

Q. P. Code: 59 3/8

ANSWER KEY

Q.1.	A)		Select the correct alternative	
-	_	(i)	(b) inertial frame of reference	2
		(ii)	(c) solids	2
		(iii)	(d) $d = 10 \text{ cm}$	2
		(iv)	(b) Proportional to the square root of odd natural numbers	2
		(v)	(b) Low pressure	2
		(vi)	(a) Boyle's law	2
	B)	- (1)	Answer in one sentence	1
		(i)	The body which regains its shape is called perfectly elastic body	1
		(ii)	Crossed lens, $R_1/R_2 = -1/6$	1
		(iii)	Isochoric interaction: Volume of the system remains constant dV=0	1
	C)	-	Fill in the blanks	
		(i)	Strain	1
		(ii)	Pseudo	1
		(iii)	Lateral or linear Magnification	1
		(iv)	power of lens in dioptre	1
		(v)	increase	1
Q. 2	A)]	Attempt ANY ONE	ļ
Q. 2		(i)	figure and description	2
			Modulus of rigidity, $\eta = \frac{Tangential.stress}{Shear.strain} = \frac{T}{\varphi} = \frac{F}{2\pi r dr} \times \frac{L}{r\theta}$	1
			Troque = $dT = \frac{2\pi\eta\theta}{L}r^3$. dr ; Couple required = $\frac{\pi\eta\theta}{2L}(a_2^4 - a_1^4)$	5
_		(ii)	$F = F_x i + F_y j$, = 20N and $F_y = 20N$	
			$ax = F_x / m = 20 / 0.01 = 2000 \text{ m/s}^2$. $X = u_x + \frac{1}{2} a_x t_2 = 4000 \text{ m}$	4
			$y = u_y + \frac{1}{2} a_x t_2 = 0 + \frac{2}{2} *1000) 4 = 2000m r = 4000 I + 2000 j$	4
	B)		Attempt ANY ONE	
		(i)	Diagram and description and assumptions	3
			net force along ends is $F = (p_1 - p_2)\pi r^2$,
			F = modulus of rigidity X velocity gradient and simplify the eq for	1
			velocity of flow: $v = \frac{(p_1 - p_2)}{(a^2 - r^2)}$	
			velocity of flow: $v = \frac{(p_1 - p_2)}{4\eta l} (a^2 - r^2)$	2
			$\pi(p_1-p_2)a^4$	2
			Simplify to get total flow of liquid $V = \frac{\pi(p_1 - p_2)a^4}{8\eta l}$	
			Oili	
		(ii)	Diagram and explanation	3
	1		Y = longitudinal stress / strain. Extensions $I = F/Y$	
			Compression I' = $-\sigma F/Y$ along y an z axis.	
			Total change $e_x = e_y = e_z = F/Y$ (1-2 σ)	_
			Bulk modulus = $K = F/3e$ simplifying we get $y = 3k (1-2\sigma)$.	5_

Q. P. Code:

	7		Au A ANN ONE	,
	C)_		Attempt ANY ONE	
		(i)	initial momentum of the ball = mu = 350/1000 X 14= 4.9 kgm/s	1
1			final momentum of the ball = $mv = -350/1000 \times 24 = 4.9 \text{ kgm/s}$	1
			change in momentum = mu -mv = 13.3 kgm/s	l
	 	(45)	average force = impulse /time = 13.3 / 0.035 = 380 N	1
1		(ii)	Diagram and explanation	2
			Mass of liquid flowing through the each ends of the liquid is	
			$\Delta m_1 = A_1 v_1 \rho \Delta t$ $\Delta m_2 = A_2 v_2 \rho \Delta t$ $\Delta m_1 = \Delta m_2$	
	 	 -	AV = constant.	2
Q. 3	A)	-	Attempt ANY ONE	
7.5	12,	(i)	Diagram	2
		(-)	Description	
				2
			$\frac{h_1}{F} = \frac{h_1}{f_1} + \frac{h_2}{f_2}$	
				2
	1		$F = \frac{f_1 f_2}{f_1 + f_2 - d}$	
			$f_1 + f_2 - d$	2
		(ii)	Explanation for chromatic aberration	3
			Derivation	5
	B)		Attempt ANY ONE	
		(i)	Description spherical aberration	4
			Any two methods of minimizations	4
		(ii)	Theory of formation of Newton's rings due to reflection	4
			To show that radius of nth dark ring is proportional to the square root	
	ļ .	<u> </u>	of a natural number	4
		<u> </u>		
ļ	<u>C)</u>		Attempt ANY ONE	
		(i)	Condition for achromatism, $f_1/f_2 = -\omega_1/\omega_2$	1
			$1/F = 1/f_1 + 1/f_2$	
			$f_1 = 25cm, f_2 = -50cm$	1
	 - -	(ii)	$f_1 = 6cm, f_2 = f = 2cm$	2_
		` _	d = 2f = 4cm	1
			$d = 2f = 4cm$ $F = \frac{f_1 f_2}{f_1 + f_2 - d} = 3 \text{ cm}$	ı
			First principal point = $Fd / f_2 = 6cm$,	1
	_		[-	1
	•	_	Second principal point = $Fd / f_1 = -2cm$	1
Q. 4	A)		Attempt ANY ONE	
		<u> </u>		

Q. P. Code:

Diagram Proper explanation for experimental arrangement (ii) Internal energy function or Internal energy Q - W = U ₅ - U ₁ When heat Q flows into the system, it gets converted into internal energy and hence internal energy of the system increases. \[\Delta \text{ is path independent} \\ Q = \Delta U + \text{ W is first law of thermodynamics} \\ \Differential form of first law of thermodynamics dQ = dU + dW \\ dQ = dU + PdV \\ Internal energy U is the sum of kinetic and potential energies of the particles constituting the system. It is possible to increase the internal energy of an adiabatically insulated system merely by compressing it. \[\begin{align*} \text{B} \end{align*} \text{Attempt ANY ONE} \\ \text{ (P} + \frac{\partial}{\partial} (V - b) = RT \\ \text{ P} = \frac{\partial}{\partial} \frac{\partial}{\partial} \frac{\partial}{\partial} \frac{\partial}{\partial} \frac{\partial}{\partial} \frac{\partial}{\partial} \frac{2}{\partial} \\ \text{ 2} \\ \text{ Tc} = \frac{\partial}{\partial} \\ \text{ Tc} = \frac{\partial}{\partial} \\ \text{ 2} \\ \text{ Tc} = \frac{\partial}{\partial} \\ \text{ The zeroth law of thermodynamics: If two bodies A and b are separately in thermal equilibrium with each other. \text{ Explanation/ Proof} \text{ 4} \] (i) \(\text{ V = 350 x 10^6 m}^3/\text{mol}, T = 273K \\ \text{ P} = \frac{\partial}{\partial} \parti					
Proper explanation for experimental arrangement 5			(1)	Carbon Ca	3
When heat Q flows into the system, it gets converted into internal energy and hence internal energy of the system increases. ΔU is path independent $Q = \Delta U + W$ is first law of thermodynamics D ifferential form of first law of thermodynamics $Q = dU + dW$ $dQ = dU + PdV$ Internal energy U is the sum of kinetic and potential energies of the particles constituting the system. It is possible to increase the internal energy of an adiabatically insulated system merely by compressing it. B) Attempt ANY ONE (i) $(P + \frac{a}{V^2})(V - b) = RT$ $P = \frac{RT}{V - b} - \frac{a}{v^2}$, find $\frac{dP}{dV}$, $\frac{d^2P}{dV^2}$ $V_c = 3b$ $T_c = \frac{8a}{27b^2}$ $a = \frac{27R^2Tc^2}{64Tc}$, $b = \frac{Vc}{3}$ (ii) Thermal interaction: Interaction between the two systems due only to the temperature difference between them. The zeroth law of thermodynamics: If two bodies A and b are separately in thermal equilibrium with a third body C, they are also in thermal equilibrium with each other. Explanation/ Proof C) Attempt ANY ONE (i) $V = 350 \times 10^{-6} \text{ m}^3/\text{mol}$, $T = 273K$ $P = \frac{RT}{V - b} - \frac{a}{V^2}$ $= \frac{8.31 \times 278}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 278}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{2}{8.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 430 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278} - \frac{2}{350 \times 10^{-12}}$ $= \frac{2}{9.31 \times 278}$					5
(i) $(P + \frac{a}{v^2})(V - b) = RT$ $P = \frac{RT}{V - b} - \frac{a}{v^2}$, find $\frac{dP}{dV}$, $\frac{d^2P}{dV^2}$ $V_c = 3b$ $T_c = \frac{8a}{27bR}$ $P_c = \frac{27b^2}{27b^2}$ $a = \frac{27R^2Tc^2}{64Tc}$, $b = \frac{Vc}{3}$ 2 (ii) Thermal interaction: Interaction between the two systems due only to the temperature difference between them. The zeroth law of thermodynamics: If two bodies A and b are separately in thermal equilibrium with a third body C, they are also in thermal equilibrium with each other. Explanation/ Proof 4 C) Attempt ANY ONE (i) $V = 350 \times 10^{-6} \text{ m}^3/\text{mol}$, $T = 273\text{K}$ $P = \frac{RT}{V - b} - \frac{a}{V^2}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{10.37}{10.0000} - \frac{10.37}{10.0000} - \frac{10.37}{10.0000} - \frac{10.37}{10.0000} - \frac{10.37}{10.0000} - \frac{10.37}{10.00000} - \frac{10.37}{10.000000} - \frac{10.37}{10.00000000000000000000000000000000000$			(ii)	When heat Q flows into the system, it gets converted into internal energy and hence internal energy of the system increases. \[\Delta U \text{ is path independent} \] \[Q = \Delta U + W \text{ is first law of thermodynamics} \] \[\Differential \text{ form of first law of thermodynamics } \] \[\Differential \text{ energy } \text{ U is the sum of kinetic and potential energies of the particles constituting the system.} \] It is possible to increase the internal energy of an adiabatically	
(i) $(P + \frac{a}{v^2})(V - b) = RT$ $P = \frac{RT}{V - b} - \frac{a}{v^2}$, find $\frac{dP}{dV}$, $\frac{d^2P}{dV^2}$ $V_c = 3b$ $T_c = \frac{8a}{27bR}$ $P_c = \frac{27b^2}{27b^2}$ $a = \frac{27R^2Tc^2}{64Tc}$, $b = \frac{Vc}{3}$ 2 (ii) Thermal interaction: Interaction between the two systems due only to the temperature difference between them. The zeroth law of thermodynamics: If two bodies A and b are separately in thermal equilibrium with a third body C, they are also in thermal equilibrium with each other. Explanation/ Proof 4 C) Attempt ANY ONE (i) $V = 350 \times 10^{-6} \text{ m}^3/\text{mol}$, $T = 273\text{K}$ $P = \frac{RT}{V - b} - \frac{a}{V^2}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $= \frac{10.37}{10.0000} - \frac{10.37}{10.0000} - \frac{10.37}{10.0000} - \frac{10.37}{10.0000} - \frac{10.37}{10.0000} - \frac{10.37}{10.00000} - \frac{10.37}{10.000000} - \frac{10.37}{10.00000000000000000000000000000000000$		<u> </u>			
to the temperature difference between them. The zeroth law of thermodynamics: If two bodies A and b are separately in thermal equilibrium with a third body C, they are also in thermal equilibrium with each other. Explanation/ Proof 4 C) Attempt ANY ONE $V = 350 \times 10^{-6} \text{ m}^{3}/\text{mol}, T = 273\text{K}$ $P = \frac{RT}{V-b} - \frac{a}{V^{2}}$ $= \frac{8.31 \times 273}{(350-43)\times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $P = 43.692 \times 10^{5} \text{ N/m}^{2}$		B)		$(P + \frac{a}{v^2})(V - b) = RT$ $P = \frac{RT}{V - b} - \frac{a}{v^2}, \text{ find } \frac{dP}{dV}, \frac{d^2P}{dV^2}$ $V_c = 3b$ $T_c = \frac{8a}{27bR}$ $P_c = \frac{a}{27b^2}$ $a = \frac{27R^2Tc^2}{64Tc}, b = \frac{Vc}{3}$	2 2 2
(i) $V = 350 \times 10^{-6} \text{ m}^3/\text{mol}$, $T = 273 \text{ K}$ $P = \frac{RT}{V - b} - \frac{a}{V^2}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $P = 43.692 \times 10^5 \text{ N/m}^2$			(11)	to the temperature difference between them. The zeroth law of thermodynamics: If two bodies A and b are separately in thermal equilibrium with a third body C, they are also in thermal equilibrium with each other.	2
(i) $V = 350 \times 10^{-6} \text{ m}^3/\text{mol}$, $T = 273 \text{ K}$ $P = \frac{RT}{V - b} - \frac{a}{V^2}$ $= \frac{8.31 \times 273}{(350 - 43) \times 10^{-6}} - \frac{0.37}{350 \times 350 \times 10^{-12}}$ $P = 43.692 \times 10^5 \text{ N/m}^2$	-			Attempt ANY ONE	
$P = 43.692 \times 10^5 \text{ N/m}^2$			(i)	$V = 350 \times 10^{-6} \text{ m}^3/\text{mol}, T = 273 \text{ K}$ $P = \frac{RT}{V - b} - \frac{a}{V^2}$ 8.31 × 273 0.37	_
				$P = 43.692 \times 10^{-8} \text{ N/m}^2$	
			(ii)		

Q. P. Code:

/				
			$W = P(V_2 - V_1)$	
ļ]	١,	$W = nR(T_2 - T_1)$	2
l		1.	$Q = (U_2 + PV_2) - (U_1 + PV_1)$	}
]			Enthalpy H = U+ PV	2
			$Q = H_2 - H_1$	
).5			Attempt ANY FOUR	5
		(i)	Description with explanation	
		(ii)	$y = 3k (1-2\sigma)$. $y = 2\eta (1+\sigma)$.	5
	i [$y = 3k (1-26)$. $y = 2k(1-26)$. Equate these two equations: $\sigma \le \frac{1}{2} - 1 \le \sigma \le 0.5$ explain.	1
	 - 	(iii)	$\beta = \lambda/2\mu\theta \dots (01M),$	1
	'		$\theta = \lambda/2\mu\beta \dots (01M)$	2
			$\theta = \alpha / 2\mu \rho \dots (02M),$	1
		İ	$\theta = calculations \dots (02M)$	•
	<u> </u>		$\theta = 18.17 \sec .ofarc(01M)$	1
_		(iv)	Correct ray diagram (01M),	3
	1		Description(03M)	1
	<u> </u>		Abe's Sine condition(01M) A gas at high temperature and low pressure behaves like a perfect	
		(v)	A gas at high temperature and low pressure	
			gas and obeys PV = nRT Perfect gas equation does not put any restriction on the increase in	
	1		Perfect gas equation does not put any tost resonant	
			pressure and decrease in volume. When PV versus P isothermals are plotted for real gases at ordinary	_
			is a bearied that for dases like livelibet and norman	3
			The same with the same with the same of th	
			dioxide, the isothermals show an initial dip and then PV increases	
				_
	1		with P.	2
			Diagram of isothermals	
I				
			Behaviour of pV Behaviour of	
			hydrogen or	
			helium	
ļ				
			Perfect gas Perfect gas behaviour	1
			behaviour	
			Fig.7.4: (pV - p) isothermal	
			Fig. (3: (6V - p) inothermal for N, (or CO,) for hydrogen (or helium)	
			A. A. A. C.	+ -
-	_	(vi)	For perfect gas, $(\frac{\partial \overline{u}}{\partial v})T = 0$	2
1		ָריי)		
			PV = RT	
			$P\left(\frac{\partial U}{\partial T}\right)P = R$	3
			$C_p - C_v = R$ for a perfect gas.	