

NB: Draw neat Diagrams wherever necessary. Max.Marks 100 **Duration 3 Hours**

Q1A Fill in the blanks.

10*1 = 10

- Diamond and graphite are POLYMORPH of each i) other.
- ii) The ratio between theweight of a volume of the mineral and the weight of an equal volume of water at 4°C is known as the SPECIFIC GRAVITY
- HARDNESSis a measure of the relative ability of iii) amineral to resist scratching,
- Quartz mineral shows no cleavage but iv) CONCHOIDALtype of fracture.
- A form having twelve faces in Isometric system v) Normal class is called as DODECAHEDRAL/DODECAHERDON form.
- Amphiboles are DOUBLE-chain ionosillicates. vi)
- Axinite is an example of a normal class of vii) aTRICLINIC system.
- Biotite and muscovite are examples of PHYLLOviii) silicates.
- Yellow colour variety of quartz is identified ix) **asCITRINE**
- Calcite shows total THREE cleavage planes. X)

Q1B Define the following:

(2X5=10).

Ionic bond and covalent bond.

Aus: In ionic bonding, the atoms are bound by attraction of oppositely charged ions, whereas, in covalent bonding, atoms are bound by sharing electrons to attain stable electron configurations.

- Vitreous luster and adamantine luster. ii) Ans: vitreous: exhibited by broken glass. Adamantite: exhibited by mineral with high index of refraction, eg diamond.
- Neosilicate structure and cyclosilicate structure. iii) Ans: Nesosilicate: single tetrahedra with Si:O=1:4. Cyclosilicate: silicate structure which has Si:O= 1:3, and appears ring like.
- Octahedron form and pedion form. iv) Ans: octahedron: closed form with eight equilateral faces.

Pedion: open form with one single face.

Conchoidal fracture and Hackly fracture. Ans: conchoidal: curved fracture surface seen in

broken glass.

Hackly: surface which is rough with sharp and jagged

Q2 Answer any two of the following:

(2X10=20)

a) Define cleavage and describe different types of cleavage present in crystal. Does quartz shows cleavage?

Ans: tendency of mineral to break along parallel plane. Based on faces: cubic-3set, octahedron-4 set, basal-one set, prismatic-2set.

Based on perfection: perfect, good, poor.

b) Describe fluorescence and phosphorescence in a mineral and give example for each.

Ans: fluorescence: mineral giving different colour than original when exposed to ultraviolet light.

Phosphorescence: mineral continue to glow even after removal of the source.

 Define polymorphism and describe different mechanisms for polymorphism.

Ans: polymorphism: mineral having same composition but different crystal structure. Eg, diamond and graphite. Types of polymorphism: reconstructive transformation, displacive transformation, order-disorder transformation.

 d) Define habit. Write a short note on important habits shown by minerals.

crystal habit: general shape of a mineral, which includes irregularities due to growth.

Different types of habit: massive, granular, compact, lamellar, bladed, fibrous, acicular, radiating, dendritic, banded, botryoidal, oolitic, pisolitic,

Q3 Answer any two of the following:

(2X10=20)

- a) Name the class and crystal system in which granet mineral crystallizes. Describe its symmetry element.
 Ans: isometric, hexaoctahedral class, axis: 13, plane:9 and centre is present.
- Describe ditetragonal dipyramidal class of tetragonal system, giving its axes relationship and symmetry element.

Ans: $a_1 = a_2 \neq c$ and angle between three axes is 90° .

Symmetry: axis: 5, plane: 5, centre is present.

 Describe Dihexagonal dipyramidal class of hexagonal system, giving its axes relationship and symmetry element.

Ans: Crystallographic axes relationship: $a_1 = a_2 = a_3 \neq C$,

a₁^a₂^a₃. Symmetry elements:

Axis of symmetry: 7, plane of symmetry: 7, center of symmetry is present.

 d) Barite mineral crystallizes in which crystal system and class. Write its axes relationship and symmetry element.

Ans: rhombic dipyramidal class of orthorhombic. $a \neq b \neq c$ and angle is 90° .

Symmetry: axis: 3, plane: 3 and centre present.

Q4 Answer any two of the following:

 Describe briefly tectosilicate structure and give one suitable mineral example.

Ans: tectosilicate, Si:O 1:2, quartz and feldspar.

- Define the silicon oxygen ration in sorosilicate structure. Explain with neat sketch sorosilicate mineral by giving a suitable example.
- c) Ans: 2:7, hemimorphite.

d) Olivine mineral shows which type of silicate structure, give its physical properties.

ans: nesosilicate, , physical properties of olivine: fracture: uneven to concoidal, hardness: 6-7, colour: olive green, luster: vireous to sub-vitreous.

 e) Actinolite mineral belongs to which mineral group, define silicon oxygen ratio and write its physical properties.

Ans: pyroxene: Si:O 1:3, Physical properties: cleavage: 2 set, hardness: 5-6, sp. Gravity: 3.2 to 3.6, luster: vitreous, colour: grayish to greenish black.

Q5 Write short note on ANY FOUR of the following:

Colour of a mineral.

Ans: absorption of certain wave length of light, remaining wavelength of white light gives colour to mineral.

(4X5=20)

(2X10=20)

Page 3 of 4

ii) Electrical properties seen in quartz.

Ans: piezoelectricity and pyroelectricity.

iii) Prism, pyramid and pinacoid forms.

Ans: prism: open form with all faces parallel to c-axis.

Pyramid: faces non-parallel and when extrapolate intersects each other.

Pinacoid: two parallel similar faces.

- iv) Crystallographic zone.Ans: set of parallel faces in a crystal.
- v) Physical properties of plagioclase. Ans: physical property: cleavage: 1 set, hardness: 6, sp. Gravity: 2.54-2.57, luster: vitreous, colour: white, flesh-red, etc.
- vi) Physical properties of muscovite.

 Ans: cleavage: 1set, hardness: 2-2.5, sp.gravity: 2.76-2.88, colour: colourless, shades of green and brown.