1S001141 / F. Y. B. Sc. (Sem. I) (Choice Base) 81134 / Physics - Paper II Q. P. Code: 59328

ANSWER KEY

Q1	A	Select the correct alternative	
	(i)	(a) $1.66 \times 10^{-27} \text{ kg}$	_ _
	(ii)		_ (
	(iii)		(.
	(iv)		$\int (\cdot$
	(v)		(.
	(vi)	- + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(2
Q1	B	<u> </u>	$\frac{\sqrt{2}}{(2)}$
	(i)	Answer in one sentence.	+ (*
	(ii)	Isobars: Same mass number (A), different atomic number (Z) The time for which the GM at 1	1(1
	\/		(1
		temporarily unable to detect the arrival of any new ionizing particle is called the dead time.	(,
	(iii)		
Q 1	C	Body which absorbs all the incident radiation on it. $a=1$, $r=t=0$ Fill in the blanks	(1
	(i)	Carbon	 - \^-
	(ii)	Three-fourth	(1
	(iii)	Q-value or nuclear disintegration energy.	(1
	(iv)	Endoergic or Q<0	(1
	(v)	Light i.e.3x108 m/s	(1
Q 2	A	Attempt ANY ONE	(1)
	(i)	Explanation	- ` - '
	,	Radius of nucleus $R = R_0 A^{1/3}$ $R_0 \approx 1.27$ fermi	(2)
		Charge on the nucleus	(2)
		Nuclear density = $10^{17} k_0 k_0 3$	(2)
		number of nucleons density	
	+	$\frac{number\ of\ nucleons}{m^3} = \frac{density}{Mass\ of\ a\ nucleon} \approx 10^{44}\ nucleon/m^3$ Statement of law of succession.	(2)
	(ii)	of law of successive disintegration	(2)
		<u>secular equilibrium:</u>	(2)
		Statement and explanation $T_1 >> T_2$ i.e. $\lambda_1 << \lambda_2$	/1 \
		$N_2 = \frac{1}{1-\rho} \left[1-\rho^{-\lambda_2 t}\right]$	(1) (2)
		$N_0 = \frac{\lambda_1 \tilde{N}_0}{N_0}$	(4)
			(I)
]	$\frac{N_{2C}}{N_1} = \frac{\lambda_1}{\lambda_2} = \frac{\tau_2}{\tau_1} = constant$	(1)
Q. 2	$\overline{\mathbf{B}}$	Attempt ANY ONE	(2)
	(i)	Statement and explanat	<u>, ~ , </u>
		To get $N = N_0 e^{-\lambda t}$	(2)
			(3)
		$\frac{10 \text{ get } I_{1/2} - \frac{1}{\lambda}}{\lambda}$	3)
	(ii)	Sketch of Segre chart with description]
Q. 2	<u>-</u>	Characteristics of stable and unstable nuclei	3)]
	$-\mathbf{C}$	Attempt ANY ONE	5)

1S001141 / F. Y. B. Sc. (Sem. I) (Choice Base) 81134 / Physics – Paper II Q. P. Code:

	(i)	$\frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3}$	(2)
		$R_{He} = 1.69 \text{ Fm}$	(2)
	(ii)	$N = \frac{6.02 \times 10^{23}}{226} \times 1 = 2.66 \times 10^{21}$	1(2)
		$A = Activity = \frac{dN}{dt} = N\lambda \qquad 1 \text{ Ci} = 3.7 \times 10^{10} \text{ dis/s}$	
		i ut	(2)
		$\lambda = \frac{A}{N} = \frac{3.7 \times 10^{10}}{2.66 \times 10^{21}} = 1.39 \times 10^{-11} s^{-1}$	(2)
		$T_{1/2} = \frac{0.693}{\lambda} = 4.98 \times 10^{10} s$	(2)
Q3	A	Attempt ANY ONE	
	(i)	Use of momentum conservation laws or momentum triangle seen	(2)
		Diagram of momentum conservation or momentum triangle:	
		Define $Q = E_y + E_Y - E_x$	(2)
		Rest of the derivation leading to	(1)
		$Q = E_y \left(1 + \frac{m_y}{M_x} \right) - E_x \left(1 - \frac{m_x}{M_y} \right) - \frac{2}{M_y} \sqrt{m_x m_y E_x E_y} \cos \theta$	(1)
	1	my my	(3)
	(ii)	Identifying $m_y \cong m_x + M_X - M_Y$	(1)
		Momentum conservation leading to $m_x v_x = M_c V_c$	(1)
		Where M_c , V_c denote the mass and velocity of the compound nucleus	
		respectively	(1)
		Defining $Q = \frac{1}{2} m_x v_x^2 - \frac{1}{2} M_c V_c^2$	(2)
		Rest of the derivation leading to $E_{th} = \frac{1}{2} m_x v_x^2 = -Q\left(\frac{m_x + M_x}{M_{th}}\right)$	(2)
<u> </u>	<u> </u>	These of the derivation reading to $E_{th} = \frac{1}{2} m_{\chi} v_{\chi} = -Q \left(\frac{1}{M_{\chi}} \right)$	(3)
Q3	<u>B</u>	Attempt ANY ONE	
	(i)	Nuclear reaction definition: 2 marks	(2)
		Stating and explaining any 3 different types of nuclear reactions: 2	(2)
	(12)	marks each.	
	(ii)	Diagram: 2 marks	(2)
		Construction: 2 marks	(2)
Q3	C	Working: 4 marks	(4)
	(i)	Attempt ANY ONE	
	(.)	$Q = \left[(m_x + M_X) - (m_y + M_Y) \right] c^2$: or if masses are expressed in amu	
i		$Q = [(m_x + M_X) - (m_y + M_Y)] \times 931.5 MeV$	
		Q=11.373615MeV	711
		Formula : 1 mark Working: 2marks	(1) (2)
		Final answer with correct unit: 1 mark	$\begin{pmatrix} (1) \\ (1) \end{pmatrix}$
	(ii)	$Q = \left[(m_x + M_X) - (m_y + M_Y) \right] \times 931.5 \text{MeV}; 1 \text{mark}$	(1)
		Q=-1.15506 MeV: 1 mark	(1)
		$E_{th} \cong -\frac{Q(M_X + m_X)}{M_X}$:1 mark	(1)
Q 4	A	$E_{th} = 1.485218 MeV : 1 \text{ mark}$ Attempt ANY ONE	(1)
·× ·	(i)	Statement of de Broglie hypothesis	(2)
	\-'/	omenic of do progne hypothesis	(2)

		Bohr's first hypothesis	(2)
	- GiS	Proof using de Broglie hypothesis	(2)
	(ii)		$\frac{(3)}{(3)}$
		Explanation of Laue's experimental setup	I .
Q 4	- 	Observation from the experiment	(2)
<u>_V4</u> _	B	Attempt ANY ONE	(3)
	(i)	Compton effect explanation	(2)
		Diagram of scattering of electron	(2)
		Applying law of conservation of momentum	(1)
		Simplifying equations	(1)
		Obtaining $\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \Theta)$	(2)
	(ii)	Considering two waves and their resultant effect with diagram	
		Simplifying the equation	(2)
		Taking the condition for node and solving	(2)
		Getting the regult Av = h	(2)
Q 4	 _	Getting the result $\Delta x = \frac{h}{\Delta p}$	(2)
Ų4	<u>C</u>	Attempt ANY ONE	
	(i)	$\Delta x_{\text{max}} = 0.2 \text{ A}^{\circ} = 0.2 \times 10^{-10} \text{ m}$	-
	1	Using HUP,	1
		$\Delta p_{\min} = \frac{h}{\Delta x}$	(2)
		$\Delta p_{min} = \frac{\Delta x}{3.3 \times 10^{-23} \text{ kg m/s}}$	(2)
	1	Minimum possible energy $E_{min} = \Delta p_{min}^2/2m = 5.98 \times 10^{-16} \text{ J}$	(2)
	(ii)	$n = 2, \theta = 20^{\circ}$	
		$d = 1.4 A^{\circ} = 1.4 \times 10^{-10} m$	1
		From Bragg's law, $2d \sin \theta = 2\lambda$	(1)
		$\lambda = 0.48 \times 10^{-10} \mathrm{m}$	(1)
Q 5		Attempt ANY FOUR	(2)
_	(i)	Carbon dating: Explanation	
	, , ,	$\begin{array}{c} {}^{14}N + {}^{1}_{0}n \to ({}^{15}_{7}N) \to {}^{14}_{6}C + {}^{1}_{1}H \end{array}$	(1)
		${}^{14}_{6}C \rightarrow {}^{14}_{7}N + \beta^{-} + antineutrino$	1 1
		$V = V = \lambda ct$ 1. 1. X_0	(2)
		$X = X_0 e^{-\lambda_C t} \therefore t = \frac{1}{\lambda_C} \ln \frac{X_0}{X}$	(2)
	(ii)	Definition of Binding energy	 -
		Graph of B. E. /nucleon	$\begin{bmatrix} (1) \end{bmatrix}$
		Characteristics of graph	$\begin{pmatrix} (1) \\ (2) \end{pmatrix}$
	(iii)	Stating any two conservation laws	(3)
		Describing the two conservation laws mentioned above	(2)
	(iv)	Quenching explanation	(3)
1	1	Various mixtures used for quenching or electronic assets	(2)
		Explaining how use of quenching mixture leads to extended life of GM tube	
		tube	(2)
	(v)	Pair production: conversion radiation energy into matter explanation	(1)
	1	Production of electron and positron	(2)
		Minimum energy required calculation	(1)
			(2)

1S001141 / F. Y. B. Sc. (Sem. I) (Choice Base) 81134 / Physics – Paper II Q. P. Code:

		
Compton shift $=\Delta \lambda = \lambda_s - \lambda_i = \frac{h}{m_0 c} (1 - cc)$	$(0.0363 \text{ A}^{\circ}) = 0.0363 \text{ A}^{\circ}$	3)
$\lambda_s = \Delta \lambda + \lambda_i = 0.5363 \text{ A}$	0	
1 000001		21