

SET - III

ANSWER KEY

Q.1.	A)		Select the correct alternative	
		(i)	b, directly proportional	
	T	(ii)	b original and	
		(iii)	b, original volume c. $\mu_1 h_1 \sin \alpha_1 = \mu_2 h_2 \sin \alpha_2$	
	 	(iv)	b. $2f/3$	
	 	(v)	a. Internal energy	
	 -	(vi)	c. 2.667	
		 (**)	97.2.007	-
	B)	 	Answer in one sentence	-+-
		(i)	ratio of change in volume is to	
		(ii)	ratio of change in volume is bulk modulus constant.	 `
		(iii)	l = dv/du = length of lmage/length of object	-
		(111)	Adiabatic interaction: No heat is allowed to enter or leave to system dQ = 0	ho -
		† -	oystem dQ = 0	110
	C)		Fill in the blanks	
		(i)	Bernoulli's principle	- 1 5
		(ii)	Elastic limits	+-
		(iii)	$d = f_1 - f_2$	
-			$\frac{u - J_1 - J_2}{180^0 \text{ or } \pi \text{ radian}}$	- +
		/ X		
. 2			Thermal equilibrium	
	<u>A)</u>	 	Attempt ANY ONE	
	1	(i)	diagram and description and assumptions	 -
			net force along ends is $F = (n_1 - n_1)\pi r^2$	3
	1	11	r ≈ modulus of rigidity Y valority and to	1
		1.	(n-n)	1
		, ,	velocity of flow $V = \frac{(p_1 - p_2)}{4\eta l} (a^2 - r^2)$ implify to get total flow of liquid $V = \frac{\pi(p_1 - p_2)a^4}{8\pi l}$	2
- 1	- 1		4η1	4
		s	implify to get total flow of liquid $V = \pi(p_1 - p_2)a^4$	1
			8η1	2
		(ii) D	escription and diagram	<u> </u>
		Y	$=2\eta (1+\sigma)$, $\eta = \text{shear strong}/\sigma 1$	2
-+		SI	hear strain = $\theta = 2F/Y(1+\sigma)$, $Y = 2\eta(1+\sigma)$	3
	-			3
- -"	<u>3) </u>	$\frac{A}{(2)}$	ttempt ANY ONE	<u> </u>
		(i) fig	gure and description	
		M₁	odulus of rigidity , $\eta = \frac{Tangential.stress}{Shear.strain} = \frac{T}{\varphi} = \frac{F}{2\pi r dr} \times \frac{L}{r\theta}$	2
	_	Tro	Shear strain $= \frac{\pi}{\varphi} = \frac{2\pi r dr}{2\pi r dr} \times \frac{L}{r\theta}$ Equipply $= dT = \frac{2\pi \eta \theta}{L} r^3$. dr , Couple required $= \frac{\pi \eta \theta}{2L} (a_2^4 - a_1^4)$ Eagram and description	1
		ii) Di	agram and description $\frac{L}{2L}(a_2^4 - a_1^4)$	5
		De	escription and equation, A.S.	
		To	escription and equation: $A_1\delta x_1 = m / \rho = A_1\delta x_1 = m / \rho$	1
		W	tal work done = change in potential and kinetic energy. = $\frac{1}{2}$ m2v2 ² - $\frac{1}{2}$ m2v2 ² + mgbs = $\frac{1}{2}$ m2v2 ² - $\frac{1}{2}$ m2v2 ² + mgbs = $\frac{1}{2}$ m2v2 ² - $\frac{1}{2}$ m2v2 ² + mgbs = $\frac{1}{2}$	
<u> </u>			= $\frac{1}{2}$ m ₂ v ₂ ² - $\frac{1}{2}$ m ₂ v ₂ ² + mgh ₂ - mgh ₁ , W = P ₁ A ₁ δ x ₁ - P ₁ A ₁ δ x ₁	2
				3

<u> </u>			equating and simplifying P+ ρ gh+1/2 ρ v ² = constant.	
_	C)		Attempt ANY ONE	
	,	(i)	Diagram	-
		_ \ ` ′	description	2 2
		(ii)	Volume of water collected $V = 40 / 5*60 \times 10^{-6}$	
			$P = h\rho g = 0.4*9.8*10^3$	2
		<u> </u>	$\eta = (\pi Pa^4)/8*1*V = 1.4*10^{-3}$	2
<u> </u>		<u> </u>		- -
Q. 3	A)_	<u> </u>	Attempt ANY ONE	<u> </u>
		(i)	$\frac{1}{f} = (\mu - 1)\left[\frac{1}{R_1} - \frac{1}{R_2}\right],$	1
			Ray diagram $f_R - f_V = \omega f_y$	2
		(::)		5
		(ii)	Ray Diagram $F = 3f/2$	1
			$\beta = -f$ $\alpha = 3f$	2
			,	4
			Cardinal point diagram	1
			A (A NIV ONE	
	B)	(3)	Attempt ANY ONE	<u> </u>
		(i)	ray diagram, derivation, path diff:	
			$\Delta = 2\mu t \cos r \pm \lambda/2$	5
			Constructive Interference	1
		·	Destructive interference	1
		(ii)	Expalnation with ray diagram	4
			methods of minimization of spherical aberration	4
				
	C)		Attempt ANY ONE	4
		(i)	$R_1/R_2 = -1/6, R_2 = -6R_1$	2
			$\frac{1}{f} = (\mu - 1)\left[\frac{1}{R_1} - \frac{1}{R_2}\right]$	
			$\int_{R_1} \frac{1}{f} = (\mu - 1) \left[\frac{R_1}{R_1} - \frac{R_2}{R_2} \right]$	1
			$R_{\rm i} = 17.5 cm$	1
	i		$R_2 = -105cm$	
1	_	(ii)		1
		(/	$F = \frac{f_1 f_2}{f_1 + f_2 - d} = 10cm$	1
			$\alpha = +d.F/f_2 = +2.5cm$	1
			$\beta = -d.F/f_1 = -3.33cm$.
			Cardinal point ray diagram	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
			1	1

0.3

_			Q. P. Code;	
(2.4	A)	Attempt ANY ONE	
	2.7	-/ - -	Critical point Critical isotherm Critical isotherm Critical isotherm Critical isotherm Critical isotherm Saturated vapour Volume and liquid Unsaturated vapour Figure 10.18 CO isotherms of a graphs IV	2
		- - (ii)	Explanation for different parts of the isothermals The isothermal at 31.1°C is called Critical isothermal Andrew used the term gas for temperatures above the critical temperature and vapour for temperatures below the critical temperature.	5
			For adiabatic change $dQ = 0$, $PV^{\gamma} = K$ $P = \frac{K}{VY}, W = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} \frac{K}{VY} dV = \frac{1}{1-\gamma} \left[\frac{KV_2}{V_2^{\gamma}} - \frac{KV_1}{V_1^{\gamma}} \right]$ $W = \frac{1}{1-\gamma} \left[P_2 V_2 - P_1 V_1 \right]$ For perfect gas, $PV = nRT$ $P_1 V_1 = nRT_1 \text{ and } P_2 V_2 = nRT_2$ $W = \frac{nR(T_2 - T_1)}{1-\gamma}$	4
	B)		$W = n C_v (T_1 - T_2)$ $W = C_v (T_1 - T_2) \text{(For 1 mole)}$ Attempt ANY ONE	4
		(i)	The state of the s	
			$(P + \frac{a}{V^2})(V - b) = RT$ $P = \frac{RT}{V - b} - \frac{a}{V^2}, \text{ find } \frac{dP}{dV}, \frac{d^2P}{dV^2}$ $V_c = 3b$ $T_c = \frac{8a}{27bR}$ $P_c = \frac{a}{27b^2}$ $a = \frac{27R^2Tc^2}{64Pc}, b = \frac{Vc}{3}$	3 5
		(ii)	Internal energy function or Internal energy $Q - W = U_f$ - U_i When heat Q flows into the system, it gets converted into internal energy and hence internal energy of the	4

				
			system increases.	-
		ļ	ΔU is path independent	
			Q = ΔU + W is first law of thermodynamics	
			Differential form of first law of thermodynamics dQ =	
			dU + dW	4
			dQ = dU + PdV	
			Internal energy U is the sum of kinetic and potential	
			energies of the particles constituting the system.	
			It is possible to increase the internal energy of an	
			adiabatically insulated system merely by compressing	
	<u> </u>	<u> </u>	it.	
	<u>C)</u>	 	Alternative ANIVONA	
	+ -	(i)	Attempt ANY ONE $T_c = 143K$	
			$P_c = 50 \text{ atm}$	
			$R = 82.07 \text{ cm}^3 \text{ atm.} \text{K}^{-1} \text{ mol}^{-1}$	
			$V_{\rm c} = \frac{3RT_c}{8R_c} = 88.02 \text{ cm}^3 \text{ mol}^{-1}$	2
			$b = Vc = 29.34 \text{ cm}^3 \text{ mol}^{-1}$	_
			3 27B ² To ²	2
			$a = \frac{27R^2Tc^2}{64Pc} = 1.16 \times 10^6 \text{ atm cm}^6 \text{ mol}^{-2}$	
		(ii)	$T_1 = 30 + 273 = 303K$	_ -
			$T_2 = 130 + 273 = 403K$ $P = 10^6 \text{ N/m}^2$	
			$PV = RT, V_1 = RT_1 = 2.545 \times 10^{-3} \text{m}^3$	•
			P	2
			$V_2 = \frac{RT_2}{P} = 3.385 \times 10^{-3} \text{m}^3$	
			1. W = P $(V_2 - V_1)$ = 10^6 x 0.84 x 10^{-3} = 0.84 x 10^3 Joule =	2
			840 Joule	
l			2. $\Delta U = \frac{5}{2} R(T_2 - T_1) = 2100 \text{ Joule}$	
-			3. $Q = \Delta U + W = 2940$ Joule = 700 cal	
		_		
.5			Attempt ANY FOUR	20
		(i)	Diagram and explanation	2
			Mass of liquid flowing through the each ends of the liquid is	_
			$\Delta m_1 = A_1 v_1 \rho \Delta t$, $\Delta m_2 = A_2 v_2 \rho \Delta t$, $\Delta m_1 = \Delta m_2$, $AV = constant$.	3
		(ii)	draw free body diagram	
		1/	$R = mg\cos\theta$, $f = \mu R = mg\sin\theta$, $\mu = mg\sin\theta$ / $R = \tan\theta$	2

(iii)	Mehtod of minimization by crossed lens	3
	By Plano-convex lens	2
(iv)	for destructive interference, $2\mu t \cos r = m\lambda$	1
	For least thickness, m=1 $t = \lambda/2\mu\cos r$ $t = calculations$	1
	$t = 4.066 \times 10^{-7} m$	2
(v)	Perfect gas obey's Boyle's law and has an internal energy	1
	independent of the volume occupied. Equation of state PV = nRT For a perfect gas PV = constant at a fixed temperature. Hence an isothermal on (P-V) diagram should be a hyperbola. And (PV-P) diagram is a straight line parallel to X- axis. The contemps are hyperbola to the regions of the first regarded to the regions of th	2
(vi)	$W = \int_{V_1}^{V_2} P dV = Area under P-V curve on the V-axis.$ If the same change in the thermodynamic parameters is brought about by a different path, the area under the curve will change and hence the work done will change. Thus work done in taking the system from one state to another depends upon the path taken.	4