1S001141 / F. Y. B. Sc. (Sem. I) (Choice Base)81117 / Physics - Paper I Q.P. Code: 59322 SET - IV ## ANSWER KEY | ANDWER KEY | | | | | | | | | |-------------|--------------|-------|---|--------|--|--|--|--| | Q. 1 | (A) | (i) | Select the correct alternative c. Force & time | _ | | | | | | | | (ii) | a. lateral strain and longitudinal strain | 2 | | | | | | | | (iii) | с. Збет | 2 | | | | | | | | (iv) | b. 180 | 2 | | | | | | | | (v) | | 2 | | | | | | | | (vi) | a. Only on initial and final temperature | 2 2 | | | | | | | B) | | Answer in one sentence | | | | | | | | | (i) | Flow in which the fluid undergoes irregular fluctuations, or mixing | 1 | | | | | | | | (ii) | Any 2 lens defects are spherical, chromatic coma etc | 1 | | | | | | | | (iii) | The pressure necessary to liquefy a gas at critical temperature. | ĺ | | | | | | | C) | | Fill in the blanks | | | | | | | | | (i) | Constant | i | | | | | | | | (ii) | Constant / uniform | 1 | | | | | | | | (iii) | square root | i | | | | | | | | (iv) | chromatic aberration. | 1 | | | | | | Q. 2 | A) | (v) | Temperature | l | | | | | | | | (i) | Attempt ANY ONE | | | | | | | | | (-) | Figure and description Tangential stress T | 2 | | | | | | | | | Modulus of rigidity, $\eta = \frac{Tangential.stress}{Shear.strain} = \frac{T}{\varphi} = \frac{F}{2\pi r dr} \times \frac{L}{r\theta}$ | 1 | | | | | | | | (ii) | Torque = $dT = \frac{2\pi\eta\theta}{L}r^3$. dr , Couple required = $\frac{\pi\eta\theta}{2L}(a_2^4 - a_1^4)$ | _ | | | | | | | | | Diagram and explanation | 5 | | | | | | | | | Y = longitudinal stress / strain. Extensions $l = F/V$ | 3 | | | | | | | | | Compression $\Gamma = -\sigma F/Y$ along y an z axis. | | | | | | | | | | 10tal change $e_x = e_y = e_z = F/Y (1.26)$ | | | | | | | | | | Bulk modulus = $K = F/3e$ simplifying we get $y = 3k$ (1-2 σ). | 5 | | | | | | | B) | | Attempt ANY ONE | | | | | | | | | (i) | Diagram and description and assumptions | | | | | | | | | | net force along ends is $F = (p_1 - p_2)\pi r^2$ | 3
1 | | | | | | | | | | 1 | | | | | | | | | F = modulus of rigidity X velocity gradient and simplify the eq for | 2 | | | | | | | | | velocity of flow: $v = \frac{(p_1 - p_2)}{4\eta l} (a^2 - r^2)$ | - | | | | | | | | (II) | Simplify to get total flow of liquid $V = \frac{\pi(p_1 - p_2)a^4}{8\eta l}$ | 2 | | | | | | | | | Note on venturimeter | 4 | | | | | | | | | Lift of a plane | 4 | | | | | | | C) | | Attempt ANY ONE | | | | | | | | | (i) | $Y = 2.032 \times 10^{11} \text{ N/m}^2$, $\eta = 0.7 \times 10^{11} \text{ N/m}^2$ | 2 | | | | | | | | | 4 17 446 | 2 | | | | | the decrease in the momentum with which it collides with the wall and decrease in pressure. This correction to the pressure depends upon: (i) Number of molecules striking a unit area per unit time of the walls of container and (ii) The resultant inward cohesive force. Each of these factors is proportional to the density of the gas. \div Correction to pressure, $p \, \propto \rho^2 \, \propto 1/V^2$ $$p=\frac{a}{V^2}$$ Where a is constant and V is volume of the gas. \therefore Corrected or real pressure = $P + p = \left(P + \frac{a}{V^2}\right)$ 4 ## 2. Correction to Volume: Due to the finite size of the gas molecules, the actual space available for the molecule is less than the actual volume of the vessel. Here r is the radius of each gas molecule. Volume of the molecule, $$x = \frac{4}{3}\pi r^3$$ The center of each molecule can approach each other only by a minimum distance of 2r. Volume of sphere of influence of each molecule, s is $$s = \frac{4}{3}\pi(2r)^3 = 8\frac{4}{3}\pi r^3 = 8x$$ Volume available for 1^{st} molecule = V Volume available for second molecule = V - 8x = V - s - \therefore Volume available for nth molecule = V (n-1)s - : Average space available for each molecule = $$\frac{V + (V - s) + (V - 2s) + \dots + (V - (n - 1)s)}{n}$$ $$= V - \frac{s}{n}(1 + 2 + 3 + \dots + (n - 1))$$ $$= V - \frac{ns}{2} + \frac{s}{2}$$ s/2 can be neglected in comparison with ns/2. $$=V-4nx=V-b$$ Therefore Van der Waals equation for state is given by: $$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$ (ii) From the first law of thermodynamics, $$dQ = dU + PdV \dots \dots (i)$$ $$dU = C_V dT \dots \dots (ii)$$ For one mole $$PV = RT$$ Differentiating $$PdV + VdP = RdT \dots \dots (iii)$$ For adiabatic process, dQ = 0. process, $$dQ = 0$$. $$\frac{C_V}{R} (PdV + VdP) + PdV = 0$$ $$C_V (PdV + VdP) + (C_P - C_V)PdV = 0$$ $$Let \frac{C_P}{C_V} = \gamma$$ $$\frac{dP}{P} + \gamma \frac{dV}{V} = 0$$ $$therefore PV^{\gamma} = constant,$$ $$P_1V_1^{\gamma} = P_2V_2^{\gamma}$$ $$\frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right)^{\gamma}$$ $$\gamma = 1.653$$ B) Attempt ANY ONE (i) Work done, $W = \int_{V_1}^{V_2} P dV$ Considering one gram molecule of the gas, $$PV = RT$$ $$\therefore P = \frac{RT}{V}$$ $$W = \int_{V_1}^{V_2} \frac{RT}{V} dV$$ $$W = RT \times 2.303 \log_{10} \frac{V_2}{V_1}$$ $$P_1 V_1 = P_2 V_2$$ $$\therefore \frac{V_2}{V_1} = \frac{P_1}{P_2}$$ $$W = RT \times 2.303 \log_{10} \left(\frac{V_2}{V_1}\right)$$ $$W = 556.69 I$$ (ii) Lets assume, $$U = U(V,T)$$ $$\therefore dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV \dots \dots (i)$$ We know from the first law of thermodynamics, $$dQ = dU + PdV$$ Substituting for dU, $$dQ = \left(\frac{\partial U}{\partial T}\right)_{V} dT + \left(\frac{\partial U}{\partial V}\right)_{T} dV + PdV$$ $$\therefore \frac{dQ}{dT} = \left(\frac{\partial U}{\partial T}\right)_{V} + \left[P + \left(\frac{\partial U}{\partial V}\right)_{T}\right] \frac{dV}{dT} \dots \dots \dots (ii)$$ If the gas is heated at constant volume, $$\frac{dQ}{dT} = C_V$$ And $$\frac{dV}{dT} = 0$$ $$\left(\frac{\partial U}{\partial V}\right)_T = C_V \dots \dots \dots \dots (iii)$$ When the gas is heated at constant pressure, 4 $$\frac{dQ}{dT} = C_{P}$$ $$\therefore C_{P} = \left(\frac{\partial U}{\partial T}\right)_{V} + \left[P + \left(\frac{\partial U}{\partial V}\right)_{T}\right] \left(\frac{\partial V}{\partial T}\right)_{P}$$ $$\therefore C_{P} = C_{V} + \left[P + \left(\frac{\partial U}{\partial V}\right)_{T}\right] \left(\frac{\partial V}{\partial T}\right)_{P}$$ $$C_{P} - C_{V} = \left[P + \left(\frac{\partial U}{\partial V}\right)_{T}\right] \left(\frac{\partial V}{\partial T}\right)_{P}$$ Since internal energy depends only on temperature, $$\left(\frac{\partial U}{\partial V}\right)_T = 0$$ Using PV = RT we can show $$P\left(\frac{\partial V}{\partial T}\right)_{P} = R$$ $$\therefore C_{P} - C_{V} = R$$ C) Attempt ANY ONE 4 2 (i) (i) $$P_1 = 1$$ atm $V_1 = V$ and $V_2 = V/2$ The sudden compression is an adiabatic process For an adiabatic process $$PV^{\gamma} = constant$$ $$\therefore P_1 V_1^{\gamma} = P_2 V_2^{\gamma}$$ $$\therefore P_2 = P_1 \left(\frac{V_1}{V_2}\right)^{\gamma} = 2.636 \text{ atm}$$ (ii) Also for adiabatic process 2 2 $$TV^{\gamma-1} = constant$$ $$\therefore T_1 V_1^{\gamma-1} = T_2 V_2^{\gamma-1}$$ $$\therefore T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\gamma-1} = 395.9 K$$ (ii) For 1st partition: $$P_1V_1 = n_1RT_1 \dots (1)$$ For 2nd partition $$P_2V_2 = n_2RT_2 \dots (2)$$ When the partition is removed $$PV = nRT.....(3)$$ Where P is equilibrium pressure, V is final volume, T is equilibrium temperature. $$V = V_1 + V_2 \dots (4)$$ $n = n_1 + n_2 \dots (5)$ Lets assume, $T_1 < T_2$: (Heat lost by molecules in compartment 2) = (Heat gained by the molecules of compartment 1) $$\therefore C_V(T_2 - T) = C_V(T - T_1)$$ $$\therefore T = \frac{T_2 + T_1}{2} \dots \dots \dots (6)$$ Putting eqn (6) in (3) we get $$P = \frac{R(T_1 + T_2)}{2(V_1 + V_2)}$$ 3 **Q5** Attempt any four | (i) | diagram | | | | | | | |-----|-------------|--|--|--|---|--|--| | | explanation | | | | 2 | | | | | | | | | | | | - (ii) $Y = 2\eta (1 + \sigma)$ and $Y = 3K (1 2\sigma)$ use these equations and show 5 - (iii) Ramsden's eyepiece: Ray diagram showing images. Working F= ¾ f Uses= spectrometer, telescope (iv) Methods of reducing spherical aberration Stops Plano convex 2 2 2 1 2 Plano convex Cross convex lens $R_1:R_2 m=1:6$ $d = f_1 - f_2$ high R.I of material (v) The zeroth law of thermodynamics states that if two bodies A and B are each separately in thermal equilibrium with a third body C, then A and B are also in thermal equilibrium with each other. Explanation: We consider two systems A and B insulated from each other but in good thermal contact with third body C. System A and B will attain thermal equilibrium with third system C. Now if the insulation is removed and system A and B are brought in thermal contact, we find that there is no further change. This means that system A and B are also in thermal equilibrium with each other. (vi) A system can be taken from state A to B by many ways as shown in figure. Let $$A \equiv (P_1, V_1)$$ and $B \equiv (P_2, V_2)$ $W = \int P dV$ i.e. area under the curve. We can see from the above figure that, the area under the curve is different for different paths. 1