

From Dean's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development. Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3-2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member -Management Council, Senate, Academic Council University of Mumbai, Mumbai

B. E. Electronics and Electrical Engineering - (Semester VII)	

Sub Code	Subject Name	Teaching	g Scheme (H	rs)	Credits A	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC701	Drives & Control	04			04			04
ELC702	Embedded System & Real Time Programming	04			04			04
ELC703	Basics of VLSI Design	04	-		04		-	04
ELC704	Power System Operation & Control	04			04			04
ELE70X	Elective-I	04			04			04
ELL701	Drives & Control Laboratory		02			01		01
ELL702	Embedded System & Real Time Programming Laboratory		02			01		01
ELL703	Basics of VLSI Design Laboratory		02			01		01
ELL704	Power System Operation & Control Laboratory		02			01		01
ELP701	Project-I		06			03		03
Total		20	14		20	07		27

		Examination Scheme								
Subject	Subject Name			Theory						
Code		Internal	Assessme	ent	End	Exam.	Term Work	Pract.	Total	
Couc		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)		/Oral	I otai	
ELC701	Drives & Control	20	20	20	80	3			100	
ELC702	Embedded System & Real Time Programming	20	20	20	80	3			100	
ELC703	Basics of VLSI Design	20	20	20	80	3			100	
ELC704	Power System Operation & Control	20	20	20	80	3			100	
ELE70X	Elective-I	20	20	20	80	3			100	
ELL701	Drives & Control Laboratory						25	25	50	
ELL702	Embedded System & Real Time Programming Laboratory						25	25	50	
ELL703	Basics of VLSI Design Laboratory						25	25	50	
ELL704	Power System Operation & Control Laboratory						25		25	
ELP701	Project-I						25	25	50	
Total		100	100	100	400		125	100	725	

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)} B. E. Electronics and Electrical Engineering - (Semester VIII)

Sub Code	Subject Name	Teaching	g Scheme (H	Hrs)	Credits A	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC801	Digital Image Processing	04			04			04
ELC802	Industrial Automation	04			04			04
ELC803	High Voltage DC Transmission	04			04			04
ELE80X	Elective- II	04			04			04
ELL801	Digital Image Processing Laboratory		02			01		01
ELL802	Industrial Automation Laboratory		02			01		01
ELL803	High Voltage DC Transmission Laboratory		02			01		01
ELL804	Elective- II Laboratory		02			01		01
ELP801	Project-II		12			06		06
Total	• •	16	20		16	10		26

			Examination Scheme									
Subject				Term	Pract./							
Code	Subject Name	Internal	Assessm	ent	End	Exam.	Work	Oral	Total			
		Test1	Test 2	Avg.	Sem. Exam.	Duration (in Hrs)						
ELC801	Digital Image Processing	20	20	20	80	3			100			
ELC802	Industrial Automation	20	20	20	80	3			100			
ELC803	High Voltage DC Transmission	20	20	20	80	3			100			
ELE80X	Elective- II	20	20	20	80	3			100			
ELL801	Digital Image Processing Laboratory						25	25	50			
ELL802	Industrial Automation Laboratory						25	25	50			
ELL803	High Voltage DC Transmission Laboratory						25	25	50			
ELL804	Elective- II Laboratory						25	25	50			
ELP801	Project-II						50	50	100			
Total	1			80	320		150	150	700			

Subject Code	Elective - I	Subject Code	Elective – II
ELE701	Protection & Switch Gear	ELE801	Advanced Control System
	Engineering		
ELE702	Renewable Energy &	ELE802	Power Quality
	Energy Storage Systems		
ELE703	Artificial Neural Network	ELE803	Analog & Mixed Signal VLSI
ELE704	Optical Fibre	ELE804	Robotics
	Communication		
ELE 705	Digital Signal Processing &		
	Processors		

Course Code	Course Name	Теа	ching Sch	eme	Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC701	Drives and Control	4	-	-	4	-	-	4

	Course Name			Exan	I				
Course Code				Tł					
		Internal Assessment			End Exam.		Term work	Pract/ Oral	Total
		Test 1	Test 2	Avg	Sem. Exam.	Duration (in Hrs)			
ELC701	Drives and Control	20	20	20	80	03	-	-	100

Course Code	Course Name	Credits					
ELC701	Drives and Control	4					
Course	. To expose the students to the Engineering fundamentals of various						
Objectives	Drives and its control, Dynamic operation and their application	Drives and its control, Dynamic operation and their applications.					
Course	1. Gain an ability to design and conduct performance experime	nts, as well as					
Outcomes	to identify, formulate and solve drives related problems.						

Module	Contents	Hours
	Electrical Drives: Introduction & Dynamics	
	Introduction, Advantages of Electrical Drives, Parts of Electrical Drives,	
	Choice of Electrical Drives, Status of DC and AC Drives, Fundamental	
1	Torque equations, Speed Torque conventions and Multi-quadrant	
1	Operation, Equivalent values of Drive Parameter, Measurement of Moment	10
	of Inertia, Components of Load Torques, Nature and Classification of Load	
	Torques, Calculation of Time and Energy-Loss in Transient Operations,	
	Steady State Stability, Load Equalization	
	Selection of Motor Power Rating:	
2	Thermal Model of Motor for Heating and Cooling, Classes of Motor	04
	Rating, Determination of Motor Rating.	
	Control of Electrical Drives:	
3	Modes of Operation, Speed Control, Drive Classification, Closed loop	
	Control of Drives	04
	DC Drives:	
4	Review of Speed Torque relations for Shunt, Series and Separately excited	
	Motors, Review of Starting, Braking (Regenerative, Dynamic, Plugging),	

Un	iversity of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
	Review of Speed control, Controlled rectifier fed DC drives (separately excited only): Single phase fully-controlled Rectifier, Single phase Half	06
	controlled Rectifier, Three phase fully-controlled Rectifier, Three phase	
	Half-controlled Rectifier, Dual Converter Control, Chopper Control -	
	Motoring and Braking of separately excited and Series Motor.	
	(No numerical from this module)	
	AC Drives:	
	Induction Motor drives, Review of Speed-Torque relations, Review of	
	Starting methods, Braking (Regenerative, Plugging and AC dynamic	
	braking), Transient Analysis, Speed Control: Stator voltage control,	
5	Variable frequency control from voltage source, Static Rotor Resistance	18
5	control, Slip Power Recovery - Static Scherbius Drive, Review of d-q	
	model of Induction Motor, Principle of Vector Control, Block diagram of	
	Direct Vector Control Scheme, Comparison of Scalar control and Vector	
	control, Basic Principle of Direct Torque Control (block diagram) of	
	induction motor. Introduction to Synchronous Motor Variable Speed drives.	
	Special Motor Drives:	
6	Stepper Motor drives- Types, Torque vs. Stepping rate characteristics,	
0	Drive circuits, Introduction to Switched reluctance motor drives and	06
	Brushless DC motor drives.	

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Books Recommended:

Text Books:

- 1. Fundamentals of Electrical Drives by G.K.Dubey, Narosa Publication
- 2. A First Course on Electrical Drives by S.K.Pillai, New Age International.
- 3. Electrical Drives: Concepts and Applications by VedamSubramanyam, T.M.H
- 4. Modern Power Electronics and AC Drives by B.K.Bose, Prentice Hall PTR
- 5. Special Electrical Machines by E.G. Janardanan, PHI

Reference Books:

- 1. Electric Motor Drives: Modeling, Analysis and Control by Krishnan.R, PHI
- 2. Power Electronics by Joseph Vithayathil, Tata McGraw Hill
- 3. Power Semiconductor Controlled Drives by G. K. Dubey, Prentice Hall International.

	Course Name	Teaching Scheme			Credits	assigned		
Course Code								
	Embedded System	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC702	& Real							
LLCT02	Time	4	-	-	4	-	-	4
	Programming							

		Examination Scheme							
Course Code				Th					
	Course Name	Internal Assessment		End Sem.		Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam.	Duration (in Hrs)			
ELC702	Embedded System & Real Time Programming	20	20	20	80	03	-	-	100

Course Code	Course Name	Credits
ELC702	Embedded System & Real Time Programming	4
Course Objectives	 Understanding embedded system, processor & distribute systems architecture. Understanding Real Time system, Real time task schedu time operating system. 	
Course Outcomes	 Students should be able to design distributed embedded specific example. Students should be able to schedule real time tasks as per requirement. 	2

Module	Contents	Hours
1	Introduction to Embedded systems, Design Metrics, Examples of embedded systems, hardware/software co- design, Embedded micro controller cores (ARM, RISC, CISC, and SOC), embedded memories, sensors and interfacing techniques, Architecture of Embedded Systems.	4
2	Introduction to MSP 430 RISC Controllers, parallel I/O, external interrupts. Introduction to ARM 7 instruction set, addressing modes, operating modes with ARM core, ARM7 TDMI modes, ADC, Timers, Interrupt structure. Byte ordering (LE, BE), Thumb mode normal mode instructions changes, Pipeline utilization with all register allocations, Floating to fixed point	12

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
conversion fundamentals.	
System design with ARM as key processor.	
DSP features of ARM Core	
Digital Signal Controllers -DSC differences with conventional	micro
controllers	
Serial communications: SCI, SPI, Timing generation and measure	ements.
Analog interfacing and data acquisition.	
Hardware Interrupts:	
- Various C ISR Declaration syntaxes	
- Interrupt Vectors, Priorities and Nesting	
3 - Tick Timer Interrupt as heart-beat of embedded system 7-Seg	g LED, 8
Segment	0
- LCD, Alphanumeric LCD, Graphic LCD displays	
Communications and Networks	
- RS485 (2 and3 wire) and Modbus Protocol (Intro only)	
- Ethernet and TCPIP Stack (Features and Usage only) - CAN features	ires and
protocol	
Software Programming in Assembly Language (ALP) and in High	h Level
Language 'C'	
'C' Program Elements: Header and Source Files and Prepr	ocessor
Directives, Program Elements: Macros and Functions, Program Ele	
4 Data Types, Data Structures, Modifiers, Statements, Loops and P	
Queues, Stacks, Lists and Ordered Lists	, ,
Embedded Programming in C++, 'C' Program Compiler and	Cross-
Compiler, Source Code Engineering Tools for Embedded	
Optimization of Memory Needs.	,
Real-time concepts, real-time operating systems, Required	RTOS
services/capabilities (in contrast with traditional OS). Real-world	
blocking, unpredictability, interrupts, caching, Benefits of using RTC	
- Concepts of Tasks/Threads/Process	
5 - Multitasking - Task Scheduling	10
- Task management	
- Inter-task communication and Synchronization:	
- Device Drivers	
- How to choose an RTOS	
Fundamentals of Design and Development	
	lologies
Applications of Embedded Systems:	-
Case studies Consumer and Home	ć
6 - Industrial and Automation	6
- Medical	
- Robotics	
- Access Control Systems (Smart Cards, RFIDs, Finger Scan)	

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Books Recommended:

Text Books

- 1. Rajkamal, Embedded Systems Architecture, Programming and Design, Tata McGraw Hill, Second edition, 2009
- 2. Shibu K V, Introduction to Embedded Systems, Tata Mc Graw Hill, 2009
- 3. Sriram Iyer and Pankaj Gupta, Embedded Realtime Systems Programming, Tata McGraw Hill, first edition, 2003

Reference Books

- 1. Embedded Microcomputer Systems -Jonathan W. Valvano ñ Thomson
- 2. An Embedded Software Primer ñ David E. Simon ñ Pearson Education
- 3. Embedded real time system, Dr. K.V.K.Prasad, Dreamtech Press

Course Code	Course Name Teaching Scheme Credits assigned							
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC703	Basics of VLSI Design	4	-	-	4	-	-	4

				Exam	ination S	Scheme	-	-	
Course		Theory							
Code	Course Name	Internal Assessment		End	Exam. Duration	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Sem. Exam.	(in Hrs)			
ELC703		20	20	20	80	03	-	-	100
	Basics of VLSI Design								

Course		
Code	Course Name	Credits
ELC703	Basics of VLSI Design	4
Course Objectives	 To teach fundamental principles of VLSI circuit of techniques To highlight the circuit design issues in the context of VI 	с .
Course Outcomes	 After successful completion of the course student will be at 1. demonstrate a clear understanding of choice of technolo scaling 2. design MOS based circuits and draw layout 3. realize logic circuits with different design styles 4. demonstrate a clear understanding of system level des protection, timing and power dissipation 	ogy and technology

	University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
Module	Contents	Hours
1	Technology Trend Technology Comparison: Comparison of BJT, NMOS and CMOS technology MOSFET Scaling: Types of scaling, Level 1 and Level 2 MOSFET Models, MOSFET capacitances	6
2	MOSFET Inverters Circuit Analysis: Static and dynamic analysis (Noise, propagation delay and power dissipation) of resistive load and CMOS inverter, comparison of all types of MOS inverters, design of CMOS inverters, CMOS Latch-up Logic Circuit Design: Analysis and design of 2-I/P NAND and NOR using equivalent CMOS inverter	10
3	MOS Circuit Design Styles Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo NMOS, Domino, NORA, Zipper, C2MOS, sizing using logical effort Circuit Realization: SR Latch, JK FF, D FF, 1 Bit Shift Register, MUX, decoder using above design styles	10
4	Semiconductor Memories SRAM: ROM Array, SRAM (operation, design strategy, leakage currents, read/write circuits), DRAM (Operation 3T, 1T, operation modes, leakage currents, refresh operation, Input-Output circuits), Flash (mechanism, NOR flash, NAND flash) Peripheral Circuits: Sense amplifier, decoder	8
5	Data Path Design Adder: Bit adder circuits, ripple carry adder, CLA adder Multipliers and shifter: Partial-product generation, partial-product accumulation, final addition, barrel shifter	8
6	 VLSI Clocking and System Design Clocking: CMOS clocking styles, Clock generation, stabilization and distribution Low Power CMOS Circuits: Various components of power dissipation in CMOS, Limits on low power design, low power design through voltage scaling IO pads and Power Distribution: ESD protection, input circuits, output circuits, simultaneous switching noise, power distribution scheme Interconnect: Interconnect delay model, interconnect scaling and crosstalk 	10

University of	Mumbai {B.E.(Electronics	and Electrical Engineering	R-2012)}
---------------	--------------------------	----------------------------	----------

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)} End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Recommended Books:

1. Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.

2. Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, "Digital Integrated Circuits:A Design Perspective", Pearson Education, 2nd Edition.

3. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.

4. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.

5. Debaprasad Das, "VLSI Design", Oxford, 1st Edition.

6. Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.

Course Code	Course Name	0			Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC704	Power System Operation and Control	4	-	-	4	-	-	4

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

			Examination Scheme									
Course Code		Theory					Theory					
	Course Name	Internal Assessment		End Sem.	Exam. Duration	Term work	Pract/ Oral	Total				
		Test 1	Test 2	Avg	Exam.	(in Hrs)						
ELC704	Power System Operation and Control	20	20	20	80	03	-	-	100			

Course Code	Course Name	Credits				
ELC704	Power System Operation and Control	4				
Course	1. To impart knowledge in power system operation and its co	ntrol.				
Objectives	2. To study steady state and transient analysis in power system.					
Course	1. Student should be capable to analyze power system problem	m and find out				
Outcomes	its solution.					

Module	Contents	Hours
1.	Load Flow Studies: Network model formulation, Y bus formation and singular matrix transformation. Load flow problem, Gauss Seidel (GS) methods. Newton Raphson methods (NR) (Polar, Rectangular form). Decoupled, Fast Decoupled load flow and comparison. Concept of DC loads flow.	10
2.	Economic System Operation: Generator operating cost:- input-output, Heat rate and IFC curve, Constraints in operation, Coordinate equation, Exact coordinate equation, Bmn coefficients, transmission loss formula. Economic operation with limited fuel supply and shared generators, Economic exchange of power between the areas Optimal unit commitment and reliability considerations.	08
3.	Automatic Generation and control: Load frequency control problem, Thermal Governing system and transfer function. Steam Turbine and Power system transfer function. Isolated power system:- static and dynamic response PI and control implementation Two area load frequency	12

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}					
	control, static and dynamic response Frequency biased Tie line Bias				
	control-implementation and effect Implementation of AGC, AGC in				
	restructured power system, under frequency load shedding, GRC, Dead				
	band and its effect.				
	Inter Change of Power and Energy: Multiple utility interchange	04			
4.	transaction, Other types of transactions, Power Pool.	04			
5.	Power System Stability: Types of Stability Study, Dynamics of synchronous machine, Power angle equation, Node elimination technique, Simple Systems, Steady state stability, Transient stability, Equal area criteria and its applications Numerical solution of swing equation, Modified Euler"s method.	e 10			
6.	Voltage stability: Introduction, reactive power transmission, short circuit capacity, Problems of reactive power transmission, rotor angle stability and voltage stability, surge impedance loading, P-V and V- Q curve, various methods of voltage control –shunt and series compensation. Voltage Control-Tap changing transformers, Booster transformers, Static voltage compensators, Thyristorised series voltage injection	04			

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Books Recommended:

Text Books:

- 1. Kothari. D. P, Nagrath. I. J., "Modern Power System Analysis", TMH Publication, Third Edition. 2008
- 2. Kothari. D. P, Nagrath. I. J., "Power System Engineering", TMH Publication, Second Edition, 2008
- 3. George Kausic. "Computer Aided Power System Analysis", Prentice Hall Publication.2008
- 4. Chakrabarti .A, Halder. S, "Power System Analysis- Operation and Control", PHI, Second Edition 2008.
- 5. Allen. J. Wood., Bruce. F. Wollenberg., "Power Generation operation and Control", Wiley India, Second Edition, 2007.
- 6. Prabha Kundur, "Power System Stability and Control", TMH Publication, 2008.

. . .

Reference Books:

- 1. Soman. S. A, Kharphade. S. A, and Subha Pandit "Computer Methods for Large Power System Analysis, an Object Oriented Approach", Kluwer Academic Publisher New York 2001
- 2. Anderson P.M, Fouad A.A, "Power System Control and Stability", Wiley InterScience, 2008 Edition
- 3. Kimbark E W, "Power System Stability", Volume I, and III, Wiley Publication.
- 4. Jr W.D. Stevenson., G. J. Grainger. "Elements of Power System". Mc-GrawHill, Publication.
- 5. Hadi Saadat, Power System Analysis, TMH Publication, Second Edition, 2002
- 6. S.Sivanagaraju, G.Sreenivasan Power System Operation and Control, Pearson Publication, 2010.

Course Code	Course Name	Teaching Scheme			Credits	assigned		
	Elective-I	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELE701	Protection & Switch Gear Engineering	4	-	-	4	-	-	4

	Course Name	Examination Scheme							
Gumm				Tł					
Course Code		Internal Assessment			End	Exam. Duration	Term work	Pract/ Oral	Total
		Test 1	Test 2	Avg	Sem. Exam.	(in Hrs)			
ELE701	Elective-I Protection & Switch Gear	20	20	20	80	03	-	-	100
	Engineering								

Course Code	Course Name	Credits				
ELE701	Elective-I Protection & Switch Gear Engineering	4				
Course	• To impart the basic knowledge on power system prote	ection concepts,				
Objectives	substation equipment and protection schemes					
Course	• This knowledge leads to the in depth understandin power system and the major apparatus used in the system.	-				
Outcomes	protected against faults and abnormal conditions					

Module	Contents	Hours
	Instrument Transformers:	
	Current Transformers - Introduction, Terms and Definitions, Accuracy	
1.	class, Burden on CT, Vector diagram of CT, Magnetization curve of CT,	
	Open circuited CT secondary, Polarity of CT and connections, Selection of	04
	CT for protection ratings, Types & construction, Multi wound CTs,	
	Intermediate CTs, Transient behavior, Application for various protections.	
	Voltage Transformers - Introduction, Theory of VT, Specifications for VT,	
	Terms & definitions, Accuracy classes & uses, Burdens on VT,	
	Connection of VTs, Residually connected VT, Electromagnetic VT, CVT	
	& CVT as coupling capacitor, Transient behavior of CVT, Application of	

	niversity of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
	CVT for protective relaying.	
	Substation Equipment:	
	Substation Equipment. Switching Devices:- Isolator & Earthling Switch(Requirements &	
2.	definitions, Types of construction, Pantograph isolators, Ratings), Contactors(Basic working principle, Terms & definitions, Contactors as starters for motors, Rated characteristics/utilization category of contactors), Circuit Breakers (working principle, Construction, operating mechanisms, Arc initiation, arc quenching principles, ratings & applications of MCB, MCCB, ELCB, air circuit breakers, oil circuit breakers, SF6 circuit breakers, vacuum circuit breakers, Mechanical life, electrical life and testing of circuit br3eakers), Switch Boards, Acquaintance with ISI Standards HRC Fuses & their applications -Introduction, types of devices with fuse, definitions, construction, fuse link of HRC fuse, Action of HRC fuse,	12
	shape of fuse element, specification of a fuse link, characteristics of fuse, cut-off, classification & categories, selection of fuse links, fuse for protection of motor, discrimination, fuse for protection of radial lines/meshed feeders, equipment incorporating fuses, high voltage current limiting fuses, expulsion type high voltage fuses, drop out fuse.	
	Introduction to Protective relaying: About protective relaying, Shunt &	
3.	Series Faults, causes and Effects of faults, Importance of protective relaying, Protective zones, primary & Back-up protection, Back-up protection by time grading principle, desirable qualities of protective relaying, some terms in protective relaying, Distinction between relay unit, protective scheme and Protective system, Actuating quantities, Thermal	10
	Relays Electromechanical relays and static relays, Power line carrier channel, programmable relays, system security, role of engineers. Electromagnetic relays - Introduction, basic connections of relay, Auxiliary switch, sealing and auxiliary relays, measurement in relays, Pick up, drop off, Attracted armature & induction disc relays, Thermal, bimetal relays, Frequency relays, under/over voltage relays, DC relays, All or nothing relays.	
	Different Principles of protection - Over current& earth fault (non- directional & directional types), differential protection, distance protection (Working Principle of Impedance relay, Causes and remedies of Over reach-under reach, Reactance and Mho relay, Power swing blocking relay).	
4.	Protection schemes provided for major apparatus: Generators - Stator side(Differential, Restricted Earth fault, protection for 100% winding, Negative phase sequence, Reverse power, turn-turn fault), Rotor side (Field suppression, field failure, Earth fault, turn to turn fault)	12

Un	iversity of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
	Transformers-Differential protection for star delta Transformer,	
	Harmonic restraint relay, REF protection, Protection provided for incipient	
	faults (Gas actuated relay).	
	Induction motors - Protection of motor against over load, short circuit,	
	earth fault, single phasing, unbalance, locked rotor, phase reversal, under	
	voltage, winding temperature.	
	Protection of Transmission Lines:	
	Feeder protection - Time grading, current grading, combined time &	
5.	current grading protection provided for Radial, Ring Main, Parallel, T-	06
	Feeder.	
	Bus Zone Protection - Differential protection provided for different types of	
	bus zones.	
	LV, MV, HV Transmission Lines - Protection provided by over current,	
	earth fault, Differential and Stepped distance protection.	
	EHV & UHV Transmission lines - Need for auto reclosure schemes, Carrier	
	aided distance protection (Directional comparison method), Power Line	
	Carrier Current protection (Phase comparison method).	
	Introduction to Static & Numerical Relays	
6.	Advantages and Disadvantages, Revision and application of op-amps, logic	04
	gates, DSP, Signal sampling, Relays as comparators (Amplitude & phase),	
	Distance relays as comparators.	

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Books Recommended:

Text Books:

- 1. Switchgear & Protection by Sunil.S.Rao, Khanna Publications
- 2. Power system Protection & Switchgear by Badriram Vishwakarma, TMH
- 3. Power System Protection And Switchgear by Bhuvanesh A O, Nirmal CN, Rashesh PM, Vijay HM, Mc Graw Hill

Reference Books:

- 1. Fundamentals of protection by Paithanker & Bhide.S.R, P.H.I
- 2. Static Relays by Madhava Rao, TMH
- 3. A text book on Power system Engineering by Soni, Gupta, Bhatnagar & Chakraborthi, Dhanpat Rai & Co
- 4. Protective Relaying by Lewis Blackburn, Thomas.J.Domin
- 5. Power System Protection by P.M.Anderson, Wiley Interscience

Course Code	Course Name	Teaching Scheme			Credits assigned			
	Elective-I	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELE702	Renewable Energy and Energy Storage Systems	4	-	-	4	-	-	4

	Course Name	Examination Scheme								
G				Tł						
Course Code		Internal Assessment			End Sem.	Exam. Duration	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam.	(in Hrs)				
ELE702	Elective-I Renewable Energy and Energy Storage	20	20	20	80	03	-	-	100	
	Systems									

Course Code	Course Name	Credits
ELE702	Elective-I Renewable Energy and Energy Storage Systems	4
Course Objectives	 To introduce the new paradigm of power generation renewable energy and the various means used for power optimization. To relate and study the various energy storage technol significance in the context of renewable energy based approximation. 	processing and ogy and their
Course Outcomes	 Students will understand the basics of utilization of re sources, related power systems configurations and bas power grid scenario. 	

Module	Contents	Hours
1.	Introduction: Review of worlds production and reserves of commercial energy sources, India"s Production and reserves, energy alternatives, Review of conventional and non conventional energy sources. Distributed generation, Future trends in power generation and distribution.	04
2.	Solar Energy: Review of solar thermal applications-solar thermal conversion devices and storage applications. Review of solar photovoltaic (PV) cells, principle of power generation using solar PV; Solar PV cell model, emerging solar cell technologies; Solar PV modules from solar cells, Mismatch in module , hot spots in the module , Bypass diode, Design and structure of PV modules , PV module power output, I-V and power curve of module; BOS of PV system, battery charge controllers, MPPT, and different algorithms for MPPT, distributed MPPT, Types of PV systems; Design methodology of standalone PV system. Solar PV Micro-inverters. Power quality and protection issues, review of regulatory standards.	14
3.	Wind Energy: Review of wind energy system and its components, types of wind turbines, characteristics; Power generation and control in wind energy systems, performance calculations of wind energy systems. Topologies of WES, WES with rectifier / inverter system, Power Converters for Doubly Fed Induction Generators (DFIG) in Wind Turbines.	08
4.	Fuel Cell: Review of fuel cells and their principle of operation, Review of types of fuel cell and their performance comparison. Topologies of fuel cell power systems, applications.	05
5.	Other Sources: Review of other nonconventional sources, their features and applications; Biomass, Tidal, Ocean Thermal Electric Conversion, geothermal, and Micro- hydro.	03
6.	Energy Storage Forms of energy storage, importance of storage system in new power generation scenario; Types, characteristics and performance evaluation of: batteries, ultra-capacitors, flywheels, SME, pumped hydro storage system; Applications of Energy storage in distributed generation, smart grid systems, Electric and Hybrid electric vehicles. Hybrid power system based on renewable energy and energy storage.	14

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Books Recommended:

Reference Books:

- 1. Chetan Singh Solanki , Solar Photo Voltaics , PHI Learning Pvt Ltd., New Delhi, 2009
- 2. Hashem Nehrir and Caisheng Wang, Modeling and control of fuel cells: Distributed Generation Applications, IEEE Press, 2009
- 3. J.F. Manwell and J.G. McGowan, Wind Energy Explained, theory design and applications, Wiley publication
- 4. D. D. Hall and R. P. Grover, Biomass Regenerable Energy, John Wiley, New York, 1987.
- 5. Felix A. Farret and M. Godoy Simoes, Integration of Alternative Sources of Energy, 2006, John Wiley and Sons.
- 6. M. Ehsani, Y. Gao, and Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, Second Edition, CRC Press.
- 7. S. Chakraborty, M. G. Simões and W. E. Kramer, Power Electronics for Renewable and Distributed Energy System, Springer 2013
- 8. Ahmed Faheem Zobaa, Energy storage Technologies and Applications, InTech Publication 2013.
- 9. N. Femia G. Petrone, G. Spagnuolo and M. Vitelli, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems, CRC Press, 2013

Course Code	Course Name	Teaching Scheme			Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELE703	Elective-I Artificial Neural Network	4	-	-	4	-	-	4

Course Code		Examination Scheme								
	Course Name			Tł						
		Internal Assessment			End Sem.	Exam. Duration	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam.	(in Hrs)				
ELE703	Elective-I Artificial Neural Network	20	20	20	80	03	-	-	100	

Course Code	Course Name	Credits
ELE703	Elective-I Artificial Neural Network	4
Course Objectives	 To understand the basics of ANN and comparison with brain To study about various methods of representing inform ANN To learn various architectures of building an ANN and applications To understand the Pattern classification and Pattern As techniques 	nation in its

Module	Contents	Hours
	Artificial Neural Systems: Preliminaries	
	Neural Computation: Some Examples and Applications	
1.	History of Artificial Neural Systems Development	6
	Fundamental Concepts and Models of Artificial Neural Systems	
	Biological Neurons and Their Artificial Models	
2.		08

U	niversity of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
	Models of Artificial Neural Networks	
	Neural Processing	
	Learning and Adaptation	
	Neural Network Learning Rules	
2	Single-Layer Perceptron Classifiers	
3.	Classification Model, Features, and Decision Regions	
	Discriminant Functions	10
	Linear Machine and Minimum Distance Classification	
	Nonparametric Training Concept	
	Training and Classification Using the Discrete Perceptron	
	Single-Layer Continuous Perceptron Networks for Linearly Separable	
	Classifications	
	Multicategory Single-Layer Perceptron Networks	
	Multilayer Feedforward Networks	
4.	Linearly Nonseparable Pattern Classification	10
	Delta Learning Rule for Multiperceptron Layer	10
	Generalized Delta Learning Rule	
	Feedforward Recall and Error Back-Propagation Training	
	Learning Factors	
	Classifying and Expert Layered Networks	
	Functional Link Networks	
	Single-Layer Perceptron Classifier	
5.	Classification Model, Features, and Decision Regions	10
5.	Discriminant Functions	10
	Linear Machine and Minimum Distance Classification	
	Nonparametric Training Concept	
	Training and Classification Using the Discrete Perceptron	
	Single-Layer Continuous Perceptron Networks for Linearly Separable	
	Classifications	
	Multicategory Single-Layer Perceptron Networks	
6	Multilayer Feedforward Networks	10
	Linearly Nonseparable Pattern Classification	
	Delta Learning Rule for Multiperceptron Layer	
	Generalized Delta Learning Rule	
	Learning Factors	
	Classifying and Expert Layered Networks	
	Functional Link Networks	

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Books Recommended:

Text Books:

- 1. LaureneV. Fausett, "Fundamentals of Neural Networks-Architectures, Algorithms and Applications", Pearson Education, 2011.
- 2. Jacek M. Zurada, "Introduction to artificial neural systems", West Publishing Company

Reference Books:

- 1. James. A. Freeman and David.M.Skapura, "Neural Networks Algorithms, Applications and Programming Techniques ",Pearson Education, Sixth Reprint, 2011.
- 2. Simon Haykin, "Neural Networks and Learning Methods", PHI Learning Pvt. Ltd., 2011.
- 3. James A. Anderson, "An Introduction to Neural Networks", PHI Learning Pvt. Ltd., 2011.
- 4. Martin T. Hagan, Howard B. Demuth, Mark Beale, "Neural Network Design", Cengage Learning, Fourth Indian Reprint, 2010.
- 5. Bart Kosko, "Neural Networks and Fuzzy Systems-A Dynamical Approach to Machine Intelligence", PHI Learning Pvt. Ltd., 2010.

Course Code	Course Name	Teaching Scheme			Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELE704	Elective-I Optical Fibre Communication	4	-	-	4	-	-	4

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

Course Code		Examination Scheme								
				Tł						
	Course Name	Internal Assessment			End Sem.	Exam. Duration	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam.	(in Hrs)				
ELE704	Elective-I Optical Fibre Communication	20	20	20	80	03	-	-	100	

Course Code	Course Name	Credits
ELE704	Elective-I Optical Fibre Communication	4
Course Objectives	 To teach students Optical fiber wave guide structures, fabrication and sign fiber The characteristics and working of various components link Design and management of optical networks 	C
Course Outcomes	 After successful completion of the course student will be able understand light wave propagation through fiber identify structures, materials, and components used in opt analyze transmission characteristics of fiber design and management of optical fiber links 	

University of Mumbai	(B.E.)	(Electronics and Electrical Engineering R-2012)}
oniticity of manipal		(Electronics and Electrical Engineering it EoIE/)

Module	Contents	Hours
1.	Overview of Optical Fiber Communication - The evolution of fiber optic systems, elements of an optical fiber transmission link, block diagram, advantages of optical fiber communication,	10
	applicationsRay theory transmission, total internal reflection, acceptance angle, numerical aperture and skew rays	10
	- Modes, electromagnetic mode theory and propagation, single mode and multimode fibers, linearly polarized modes	
	- Fiber material, fiber cables and fiber fabrication, fiber joints, fiber connectors, splicer	
2.	Optical Sources and Detectors - Coherent and non-coherent sources, quantum efficiency, modulation capability of optical sources	10
2.	- LEDs: Working principle and characteristics - Laser diodes: Working principle and characteristics	10
	- Working principle and characteristics of detectors: PIN and APD, noise analysis in detectors, coherent and non-coherent detection, receiver structure, bit error rate of optical receivers, and receiver performance	
3.	Components of Optical Fiber Networks - Overview of fiber optic networks, trans-receiver, semiconductor optical amplifiers	
	- Couplers/splicer, wavelength division multiplexers and de-multiplexers - Filters, isolators and optical switches	08
4.	 Transmission Characteristic of Optical Fiber Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal dispersion, waveguide dispersion and pulse broadening Dispersion shifted and dispersion flattened fibers, and non linear effects Measurement of optical parameters, attenuation and dispersion, OTDR 	08
5.	 Optical Networks SONET and SDH standards, architecture of optical transport networks (OTNs), network topologies Operational principle of WDM, WDM network elements and Architectures, 	08
	Introduction to DWDM, Solitons Network Design and Management	
6.	 Point to point links system considerations, link power budget, and rise time budget Transmission system model, power penalty-transmitter, receiver optical amplifiers, crosstalk, dispersion, wavelength stabilization. Network management functions, configuration management, performance management, fault management, optical safety and service interface 	08

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Books Recommended:

- 1. John M. Senior, "*Optical Fiber Communication*", Prentice Hall of India Publication, Chicago, 3rd Edition, 2013
- 2. Gred Keiser, "Optical Fiber Communication", Mc-Graw Hill Publication , Singapore, 4th Edition, 2012
- 3. G Agarwal, "*Fiber Optic Communication Systems*", John Wiley and Sons, 3rd Edition, New York 2014
- 4. S.C. Gupta, "*Optoelectronic Devices and Systems*", Prentice Hall of India Publication, Chicago, 2005.

Course Code	Course Name	Teaching Scheme			Credits	assigned		
	Elective I	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELE705	Elective-I Digital Signal Processing & Processors	4	-	-	4	-	-	4

		Examination Scheme								
		Theory								
Course Code	Course Name	Internal Assessment Sem. Duration				ssessment		Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam.	(in Hrs)	L			
ELE705	Elective-I Digital Signal Processing &	20	20	20	80	03	-	-	100	
	Processors									

Course Code	Course Code Course Name					
ELE705	Elective-I Digital Signal Processing & Processors	4				
Course Objectives	 To study DFT and its computation To study the design techniques for digital filters To study the finite word length effects in signal processing To study the fundamentals of digital signal processors To get acquainted with the DSP applications 					
Course Outcomes	 Students will be able to understand concept of digital filters Students will be able to decide the selection and design of Students will understand the effect of hardware limitation Students will be understand need of DSP processors Students will be able to understand the use and app processors 	1				

Module	Unit No.	Contents	Hours
		Discrete Fourier Transform and Fast Fourier Transform	
1.	1.1	Discrete Fourier Series : Properties of discrete Fourier series, DFS representation of periodic sequences.	

U	-	of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	10
	1.2	Discrete Fourier transforms: Properties of DFT, linear	10
		convolution of sequences using DFT, computation of DFT,	
		relation between Z-transform and DFS	
	1.3	Fast Fourier Transforms: Fast Fourier transforms (FFT),	
		Radix-2 decimation in time and decimation in frequency FFT	
		algorithms, inverse FFT, and composite FFT	
		IIR Digital Filters	
-	2.1	Mapping of S-plane to Z-plane, impulse invariance method,	
2.		bilinear Z transformation (BLT) method, frequency warping, pre-	10
		warping	
	2.2	Analog filter approximations: Butter worth and Chebyshev,	
		design of IIR digital filters from analog filters, design examples	
	2.3	Analog filter approximations: Butter worth and Chebyshev,	
		design of IIR digital filters from analog filters, design examples	
3.		FIR Digital Filters	
J.	3.1	Characteristics of FIR digital filters, frequency response, location	
	5.1	of the zeros of linear phase FIR filters	
	3.2	Design of FIR digital filters using window techniques, Gibbs	10
	5.4	phenomenon, frequency sampling technique, comparison of IIR	10
		and FIR filters	
		Finite Word Length Effects in Digital Filters	
	4.1	Number representation, fixed point, sign magnitude, One's	
4.	4.1	complement, two's complement forms, floating point numbers.	08
	4.2	to truncation and rounding, Input quantization error, Product	
	4.2	quantization error, co-efficient quantization error, zero-input limit	
		cycle oscillations, overflow limit cycle oscillations, scaling	
	4.3	IIR digital filters, finite word length effects in FIR digital filters,	
	4.5	quantization effects in the computation of the DFT- quantization	
		errors in FFT algorithms	
		Introduction to DSP Processors	
	5.1	Introduction to fixed point and floating point DSP processor,	08
		multiplier and multiplier accumulator (MAC), modified bus	
		structures and memory access schemes in DSPs, multiple access	
5.		memory, multiport memory, VLIW architecture, pipelining,	
З.		special addressing modes, on-chip peripherals	
	5.2	Features of TMS 320c67xx DSP processor, architecture of TMS	
		320c67xx DSP processor, architecture features: computational	
		units, bus architecture memory, data addressing, address	
		generation unit, program control, program sequencer, pipelining,	
		interrupts, features of external interfacing, on-chip peripherals,	
		hardware timers, host interface port, clock generators, SPORT	
6.		Application of DSP processors	06

	6.1	Speech processing: speech analysis, speech coding, sub band coding, channel vocoder, homomorphic vocoder, digital processing of audio signals.								
	6.2	Radar signal processing : Radar principles, radar system and parameter considerations, signal design								

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.

Books Recommended:

Text Books:

- 1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education
- 2. Oppenheim A., Schafer R., Buck J., "Discrete Time Signal Processing", 2nd Edition, Pearson Education.
- 3. Babu R., "Digital Signal Processing", 4th Edition, Scitech Publications.
- 4. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", Tata McGraw Hill, 2004.
- 5. L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, 2006.
- 6. B. Kumar, "Digital Signal Processing", New Age International Publishers, 2014.

Recommended Books:

- 1. S. Salivahanan, A. Vallavaraj, , Tata McGraw-Hill Education, 2001
- 2. A. Nagoor Kani, "Digital Signal Processing", Tata McGraw Hill Publishing Company in 2012

Course Code	Course Name	Teaching Scheme			Credits			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL701	Drives and Control Laboratory	-	2	-	-	1	-	1

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

Course Code		Examination Scheme								
		Theory								
	Course Name		Interna sessmo		End	Exam.	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Sem. Exam.	Duration (in Hrs)				
ELL701	Drives and Control Laboratory	-	-	-	-	-	25	25	50	

*Includes both Practical and Oral examination

Term Work:

At least 8 experiments based on the entire syllabus of ELC701(Drives and Control Laboratory) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)	: 10 marks
Assignments	: 10 marks
Attendance	: 05 marks
The final contification and accontance of term work answers satisfactory per	formance of labor

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and Oral examination:

The distribution of marks shall be as follows:	
Performance of Experiments	: 15 marks
Oral examination	: 10 marks

Course Code	Course Name	Teaching Scheme			Credits assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL702	Embedded System & Real Time Programming Laboratory	-	2	-	-	1	-	1

Course Code		Examination Scheme									
				Th							
	Course Name	Internal Assessment			End Sem.	Exam. Duration	Term work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Exam.	(in Hrs)					
	Embedded System & Real Time Programming Laboratory	-	-	-	-	-	25	25	50		

*Includes Oral examination

Suggested Laboratory Experiments

Minimum Six experiments covering topics in the syllabus

- Interfacing keyboard, LED, LCD Displays
- Programming should be using Suitable IDE and Embedded C
- Serial Communication

Term work:

At least 10 experiments based on the entire syllabus of ELC702 (Embedded System & Real Time Programming Laboratory) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative.

Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)

Assignments: 10 marksAttendance: 05 marksThe final certification and acceptance of term work ensures satisfactory performance of
laboratory work and minimum passing marks in term work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Course Code	Course Name	Teaching Scheme			Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL703	Basics of VLSI Design Laboratory	-	2	-	-	1	-	1

	Course Name	Examination Scheme										
0				Th								
Course Code		Internal Assessment			End	Exam.	Term work	Pract/ Oral	Total			
		Test 1	Test 2	Avg	Sem. Exam.	Duration (in Hrs)						
ELL703	Basics of VLSI Design Laboratory	-	-	-	-	-	25	25	50			

*Includes Oral examination

Term Work:

At least 10 experiments based on the entire syllabus of Subject ELC703 (Basics of VLSI Design) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged.

The experiments should be students" centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)	: 10 marks
Assignments	: 10 marks
Attendance	: 05 marks
The final certification and acceptance of term work ensures satisfactory pe	erformance of labor

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Oral Examination: Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Course Code	Course Name	Tea	ching Sch	eme	Credits	assigned		
	Power System	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL704	Operation and Control Laboratory	-	2	-	-	1	-	1

		Examination Scheme										
G				Th								
Course Code	Course Name	Internal Assessment			End Sem.	Exam. Duration	Term work	Pract/ Oral	Total			
		Test 1	Test 2	Avg	Exam.	(in Hrs)						
ELL704	Power System Operation and Control Laboratory	-	-	-	-	-	25	25	50			

Term Work:

At least 10 experiments based on the entire syllabus of Subject ELC704 (Power System Operation and Control) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged.

The experiments should be students" centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)	: 10 marks
Assignments	: 10 marks
Attendance	: 05 marks
	_

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Course Code	Course Name	Tea	ching Sch	eme	Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELP701	Project-I	-	6	-	-	3	-	3

		Examination Scheme										
				Th								
Course Code	Course Name	Internal Assessment			End Sem.	Exam. Duration	Term work	Pract/ Oral	Total			
		Test 1	Test 2	Avg	Exam.	(in Hrs)						
ELP701	Project-I	-	-	I	-	-	25	25	50			

In final year group of maximum **four** students will be completing a comprehensive project work based on the courses studied. The project work may be internally assigned or may be externally assigned by the research institutes, industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year may be extension of the Mini Project work done in pre-final year.

The main intention of Project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The Project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group
- The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self employment
- The topic of project should be different and / or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Project work.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

Course Code	Course Name	Teaching Scheme			Credits assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC801	Digital Image Processing	4	-	-	4	-	-	4

	Course Name	Examination Scheme									
G				Tł							
Course Code		Internal Assessment			End Exam. Sem. Duration		Term work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Exam.	(in Hrs)					
ELC801	Digital Image Processing	20	20	20	80	03	-	-	100		

Course Code	Course Name	Credits
ELC801	Digital Image Processing	4
Course Objectives	 To develop an overview of the field of image processing To learn the fundamental concepts of Digital Image Processing To understand basic image enhancement and segmenta To illustrate Image Transform calculations mathematic develop fast transform algorithm To learn Image Compression and Decompression Tech 	ocessing tion techniques. ally and
Course Outcomes	 Understand the concept of Digital Image processing. Explain image enhancement and Segmentation techniq Understand Digital Image compression and decompres Perform Binary Image Processing Operations 	

Module No.	Topics	Hrs.
1.	Digital Image Processing Fundamentals	06
	Introduction: Background, Digital Image Representation,	
	Fundamental Steps in Image Processing, Elements of a Digital	

Uni	versity of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
	Image Processing System	
	Digital Image Fundamentals: Elements of Visual Perception, A	
	Simple Image Model, Sampling and Quantization, Some Basic	
	Relationships between Pixels, Imagining Geometry. Image File	
	Formats: BMP, TIFF and JPEG. Colour Models (RGB, HSI,	
	YUV)	
2.	Image Enhancement	08
	Spatial Domain Methods, Frequency Domain Methods, Some	
	Simple Intensity Transformations, Histogram Processing, Image	
	Subtraction, Image Averaging, Background	
	Smoothing Filters, Sharpening Filters, Lowpass Filtering,	
	Highpass Filtering, Generation of Spatial Masks from Frequency	
	Domain Specifications. Homomorphic Filtering.	
3.	Image Segmentation and Representation	08
	Detection of Discontinuities, Edge Linking using Hough Transform,	
	Thresholding, Region based Segmentation, Split and Merge	
	Technique.	
	Image Representation and Description, Chain Code, Polygonal,	
	Representation, Shape Number, Moments.	
4.	Binary Image Processing	06
	Binary Morphological Operators, Hit-or-Miss Transformation,	
	Boundary Extraction, Region Filling, Thinning and Thickening,	
	Connected Component Labeling, Iterative Algorithm and Classical	
	Algorithm	
5.	Image Transform	12
	Introduction to the Fourier Transform, The Discrete Fourier	
	Transform, Some Properties of the Two-Dimensional Fourier	
	Transform Fast Fourier Transform(FFT)	
	Discrete Hadamard Transform(DHT), Fast Hadamard	
	Transform(FHT), Discrete Cosine Transform(DCT), Discrete Wavelet	
	Transform(DWT)	10
6.	Image Compression:	12
	Fundamentals – Coding Redundancy, Interpixel Redundancy,	
	Psychovisual Redundancy, Fidelity Criteria.	
	Image Compression Models – The Source Encoder and Decoder,	
	Lossless Compression Techniques : Run Length Coding, Arithmetic	
	Coding, Huffman Coding, Differential PCM Lossy Compression Techniques: Improved Gray Scale Quantization,	
	TELONSVER OF DIRESSION TECHNIQUES: HUDROVED LITAV ACATE UNAND/20100 -	
	Vector Quantization, JPEG, MPEG-1	

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)} End Semester Examination:

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.

Recommended Books:

1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,

2. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,

3. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

Course Code	Course Name	Teaching Scheme			Credits assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC802	Industrial Automation	4	-	-	4	-	-	4

		Examination Scheme						
G		Т	T					
Course Code	Course Name	Internal Assessment Test Test	End Sem.	Exam. Duration	Term work	Pract/ Oral	Total	

•	croity of manipal (Dirit						/)		
		1	2						
ELC802	Industrial Automation	20	20	20	80	03	ŀ	-	100

Course Code	Course Name	Credits
ELC802	Industrial Automation	4
Course Objectives	 Involves the integration of information systems with menergy flows. A synthesis of automatic control, real time systems and instrumentation engineering. Automation concentrates on the structural problems in systems, processing industries or power industries. The subject's focus is on the coordination of and intera many different components such as machines or process control of individual components. 	l manufacturing ction between
Course Outcomes	 Provides the student with basic knowledge of the indus systems design, installation, modification, maintenance 	

Module No.	Topics	Hrs.
1.	Introduction to Industrial Automation, Plant wide control systems and Automation Strategy. Introduction to Industrial Automation, Role of automation in industries, Introduction to the types of manufacturing industries, Introduction to type of automation system, Benefits of automation. Introduction to Automation pyramid, Introduction to automation tools like PAC, PLC, SCADA, DCS, Hybrid DCS with reference to automation pyramid, Comparison of PLC, PAC, and SCADA on the basis of Performance criteria Control system audit, Performance criteria, Development of User Requirement Specifications (URS) for automation. Functional Design Specifications (FDS) for automation tools.	06
2.	Instrumentation Standard Protocols Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485), Modbus (ASCII/RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), HART Protocol: Introduction, frame structure, programming, implementation examples, benefits, advantages and	08

Uni	versity of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
	limitation. Foundation Fieldbus H1: Introduction, frame structure,	
	programming, implementation examples, benefits, advantages and	
	limitation. Comparison of HART, Foundation Fieldbus,	
	Devicenet, Profibus, Controlnet, Industrial Ethernet.	
3.	PLC Configuration, Applications and Machine automation PLC programming methods as per IEC 61131, Developing programs using Sequential Function Chart, Functional Block	08
	Diagram, Analog control using PLC (PID controller	
	configuration), Interfacing PLC to SCADA/DCS using	
	communication link (RS232, RS485) , Protocols (Modbus	
	ASCII/RTU) and OPC, Development stages involved for PLC	
	based automation systems. Introduction Computer Numerically	
	Controlled (CNC) Machines, Basic CNC Principle, servo control,	
	types of servo control for motion axes, Control system of CNC,	
	Introduction to G-code.	06
4.	Distributed Control System Basics DCS introduction. Various function Blocks. DCS	06
	DCS introduction, Various function Blocks, DCS components/block diagram, DCS Architecture of different makes,	
	components/block diagram, DCS Architecture of different makes, comparison of these architectures with automation pyramid, DCS	
	specification, latest trend and developments, DCS support to	
	Enterprise Resources Planning (ERP), performance criteria for	
	DCS and other automation tools.	
5.	Distributed Control Systems Engineering and Design	12
	DCS detail Engineering, configuration and programming,	
	functions including database management, reporting, alarm	
	management, diagnosis, Historical database management, security	
	and user access management, communication, third party	
	interfaces ,control, display etc. Enhanced functions like Advance	
	process control, fuzzy logic, ANN	
6.	Process safety and Safety Management Systems	12
	Introduction to process safety, risk, risk terminologies,	
	consequence and risk, risk measurement, Process Hazard Analysis	
	(PHA), Hazard and operability study (HaZOp), Safety Integrity	
	Level (SIL), Introduction to IEC61511 standard for Functional	
	safety, protection layers, Safety Instrumented System: function,	
	architecture, safety life cycle, Application of safety system	

Assessment: Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.

Recommended Books:

- 1. "The management of control system: Justification and Technical Auditing", N.E. Bhttiha, ISA
- 2. "Computer aided process control", S.K.Singh, PHI.
- 3. "Understanding Distributed Process Systems For Control", Samuel Herb, ISA.
- 4. "Programmable Logic Controllers: Principles and Applications", Webb & Reis, PHI.
- 5. "Introduction to Programmable Logic Controllers", Garry Dunning, Thomson Learning.
- 6. "Distributed computer control for industrial automation", Ppovik Bhatkar, Dekkar Pub.
- 7. "Computer Based Process control", Krishna Kant, PHI
- 8. "Mechatronics", HMT, TMH publication.

Course Code	Course Name	Teaching Scheme			Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELC 803	High Voltage DC Transmission	4	-	-	4	-	-	4

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

		Examination Scheme								
C	Course Name			Th						
Course Code		Internal Assessment			End Sem.	Exam. Duration	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Sem. Exam.	(in Hrs)				
ELC 803	High Voltage DC Transmission	20	20	20	80	03	-	-	100	

Course Code	Course Name	Credits
ELL 803	High Voltage DC Transmission	4
Course Objectives	• To give the students in depth knowledge of the configuration of HVDC system	on and working
Course Outcomes	 Student should able to analyze HVDC system and its impact power system. 	ct on existing

Module	Contents	Hours
1.	Introduction to HVDC transmission : Early discoveries and applications, , Limitation and advantages of AC and DC transmission, Economic factors, Classification of HVDC links, Components HVDC Transmission system, Application of DC transmission , Ground Return Advantages and Problems	4
2.	Analysis of the Bridge rectifier: Analysis of six pulse converter with grid control but no overlap, Current and phase relations, Analysis of six pulse converter with grid control and overlap less than 600, Relation between AC and DC quantities, Analysis with overlap greater than 600, Rectifier operation and inverter operation, Equivalent circuit of rectifier and inverter, Multi bridge converter, Numerical from converter circuits and multiple bridge converter.	10

3.	Control:	6
0.	Basic means of control, Limitation of manual control, Constant current	U
	verses constant voltage control, Desired features of control, Actual control	
	characteristics, Significance of current margin, Power reversal,	
	Alternative, Inverter Control Mode.	
4.	Converter Firing Control: Control Implementation, Converter Firing	4
	Control Schemes.	
5.	Faults and protection: Malfunction of mercury arc valves, By pass	8
	valves:- transfer of current from main valves to bypass valves and back to	
	main valves (both rectifier and inverter), Commutation failure: causes and	
	analysis, double commutation failure, Protection against over current, over	
	voltage, Surge arrester.	
6.	Harmonics & Filters: Characteristics Harmonics and Un-Characteristics	4
	Harmonics, Causes, Consequences, Trouble Caused by Harmonics, Means	
	of Reducing Harmonics, Filters, AC & DC Filters.	

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.

Books Recommended:

Text Books:

1. Edward Wilson Kimbark "Direct Current Transmission" Wiley publication Inter science

2. K R Padiyar "HVDC power transmission systems" second edition, New Age International (p)Ltd

3. S. Kamkshaiah and V Kamraju "HVDC transmission" Tata McGraw Hill Education Pvt. Ltd, New Delhi

Reference Books:

1. S. Rao "EHVAC and HVDC Transmission Engineering and Practice" –Khanna publication, 1990

2. J. Arrillaga "HVDC Transmission" – Wiley publication Inter science

3. C.L. Wadhwa "Electrical Power System (2nd Edition)"

Course Code	Course Name Teaching Scheme Credits assign			0				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELE 801	Advanced control system	4	-	-	4	-	-	4

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

				Exam	cheme				
Course Code			Theory						
	Course Name	Internal Assessment			End Exam. Sem. Duration		Term work	Pract/ Oral	Total
		Test 1	Test 2	Avg	Exam.	(in Hrs)			
ELE 801	Advanced control system	20	20	20	80	03	-	-	100

Course Code	Course Name	Credits
ELE 801	Advanced control system	4
Course	• To understand the basics of mathematical modeling	
Objective	• To study the stability analysis of linear and non linear systems	
Course	• At the end of the course students will be able apply the modeling conce	epts
outcomes	• Students will be equipped with stability analysis of linear and non linear	ar systems

Module	Contents	Hours
1.	NON-LINEAR SYSTEMS Types of non-linearity, typical examples, singular points, Phase plane analysis, Limit cycles, linearization, Describing functions. Need for model reduction, Dominant pole concept. Model reduction via partial realization. Time moment matching and pade approximation, Hankel norm model reduction.	10
2.	STABILITY Stability concepts - Equilibrium points - BIBO and asymptotic stability, Lyapunov Theory, Definitions (Stability and Functions). Direct method of Lyapunov, Application to non-linear problems. Stability analysis by describing function method –jump resonance. Frequency domain stability criteria, Popov's method and is extensions.	10
3.	MODEL REFERENCE ADAPTIVE CONTROL	8

	versity of Multibal (B.E. (Electronics and Electrical Engineering K-2012)	
	Different configurations and classifications of MRAC - Mathematical	
	description - Direct and indirect model reference adaptive control - MIT	
	rule for continues time MRAC systems -Lypunov approach and hyper	
	stability approach for continuous time and discrete time MRAC systems -	
	Multivariable systems - Stability and convergence studies.	
4.	SELF TUNING REGULATORS	8
	Different approaches to self-tuning - Recursive parameter estimation	
	Implicit and explicit STR -LQG self-tuning - Convergence analysis	
	Minimum variance and pole assignment approaches to multivariable	
	selftuning regulators.	
5.	RECENT TRENDS AND APPLICATIONS OF ADAPTIVE	8
	CONTROL	
	Recent trends in self-tuning Robustness studies multivariable system.	
	Model updating. General-purpose adaptive regulator. Application to	
	Process control components and systems. Industrial Applications.	
6.	OPTIMAL CONTROL	8
	Problem formulation, necessary conditions of optimality, state regulator	
	problem. Matrix Riccati equation, infinite time regulator problem, output	
	regulator and tracking problems. Pontryagin's minimum principles, time,	
	and optimal control problem. Dynamic programming. Linear Quadratic	
	Regulator, model matching based on Linear Quadratic optimal regulator.	
	Observer design, Linear optimal filter.	

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.

Books Recommended:

Reference Books:

1. Chalam, V.V., "Adaptive Control Systems", Techniques & Applications, Marcel Dekker, Inc. NY and Basel. 1987.

- 2. Eveleigh, V.W., "Adaptive Control and Optimisation Techniques". McGraw-Hill, 1967.
- 3. Narendra and Annasamy, "Stable Adaptive Control Systems", Prentice Hall, 1989.
- 4. Astry, S. and Bodson, M., "Adaptive Control", Prentice Hall, 1989.
- 5. M. Vidyasagar, "Nonlinear Systems Analysis", 2nd Ed., Prentice Hall, 1993.
- 6. Hassan K. Khalil, "Nonlinear Systems", Third Edition, Prentice Hall, 2002.

7. William S. Levine (Editor), "The Control Handbook(Electrical Engineering Handbook Series)", CRC Press, March 1996.

- 8. Nagrath I.J., and Gopal, M., "Control system Engineering" Wiley Eastern Reprint 1995.
- 9. Kirk D.E., "Optimal control theory-an introduction", Prentice Hall, N.J. 1970.
- 10. Gopal. M., "Modern control system Theory", Wiley Eastern Ltd., 2nd Edition Reprint 1995.
- 11. Graham C., Goodwill, S. F. Graebe and M. E. Salgado,"Control
- 12. System Design" Prentice Hall India, New Delhi, 2000

Course Code	Course Name	Теа	Teaching Scheme Cred Theory Practical Tutorial					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELE 802	Power Quality	4	-	-	4	-	-	4

				Exam	1				
Course Code			Theory						
	Course Name	Internal Assessment		End Sem.	Exam. Duration	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam.	(in Hrs)			
ELE 802	Power Quality	20	20	20	80	03	-	-	100

Course Code	Course Name	Credits
ELE 802	Power Quality	4
Course Objectives	 To get awareness about non-linear loads in power syste To understand how non-linear loads affects power qual To study the solution to improve power quality 	
Course Outcomes	• Students should be able to analyze the problems due to and suggest solution for the same	non-linear load

Module	Contents	Hours
1.	Introduction:	06
	Disturbances, Unbalance, Distortion, Voltage Fluctuations,	
	Flicker, Quality Assessment	
2.	Harmonics:	10
	Definition of harmonics, odd and even harmonics, Harmonic phase	
	rotation and phase angle relationship, Causes of voltage and	
	current harmonics, non-sinusoidal voltage and current waveform	
	equations(numerical included), individual and total harmonic	
	distortion with problems, Power assessment under waveform	

Unive	rsity of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
	distortion with numerical	
3.	Power Quality monitoring & standards: Introduction, transducers current transformers, voltage transformers, Power quality instrumentation, Harmonic monitoring, Power quality standards IEEE 519	06
4.	Effects of harmonics: Rotating Machines – Transformers – Cables – Capacitors – Harmonic resonance – Voltage Notching – EMI (Electromagnetic Interference) Overloading of Neutral conductor– Protective relays and Meters	06
5.	Power factor and its improvement under sinusoidal and non- sinusoidal conditions: Power factor when both voltage and current sinusoidal, Power factor compensation using capacitor (vector diagram and numerical included), power factor when voltage is sinusoidal and current is non-sinusoidal (numerical included), Effect of capacitor compensation in power factor improvement under non-sinusoidal condition.	12
6.	Harmonic mitigation and power factor improvement Mitigation of harmonics- Passive filters- Advantages and disadvantages of passive filters- Active filters-shunt connection, series connection and hybrid connection(Detailed diagram with inverters and its working), Power factor improvement using shunt active filter(both reactive power and harmonic power compensation), Generating reference currents for shunt active filter using Instantaneous PQ Theory	08

. ... -

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.

Books Recommended:

Text Books:

- 1. "Power System Quality Assessment", J. Arrillaga, N.R. Watson, S.Chen
- 2. "Power Quality", C. Shankaran, CRC press
- 3. "Reactive power control in electric systems" by Timothy J. E. Miller
- 4. "Power Quality Enhancement Using Custom Devices" Arindam Ghosh, Gerard Ledwich
- 5. "Power Electronics" Ned Mohan, Undeland, Robbins, John Wiley Publication
- 6. "Power System Analysis- Short Circuit Load Flow and Harmonics" J.C.Das.

7. "Understanding Power Quality Problems, Voltage Sag and Interruptions" Math H.J.Bollen

Reference Book:

- 1. "Power System Harmonics" Jos Arrillaga, Neville R Watson
- 2. "Electric Power Quality", G.T.Heydt
- 3. "Electric Power Systems and Quality", Roger C. Dugan, Mark F. McGranaghan, H.Wayne Beaty
- 4. "IEEE-519 Standard"

Course Code	Course Name	0			Name Teaching Scheme Credits assigned					
	Elective-II	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ELL803	Analog & Mixed Signal VLSI	4	-	-	4	-	-	4		

				Exam	ination S	cheme			
Course Code			Theory						
	Course Name	Internal Assessment		End Sem.	Exam. Duration	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam.	(in Hrs)			
ELE803	Elective-II Analog & Mixed Signal VLSI	20	20	20	80	03	-	-	100

Course Code	Course Name	Credits
ELE803	Elective-II Analog & Mixed Signal VLSI	4
Course Objectives	 To study the concepts of MOS large signal model and s model To understand the concepts of D/A conversion methods architectures. To design filters for ADC. To study about the switched capacitor circuits. 	C

Module	Contents	Hours
1.	Introduction and basic MOS devices	10
	Challenges in analog design-Mixed signal layout issues- MOS	
	FET structures and characteristics large signal model – small	
	signal model- single stage Amplifier-Source follower- Common	
	gate stage – Cascaded Stage	
2.	Submicron circuit design	10
	Submicron CMOS process flow, Capacitors and resistors, Current	
	mirrors, Digital Circuit Design, Delay Elements – Adders- OP	

Unive	ersity of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}	
	Amp parameters and Design	
3.	Data converters	10
	Characteristics of Sample and Hold- Digital to Analog Converters-	
	architecture-Differential Non linearity-Integral Non linearity-	
	Voltage Scaling-Cyclic DAC-Pipeline DAC-Analog to Digital	
	Converters- architecture – Flash ADC-Pipeline ADC-Differential	
	Non linearity-Integral Non linearity	
4.	SNR in data converters	10
	Overview of SNR of Data Converters- Clock Jitters- Improving	
	Using Averaging – Decimating Filters for ADC- Band pass and	
	High Pass Sinc Filters- Interpolating Filters for DAC	
5.	Switched capacitor circuits:	12
	Resistors, First order low pass Circuit, Switched capacitor	
	Amplifier, Switched Capacitor Integrator	

. . . • -.

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.

Books Recommended:

- 1. Vineetha P.Gejji, "Analog and Mixed Mode Design" Prentice Hall, 1st Edition, 2011
- 2. JeyaGowri, "Analog and Mixed Mode Design" Sapna publishing House 2011.

Course Code	Course Name	Teaching Scheme			Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL 804	Robotics	4	-	-	4	-	-	4

	Course Name	Examination Scheme								
Course Code				Tł						
		Internal Assessment			End Exam. Sem. Duration		Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Exam.	(in Hrs)				
ELE 804	Robotics	20	20	20	80	03	-	-	100	

Course Code	Course Name	Credits
ELE 804	Robotics	4
Course Objectives	 To prepare students with basics of robotics To familiarize students with kinematics & dynamics of ro To familiarize students with path & Trajectory planning of To familiarize students with robot vision 	
Course	Upon completion of the course, students will be able to unders	stand:
Outcomes	 Describe kinematics and dynamics of stationary and m Describe trajectory planning for robots Implement trajectory generation and path planning vari Work in interdisciplinary projects 	

Module	Contents	Hours
1.	Fundamentals of Robotics.	03
	Robot classification, robot components, Degrees of freedom,	
	Joints, co-ordinates, coordinate frames, workspace, applications.	
2.	Forward & Inverse Kinematics of Robots.	09
	Homogeneous transformation matrices, Inverse transformation	

matrices, Forward and inverse kinematic equations – position and orientation Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation	
Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation	
matrices, Forward and inverse kinematic equations – position and orientation	
orientation	
3. Velocity Kinematics and Dynamics 14	
Differential motions and velocities: Differential relationship,	
Jacobian, Differential motion of a frame and robot, Inverse	
Jacobian, Singularities.	
Dynamic Analysis of Forces : Lagrangian mechanics, Newton	
Euler formulation, Dynamic equations of robots, Transformation	
of forces and moment between coordinate frames	
4.Robot Motion Planning04	
Concept of motion planning, Bug algorithms-Bug1, Bug2,	
Tangent Bug.	
5. Potential Functions and Visibility Graphs 08	
Attractive/Repulsive potential, Gradient descent, wave-front	
planner, navigation potential functions, Visibility map,	
Generalized Voronoi diagrams and graphs, Silhouette methods.	
6. Trajectory planning 08	
Trajectory planning, Joint-space trajectory planning, Cartesian	
7. Robot Vision 06	
Image representation, template matching, Polyhedral objects,	
Shape analysis, segmentation, Iterative processing, perspective	
transform.	

Assessment:

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

Some guidelines for setting the question papers are as, six questions to be set each of 20 marks, out of these any four questions to be attempted by students.

Recommended Books:

- 1. Robert Shilling, Fundamentals of Robotics Analysis and control, Prentice Hall of India
- 2. Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011
- Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion – Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.
- 4. Mark W. Spong , Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control ", Wiley India Pvt. Ltd., 2006

- 5. John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 6. Aaron Martinez & Enrique Fernandez, "Learning ROS for Robotics Programming", Shroff Publishers, First Edition, 2013.
- 7. Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications", McGraw Hill, New York, 2008

Course Code	Course Name	Teaching Scheme			Credits	assigned		
ELL801	Digital Image Processing Laboratory	Theory -	Practical	Tutorial	Theory -	Practical	Tutorial -	Total

	Course Name	Examination Scheme								
Course Code				Th						
		Internal Assessment			End	Exam.	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg	Sem. Exam.	Duration (in Hrs)				
ELL801	Digital Image Processing Laboratory	-	-	I	-	-	25	25	50	

At least 10 experiments based on the entire syllabus of Subject **ELC801** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative.

Term work:

Term work shall consist of minimum six experiments, assignments and attendance.

The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)	: 10 marks
Assignments	: 10 marks
Attendance	: 05 marks
The final contification and accontance of terms work ensures estisfed	tom nonformon

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Course Code	Course Name	Teaching Scheme			Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL802	Industrial Automation Laboratory	-	2	-	-	1	-	1

	Course Name		Examination Scheme								
Course Code				Th							
		Internal Assessment			End	Exam. Duration	Term work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Sem. Exam.	(in Hrs)					
ELL802	Industrial Automation Laboratory	-	-	-	-	-	25	25	50		

Suggested Laboratory Experiments

- 1. Preparing URS and FDS for any small automation project.
- 2. Prepare cause and effect document for any small process and also develop logic diagram for the same.
- 3. Develop and implement any PLC and/or DCS program using FBD and SFC programming language.
- 4. Interfacing of PLC to any SCADA through Modbus protocol and/or OPC.
- 5. Interfacing of PLC to a DCS system through Modbus and/or OPC.
- 6. Developing and implementing any control loop using PLC system.
- 7. Developing and implementing any control loop using DCS system
- 8. Developing and configuring Graphic User Interface for any control loop.
- 9. Configuration of any HART device to PLC and/or DCS system.
- 10. Configuration of any Foundation Fieldbus device to PLC and /or DCS system.
- 11. Configure and implement different alarms in PLC and/or DCS system.
- 12. Configuring and implementing any Advance process control function like MPC/or Fuzzy/or ANN in a DCS system
- 13. Preparing a HaZOp document for any small process
- 14. Develop a G-code for any machining process.

Term work:

Term work shall consist of minimum six experiments, assignments and attendance. The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)

:10 marks

Assignments: 10 marksAttendance: 05 marksThe final certification and acceptance of term work ensures satisfactory performance of
laboratory work and minimum passing marks in term work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Course Code	Course Name	Tea	ching Scl	heme	Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL803	High Voltage DC Transmission Laboratory	-	2	-	-	1	-	1

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

	Course Name		Examination Scheme								
Course Code				Th							
		Internal Assessment			End Sem.			Pract/ Oral	Total		
		Test 1	Test 2	Avg	Exam.	(in Hrs)					
ELL803	High Voltage DC Transmission Laboratory	-	-	-	-	-	25	25	50		

Term work: Term Work shall consist of minimum two programs or two simulations based on above syllabus and six tutorials covering the entire syllabus

The distribution of marks for the term work shall be as follows:

Simulation/programs and tutorial:	10 marks
Assignments:	10 marks
Attendance:	05 marks
The final certification and acceptance of term-work ensures the sa	atisfactory performance of
practical work and minimum passing in the term-work.	

Course Code	Course Name	Tea	ching Sc	heme	Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL801	Advanced Control System Laboratory	-	2	-	-	1	-	1

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

	Course Name		Examination Scheme									
Course Code				Th								
		Internal Assessment			End	Exam. Duration	Term work	Pract/ Oral	Total			
		Test 1	Test 2	Avg	Sem. Exam.	(in Hrs)						
ELE801	Advanced Control System Laboratory	_	-	_	-	-	25	25	50			

LIST OF EXPERIMENTS

- 1. Analysis of first order/second order non-linear system.
- 2. Effect of Dominant pole and Critical pole on system performance.
- 3. Stability analysis of first order/ second order system by describing function method.
- 4. Obtain the stability of a system by Frequency domain criteria.

5. Study of Direct/indirect model reference adaptive control system. 6 Study of multivariable self-tuning regulators.

- 6. Analysis of Multivariable systems using step input
- 7. Any one Industrial Application of model reference control-a Survey.
- 8. Design of state observer
- 9. Design of linear filter.

Term work:

Term work shall consist of minimum six experiments, assignments and attendance.

The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)	:10 marks
Assignments	: 10 marks
Attendance	: 05 marks

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus

Course Code	Course Name	Tea	ching Sc	heme	Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL802	Power Quality Laboratory	-	2	-	-	1	-	1

	Course Name	Examination Scheme									
Course Code				Th							
		Internal Assessment			End	Exam.	Term work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Sem. Exam.	Duration (in Hrs)					
ELE802	Power Quality Laboratory	-	-	-	-	-	25	25	50		

Term work: shall consist of minimum Six tutorials/experiments and Two simulations,

The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)	:10 marks
Assignments	: 10 marks
Attendance	: 05 marks
The final certification and acceptance of term work ensures satisfact	ory performanc

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Course Code	Course Name	Теа	ching Scl	heme	Credits	assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELL803	Analog & Mixed Signal VLSI Laboratory	-	2	-	-	1	-	1

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

	Course Name	Examination Scheme									
Course Code				Th							
		Internal Assessment			End	Exam. Duration	Term work	Pract/ Oral	Total		
		Test 1	Test 2	Avg	Sem. Exam.	(in Hrs)					
ELL803	Analog & Mixed Signal VLSI Laboratory	-	-	-	-	-	25	25	50		

At least 10 experiments based on entire syllabus of **ELE803** (**Analog & Mixed Signal VLSI**) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time.** The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus.

Course Code	Course Name	Теа	ching Scl	heme	Credits assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELL804	Robotics Laboratory	-	2	-	-	1	-	1	

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

Course Code		Examination Scheme								
				Th						
	Course Name		Interna sessmo		End Sem. Exam.	Exam. Duration (in Hrs)	Term work	Pract/ Oral	Total	
		Test 1	Test 2	Avg						
ELL804	Robotics Laboratory	_	_	_	-	-	25	25	50	

List of Experiments

These experiments can be performed using

- 1. Use of Control-X simulation Control of X-Y Position Table manually and thru Programming.
- Use of Control-X simulation Control of Conveyor manually and thru Programming. Programming using sensors and conveyor. BE, VII-VIII, Electronics, wef 2010-11 32
- 3. Use of Control-X simulation Program for bottling plant experiment using Conveyer and Pneumatics
- 4. Use of PLC simulation builds a basic circuit using a NORMALLY OPEN INPUT and a NORMAL OUTPUT.
- 5. Use of P-Simulator design a pneumatic circuit using a double acting cylinder and 5/2 Air Spring Valve to open the main gate of a factory which can be controlled by a security personnel from the security room.
- 6. Use of H-Simulator designs a Hydraulic circuit by using a single acting cylinder to open or close the flush guard door of CNC lathe. The operator can open or close the door at the time of loading or unloading the component.

```
7.
```

Term work:

Term work shall consist of minimum six experiments, assignments and attendance.

The distribution of marks for the term work shall be as follows:

Laboratory work (experiments)	:10 marks
Assignments	: 10 marks
Attendance	: 05 marks
The final contification and cocontance of terms work ensures	actic for at a market was a me

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Course Code	Course Name	Tea	ching Sch	eme	Credits assigned					
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
ELP801	Project-II	-	12	-	-	6	-	6		

University of Mumbai {B.E.(Electronics and Electrical Engineering R-2012)}

Course Code		Examination Scheme								
				Th	Term work	Pract/ Oral				
	Course Name	Internal Assessment					End Sem.	Exam. Duration	Total	
		Test 1	Test 2	Avg	Exam.	(in Hrs)				
ELP801	Project-II	-	-	I	-	-	50	50	100	

The final year students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Design, implementation, and analysis of the project work.
- Results, conclusions and future scope.
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.