ $A = -\frac{q_0}{2} \left(1 + \frac{b}{\sqrt{b^2 - K^2}}\right) B = -\frac{q_0}{2} \left(1 - \frac{b}{\sqrt{b^2 - K^2}}\right) B = -\frac{q_0}{2} \left(1 -$
	1)	$\frac{dy}{dx} = kxy, \frac{dy}{y} = kx dx ; integrate \int \frac{dy}{y} = k x dx , \ln y = k \frac{x^2}{2} + C$ $y = e^{c'} e^{k \frac{x^2}{2}}, \text{Ans: } \therefore y = e^{k \frac{x^2}{2}}$ $E - L \frac{di}{dt} = iR, \qquad \frac{di}{dt} = \frac{1}{L} (E - iR); \qquad = \frac{1}{10} (100 - 5 \times 10); \qquad \frac{di}{dt} = \frac{50}{10} = 5 A/s$
	ii)	$E-L\frac{di}{dt}=iR$, $\frac{di}{dt}=\frac{1}{L}(E-iR)$; $=\frac{1}{10}(100-5\times10)$; $\frac{di}{dt}=\frac{50}{10}=5$ A/s
Q.4	(A)	
£.,	i)	$x = A \sin(\omega t + \alpha)$ and $y = B \sin(\omega t + \beta)$,
		$\frac{x}{A}\sin\beta = \sin\omega t \cos\alpha \sin\beta + \cos\omega t \sin\alpha \sin\beta;$

	$\frac{y}{\beta}\sin\alpha = \sin\omega t \cos\alpha\beta \sin\alpha + \cos\omega t \sin\beta \sin\alpha substracting$
	$\left(\frac{x}{A}\sin\beta - \frac{y}{B}\sin\alpha\right) = \sin\omega t \left(\cos\alpha\sin\beta - \cos\beta\sin\alpha\right) = \sin\omega t \sin(\beta - \alpha)$
	$\left(\frac{z}{A}\cos\beta - \frac{y}{B}\cos\alpha\right) = \cos\omega t \left(\sin\alpha\cos\beta - \sin\beta\cos\alpha\right) = -\cos\omega t \sin(\beta - \alpha)$
	$\frac{x^2}{A^2} + \frac{y^2}{B^2} - 2\frac{xy}{AB}\cos(\beta - \alpha) = \sin^2(\beta - \alpha), \text{ Ans: } \frac{x^2}{A^2} + \frac{y^2}{B^2} - 2\frac{xy}{AB}\cos\delta = \sin^2\delta,$
ii)	We assume, 1. The string has a uniform linear density, i.e., mass per unit length. 2. The transverse vibration are confined to a single plane. 3. The tension T remains the same when the string is deformed from its equilibrium position. 4. The effect of gravity is negligible, i.e. The weight of the string is negligible since the tention acting tangentially at any point is large enough. Note $\angle POC = \frac{2}{2}$, where $\angle POQ = \theta$. Total tension along $CO = 2T \sin \frac{\theta}{2}$ $2T \sin \frac{\theta}{2} = m\delta x \frac{v^2}{R}$ $\therefore 2T\left(\frac{\theta}{2}\right) = m\delta x \frac{v^2}{R}$ $\therefore 2T\left(\frac{\theta}{2}\right) = m\delta x \frac{v^2}{R}$ Thus we can say, velocity of transverse wave along the stretched string depends upon tension (T) and the density (linear) of wire (m). If I be the length of string which vibrates in p segments, then the length of each segment is equal to the ratio of length (I) / segments (P). But each segment corresponds to $\frac{\lambda}{2}$. $\frac{\lambda}{2} = \frac{I}{p} \text{ or } \lambda = \frac{2I}{p}$ Also $v = n\lambda \text{ then } v = n \times \frac{2I}{p}$ $\therefore n \times \frac{2I}{p} = \sqrt{\frac{T}{m}}$
(B)	Attempt any one , 08
i)	$x_1 = A \sin(\omega t + \alpha)$ and $x_2 = A \sin(\omega t + \beta)$; by using superposition principle
	$x = x_1 + x_2; = \sin \omega t (A\cos\alpha + B\cos\beta) + \cos\omega t (A\sin\alpha + B\sin\beta)$
	$R\cos\delta = (A\cos\alpha + B\cos\beta)(1)$ and $R\sin\delta = (A\sin\alpha + B\sin\beta)(2)$
	after solving the resultant motion is simple harmonic motion $x = R \sin(\omega t + \delta)$. Finding the resultant amplitude R is obtained by squaring and adding eqn.(1) and (2) and solving LHS =
	$R^2\cos^2\delta + R^2\sin^2\delta = R^2(A\sin\alpha + \cos\beta) = R^2$; RHS =
	$A^2 + B^2 2AB(\cos\alpha\cos\beta + \sin\alpha\sin\beta)$ then $R^2 = A^2 + B^2 + 2AB\cos(\alpha - \beta)$;
	$R^2 = A^2 + B^2 + 2AB\cos\delta; \tan \delta = \frac{R\sin\delta}{R\cos\delta} = \frac{A\sin\alpha + B\sin\beta}{A\cos\alpha + B\cos\beta}$
	Case 1: $\delta = \alpha - \beta = (2n + 1); R = A - B$
	Case 2: If A=B then α and β are different $\delta = \frac{\alpha+\beta}{2} = \frac{1}{2}(\alpha+\beta)$
	Case 3: If A=B then $\delta = \alpha - \beta = (2n\pi)$; $R_{Max} = A + B = A + A = 2A$

		GROUP VELOCITY	
	11)	The principal behind group velocity is the concept of wave packet. We know that some points of the property of the packet of	
	(C)	Attempt any one	04
-4	i)	If $y = f_1(x - ct) + f_2(x + ct)$ is the solution of the wave eqn. $\frac{\partial y}{\partial t} = -cf_1'(x - ct) + cf_2'(x + ct) \text{ and } \frac{\partial y}{\partial x} = f_1'(x - ct) + cf_2'(x + ct)$ $\frac{\partial^2 y}{\partial t^2} = c^2 f_1'(x - ct) + c^2 f_2'(x + ct) \text{ and } \frac{\partial^2 y}{\partial x^2} = f_1'(x - ct) + f_2'(x + ct)$ Hence proved $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \left(\frac{\partial^2 y}{\partial t^2} \right)$	
	ii)	Frequency of first tuning fork=250Hz; Time for complete one cycle =T=0.2 S Difference in frequencies = $\frac{1}{T} = \frac{1}{0.2} = 0.5Hz$; Then possible frequencies for the of fork are 250+5 = 255Hz or 250-5 = 245Hz.	ther
Q.5	Atte	mpt any four	20
٧.٠٠	i)	$\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = (\overrightarrow{A} \cdot \overrightarrow{C}) \overrightarrow{B} - (\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{C}; \overrightarrow{B} \times (\overrightarrow{C} \times \overrightarrow{A}) = (\overrightarrow{B} \cdot \overrightarrow{A}) \overrightarrow{B} - (\overrightarrow{B} \cdot \overrightarrow{C}) \overrightarrow{A}$ $\overrightarrow{C} \times (\overrightarrow{A} \times \overrightarrow{B}) = (\overrightarrow{C} \cdot \overrightarrow{B}) \overrightarrow{A} - (\overrightarrow{C} \cdot \overrightarrow{A}) \overrightarrow{B}, \text{ adding all three}$ $(\overrightarrow{C} \cdot \overrightarrow{A}) \overrightarrow{B} - (\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{C} + (\overrightarrow{A} \cdot \overrightarrow{B}) \overrightarrow{C} - (\overrightarrow{B} \cdot \overrightarrow{C}) \overrightarrow{A} + (\overrightarrow{B} \cdot \overrightarrow{C}) \overrightarrow{A} - (\overrightarrow{C} \cdot \overrightarrow{A}) \overrightarrow{B} = 0$	20
	ii)	$\nabla \times V = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \cos y & x \sin y & \cos z \end{vmatrix} = 0 \hat{\imath} + 0 \hat{\jmath} + (-\sin y + \sin y) \hat{k} = 0; \nabla \times V = 0$	

iii)	Consider an eqn. $\frac{dy}{dx} = \frac{M(x,y)}{N(x,y)}$; $M(x,y)dx + N(x,y)dy = 0$; let the soln. $F(x,y) = C$
	$dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy = 0 : \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy = 0 ; M(x, y) = \frac{\partial F}{\partial x} , N(x, y) = \frac{\partial F}{\partial x}$
	$\frac{\partial M(x,y)}{\partial y} = \frac{\partial}{\partial y} \frac{\partial F}{\partial x} = \frac{\partial^2 F}{\partial x \partial y} \text{ and } \frac{\partial N(x,y)}{\partial x} = \frac{\partial}{\partial x} \frac{\partial F}{\partial y} = \frac{\partial^2 F}{\partial x \partial y} \text{ If F has continuous first derivatives,}$
	then order of differentiation of F is immaterial and hence
	$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ is said to be an exact differential equation.
iv	Time constant $\Gamma = \frac{L}{R} = \frac{200}{20} = 10 \text{ s}$; max. current in the circuit $\frac{E}{R} = \frac{5}{20} = 0.25A$
v)	P.E.=V= $\frac{1}{2}Kx^2$, Force acting on $F = -\frac{dV}{dx}$, $F = \frac{1}{2}K(2x) = -2x$, $F = -Kx$.
vi	