UNIVERSITY OF MUMBAI

No. UG/127 of 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges, the Head University Departments and Directors of the recognized Institutions in Humanities and Science & Technology Faculties is invited to this office Circular No. UG/107 of 2013-14, dated 26th March, 2014, relating to syllabus as per CBSGS for First Year (Semester I & II) of M.A./M.Sc. Programme in course of Statistics.

They are hereby informed that the recommendations made by the Board of Studies in Statistics at its meeting held on 1st August, 2018 have been accepted by the Academic Council at its meeting held on 8th September, 2018 vide item No. 4.8 and that in accordance therewith, the revised syllabus as per the (CBCS) for the M.A./M.Sc. in Statistics (Sem. I & II) has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University's website www.mu.ac.in).

MUMBAI - 400 032 12th December, 2018 To

(Prof. Sunil Bhirud) I/c REGISTRAR

The Principals of the affiliated Colleges, the Head University Departments and Directors of the recognized Institutions in Humanities and Science & Technology Faculties. (Circular No. UG/334of 2017-18 dated 9th January, 2018.)

A.C/4.8/08/09/2018

No. UG/ 127-A of 2018

****** MUMBAI-400 032

December, 2018

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculties of Humanities and Science & Technology,
- 2) The Chairman, Board of Studies in Statistics,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Professor-cum-Director, Institute of Distance & Open Learning (IDOL)
- 5) The Director, Board of Students Development,
- 6) The Co-ordinator, University Computerization Centre,

(Prof. Sunil Bhirud) I/c REGISTRAR

M.A./M.Sc. Part I Syllabus

M.A./ M.Sc. Part - I <Statistics> Syllabus Revised for Credit Based and Choice System Implemented from the Academic year 2018-19.

Table showing the proposed twelve papers to be covered in the first year in two semesters.

berneste					
	COURSE PSST	COURSE	COURSE	COURSE	PSST P1A &
	101	PSST 102	PSST 103	PSST 104	PSST P1B
	PROBABILITY	LINEAR	THEORY OF	SAMPLING	STATISTICS
SEMESTER	THEORY	MODELS	ESTIMATION	TECHNIQUES	PRACTICAL
I					- I
					STATISTICS
					PRACTICAL
					- II
	COURSE PSST	COURSE	COURSE	COURSE	PSST P2A &
SEMESTER	201	PSST 202	PSST 203	PSST 204	PSST P2B
II					
	DISTRIBUTION	REGRESSION	PLANNING	MULTIVARIATE	STATISTICS
	THEORY	ANALYSIS	AND	ANALYSIS – I	PRACTICAL-
			ANALYSIS OF		III
			EXPERIMENTS		STATISTICS
			- I		PRACTICAL
					-IV

SEMESTER-I
Total No. of Classroom Teaching 60 hours +60 notional Hours =120 hours= 4 credits

Course Code	UNIT	PROBABILITY THEORY	Number of Lectures
	I	Mathematical Analysis (Proof is not expected) Sequence and series, limit, limit inferior, limit superior, monotone sequence, convergence of sequence, infinite series, Power series. Function, limit of a function, left and right hand limit, continuity, uniform continuity, derivative, mean values theorems, Taylor series expansion, intermediate forms, partial derivatives, extreme values, implicit, explicit function. Introduction to Riemann integration, integrable functions, integration under differentiation, fundamental theorem on calculus, mean value theorems of integral calculus, integration by parts. Change of limits of integration. Improper integrals: limit of integration, convergence, absolute convergence, uniform convergence,	15
PSST101	II	Sets, classes of sets, algebra of sets, limits of sequence of sets, field, sigma-field, Borel field, minimal field, definitions: random experiment, sample space, event. Measure, measureable sets, non-measurable sets, Probability space, probability definitions, Bonferroni's inequality, Booles' inequality, continuity theorem.	15
	III	Conditional probability, independence, Borel zero-one law, Borel-Cantelli lemma, Kolmogorov zero-one law. Random variable, Expectation and moments, some moment inequalities, Convolution. Characteristic function, continuity theorem of characteristic function.	15
	IV	Convergence of sequence of random variables, various types of convergence and their interrelations, Monotone convergence theorem, dominated convergence theorem. Law of large numbers: weak, strong. Central limit theorem: Lindberg's central limit theorem, Liapounov's central limit theorem.	15

- O1 Apostol, T. M. (1974): Mathematical Analysis. 2nd edition, Narosa Publishing house.
- 02 Bartle G. and Sherbet, D. R. (2000): Introduction to Real Analysis. 3rd edition. Wiley.

- Bhat B.R. (1999): Modern Probability Theory: An Introductory test book. 3rd edition. New Age International.
- O4 Chandra, T. and Gangopadhyay, S. (2017): Fundamentals of Probability Theory. Narosa Publishing House.
- 05 Gut, A. (2005): Probability: A Graduate Course. Springer.
- 06 Kumar, A and Kumaresan S. (2015): A Basic course in Real analysis. CRC Press.
- 07 Malik, S. C. and Arora, S. (2017): Mathematical Analysis. 5th edition. New age International Publishers.
- 08 Rohatgi V.K. & Saleh A.K. Md. Ehasanes (2001) An Introduction to Probability and Statistics. Wiley.
- 09 Rudin, W. (1976): Principles of Mathematical Analysis. 3rd edition. McGraw-Hill.

Course Code	UNIT	LINEAR MODELS I	Number of Lectures
PSST 102	I	Basic operations, Vector Spaces, Linear dependence and independence, Determinants of Matrices: Definition, Properties and applications of determinants for 3 rd and Higher order, Inverse of matrix, Trace of matrix, Partition of matrix, Rank of matrix, echelon forms, canonical form, generalized inverse, Solving linear equations, Characteristic roots and characteristic vectors, properties of characteristics roots, Idempotent matrix, Quadratic forms, positive and Positive semi definite matrix,	15
	II	Linear parametric function and its estimability, Gauss markoff theorem, Interval estimates and test of hypothesis, fundamental theorems on conditional error ss, Test of $\Lambda\beta$ =d, generalized least squares	15

Ш	 Analysis of variance, fixed effect models: i. One –way classification model ii. Checking assumptions of ANOVA Model. iii. Simultaneous Confidence Intervals: Scheffe's, Bonferroni and Turkey's interval, iv. Two – way classification model with and without interaction effect, one observation per cell and r observations per cell. Tukey's test for non additivity. v. Two – way classification model with and without interaction effect with unequal number of observations per cell. 	15
IV	 i) Analysis of variance with random and Mixed effect models: Estimation and testing of variance components in one-way, two-way and multiway classification models. ANOVA method. ii) Analysis of Covariance: Model, BLUE, ANOCOVA table, testing of hypothesis, use of ANOCOVA for missing observation. 	15

References Books: Linear Models

- 1. Hohn Franz E: Elementary Matrix Algebra
- 2. Searle S.R.: Matrix Algebra useful for Statistics
- 3. Kshirsagar A.M.: A course in Linear Models
- 4. Wang S. GUI and Chow S.C.: Advanced Linear Models.
- 5. Healy M. J. R.: Matrices for Statistics
- 6. Shantinarayan: Textbook of Matrices
- 7. Bishop: discrete data analysis.
- 8. Finney D, J:- Statistical methods in biological assays.
- 9. Graybill F.A: An introduction to linear statistical models Vol. I.
- 10. Rao C.R :- Linear statistical inference and its applications.
- 11. Searle S.R :- Linear models.
- 12. Sen A & Srivastava M.:- Regression analysis. Springer.
- 13. Scheffe H :- Analysis of variance.

Course Code	UNIT	ESTIMATION THEORY	Number of Lectures
	I	Problem of point Estimation, sufficiency, Neymann factorization theorem, minimal sufficiency, completeness, Ancillarity. Unbiasedness, Uniformly minimum Variance Unbiased Estimator, Rao-Blackwell theorem, Lehmann-Scheffe theorem	15
PSST103	II	Methods of estimation: Method of moments, method of maximum Likelihood estimation (M.L.E.), properties of M.L.E, Scoring method, Large sample properties of MLE.	15
	III	Bounds for the variance: Cramer-Rao lower bound, Bhattacharya bound, Chapman-Robbins-Keifer bound for the variance of an Estimator. Consistency, properties of consistent estimators.	15
	IV	Bayes estimator, Loss function, risk functions, Minimaxity and Admissibility, Non-parametric Estimation, Jacknife and Bootstrap Estimator.	15

- O1 Casella, G. and Berger, R. L. (2002): Statistical Inference. Duxbury.
- 02 Cox, D. R. and Hinkley, D. V. (1996): Theoretical Statistics. Chapman and Hall.
- 03 Dixit, U. J. (2016): Examples in Parametric Inference with R. Springer.
- 04 Jun Shao (2005): Mathematical Statistics. Springer.
- 05 Kale, B. K. (2005): A First Course on Parametric Inference. Narosa Publishing.
- 06 Lehmann, E.L.and George Casella(1998):- Theory of point estimation. Springer.
- 07 Rohatgi V.K. & Saleh A.K. Md. Ehasanes (2001) An Introduction to Probability and Statistics. Wiley.

Course Code	UNIT	SAMPLING TECHNIQUES	Number of Lectures
DOGGLAA	I	Complete enumeration, need of sampling, types of sampling: probability sampling and non probability sampling. Some concepts: unit, population, population parameter, sampling unit, sampling frame, sample. Simple random sampling, stratified random sampling, need for stratification, allocation requiring more than 100% sampling, effects of deviations from optimum allocation, Post stratification, method of collapsed strata, allocation of more than one unit. Determination of sample size Ratio estimator, Unbiased type ratio estimator. Ratio method for stratified random sampling, combined and separate ratio, regression estimators. Regression estimator, Regression method for stratified random sampling, combined and separate regression estimators.	15
PSST104	II	Systematic sampling when $N = nk$ and $N \neq nk$, estimation of variance of estimated mean, Comparison of systematic random sampling with simple random sampling and without replacement and stratified random sampling. Varying Probability Sampling: Probability Proportional to Size sampling with replacement (PPSWR): Methods of obtaining a sample i. Cumulative Total Method. ii. Lahiri's method Properties of the estimator Hansen-Hurwitz estimator. Comparison of PPSWR with simple random sampling with replacement. Probability Proportional to Size sampling without replacement: Sen-Midzuno method, Des Raj's ordered estimator, Horvitz-Thompson estimator, Yates Grundy form of variance.	15

Ш	Cluster Sampling: Cluster sampling of uniform cluster size, efficiency of cluster sampling with respect to simple random sampling. Optimum cluster size, Cluster sampling of unequal cluster size Two-stage sampling: with equal first-stage units, optimum values of n and m, with unequal first-stage units. Two-phase sampling (Double sampling): Double sampling for stratification, optimum allocation.	15
IV	Network sampling: multiplicity estimator, Horvitz-Thompson estimator, stratification in network sampling. Adaptive sampling: adaptive cluster sampling, systematic and strip adaptive cluster sampling, stratified adaptive cluster sampling. Non-sampling errors: response and non-response error, methods of imputation.	15

- 01 Bansal A, (2017): survey Sampling. Narosa.
- 02 Chaudhari, A and Stenger, H (1992): Survey Sampling, Marcel Dekker.
- 03 Chaudhari, A (2014): Modern Survey Sampling, CRC Press.
- 04 Cochran W.G. (1999): Sampling techniques. Wiley series.
- O5 Singh Daroga and Chaudhary, F. S. (1986): Theory and Analysis of Sample Survey Designs. New Age International Publishers.
- Mukhopadhyay, P. (2009): Theory and Methods of Survey Sampling. Eastern Economy Edition, 2nd Edition.
- 07 Murthy M.N.(1967): Sampling theory and Methods. Statistical Publishing Society, Calcutta.
- Sukhatme, P.V. and Sukhatme B.V. (1970): Sampling theory of Surveys with applications. Food and Agriculture organization.
- 09 Thompson, S. K. (2002): Sampling. Willey. 2nd edition.

Course Code	STATISTICS PRACTICALS - I			
PSST P1A	Sr. Title of Practical No. Practicals based on Estimation Theory & Matrix theory 01 Matrix Theory-I(Determinant, Rank of Matrix , Inverse of matrix) 02 Matrix Theory-II-(Generalized Inverse, Simultaneous Linear Equations ,Characteristics roots & Characteristics Vectors) 03 Methods of estimation. 03 Uniform Minimum variance unbiased estimation – II 04 Lower bounds for variance 05 Consistency 06 Bayes' Estimation			
	Sr. Title of Practical No. Practicals based on SamplingTechniques 07 Simple random sampling and Stratified random sampling. 08 Ratio and Regression methods of Estimation. 09 Systematic random sampling and Varying Probability Sampling 10 Cluster sampling. 11 Two-stage and Two-phase sampling.			

Course Code	STATISTICS PRACTICAL - II				
PSST P1B	Sr. No. O1 Introduction to R Language, SAS and SPSS softwares O2 Elementary calculation O3 Data processing and Manipulation O4 Matrix operations using R language & SAS language Practical's based on Linear Models. Sr. No. O1 Matrix Theory-I (Determinant, Rank of Matrix , Inverse of matrix) O2 Matrix Theory-III (Generalized Inverse, Simultaneous Linear Equations, Characteristics roots & Characteristics Vectors) O3 Linear Model-II O4 Linear Model-II O5 Techniques for Checking Assumptions of ANOVA O6 One way classification model O7 Two way classification model -I O8 Two way Classification Model-II O9 Random Effect Models 10 Analysis of Covariance				

Content of Statistical practical PSSTP1A and PSSTP1B to be covered with the help $\,$ software's like SAS , SPSS and R.

8 hours practical per week

Therefore Practicals with Software = 8 hours per week

Hence 120 Teaching hours + 120 Notional hours

= 240 hours

= 8 credits

PSSTP1A for 4 credits and PSSTP1B for 4 credits.

Reference Books: Statistical Software

- 1. Carver R.H. & others Data analysis with SPSS.
- 2. Cody R.P. & Smith J.H. Applied Statistics and the SAS programming language.
- 3. Darren Georage and Paul Mallery SPSS for windows.
- 4. Spencer N.H.(2004) SAS Programming, the one day course.
- 5. Random A and Everitt R.S.: A handbook of statistical analysis using R
- Nom o' Rowke, Larry Hatcher, Edward J. Stepansk: A Step by step approach using 6 SAS for univariate and multivariate Statistics (2nd Edition)
- A step by step Approach using SAS for unvariate and multivariate Statistics-2nd Edition 7. by Nom O' Rourke, Larry Hatcher Edward J. Stepansk. SAS Institution. Inc. Wily.
- 8. Data. Statistics and Decision Models with Excel Donald L. Harmell, James F.Horrell.
- 9. Cornillon, P.et.al. (2015): R for statistics, CRC Press.

Data Site:

http://www.cmie.com/ - time series data (paid site)

www.mospi.nic.in / websitensso.htm (national sample survey site)

www.mospi.nic.in /cso_test.htm (central statistical organization)

www.cenrusindia.net (cenrus of India)

www.indiastat.com (paid site on India statistics)

www.maharashtra.gov.in /index.php (Maharashtra govt.site)

www.mospi.gov.in (government of India)

Case studies:

- 1. A.C Rosander: Case Studies in Sample Design
- 2. Business research methods Zikund

(http://website, swlearning.com)

- 3. C. Ralph Buncher 21 and Jia-Yeong Tsay: Statistical in the Pharmaceutical Industry
- 4. Contempory Marketing research carl McDaniel, Roges Gates. (McDaniel, swcollege.com)

- 5. Edward J Wegmes g. Smith: Statistical Methods for Cancer Studies
- 6. Eugene K. Harris and Adelin Albert: Survivorship Analysis for Clinical Studies
- 7. Marketing research Zikmund (http://website.swlearing.com)
- 8. Marketing research Naresh Malhotra

(http://www.prenhall.com/malhotra)

- 9. http://des.maharashtra.gov.in (government of maharashtra data)
- 10. Richard G. Cornell: Statistical Methods for Cancer Studies
- 11. Stanley H. Shapiro and Thomas H.Louis Clinical Trials
- 12. William J. Kennedy, Jr. and James E. Gentle. Statistical Completing

- 13. Case Studies in Bayesion Statistics vol. VI Lecture notes in Bayesion Statistics number 167 (2002) Constantine, Gatsonis Alicia, Carriquary Andrew, Gelman
- 14. Wardlow A.C (2005) Practical Statistical for Experimental bilogoists (2nd Edition)

<u>Seminar</u>: Case Studies listed in the paper to be discussed and brief summary should be prepared.

2 hours per week: (30 Teaching hours+ 30 Notional hours)

= 60 hours

= 2 credits

Total number of Credits for First Semester

Theory 16 + Practicals 8 = 24

Exam Pattern For Theory

Internal Exam 40 Marks

Semester End Exam 60 Marks of 3 hours duration

At the end of First Semester there will be a practical examination based on practical's listed in practical papers PSSTP1A and PSSTP1B using statistical software's like R, SAS and SPSS where necessary.

Exam Pattern For Practical

Practicals papers	Practical examination	Viva	Journal	Total
PSSTP1A	80 marks	10 marks	10 marks	100
PSSTP1B	80 marks	10 marks	10 marks	100

SEMESTER II
Total No. of Classroom Teaching 60 hours +60 notional Hours =120 hours= 4 credits

Course Code	UNIT	DISTRIBUTION THEORY	Number of Lectures
	I	Distribution function, quantile function, empirical distribution function, Properties of distributions, Jordan decomposition theorem, functions of random variables. Generating functions: probability generating function, moment generating function.	15
	Multiple random variables, joint cumulative distribution function, joint probability function, joint moment generating function, conditional probability distribution, conditional expectation, functions of several random variables. Moments, covariance, correlation. Truncated distributions. Mixture of distributions.		15
PSST201	III	Some special statistical univariate discrete distributions: degenerate distribution, two-point distribution, discrete uniform distribution, hypergeometric distribution, negative hypergeometric distribution, negative binomial distribution. Special properties of binomial distribution, Poisson distribution, geometric distribution. Compound distributions. Some special statistical bivariate distributions: negative binomial distribution, hypergeometric distribution, Multinomial distribution.	15
	IV	Some special statistical univariate continuous distributions: uniform distribution, Probability integral transform, gamma distribution, beta distribution, Cauchy distribution, Pareto distribution, Order statistics.	15

- 01 Bhat B.R. (1999): Modern Probability Theory: An Introductory test book. 3rd edition. New Age International.
- David, H.A and Nagaraja, H. N. (2005): Order Statistics. Wiley.
- Johnson, N. L., Kotz S. and Balakrishnan, N (2005): Univariate Discrete Distributions. Wiley.
- Johnson, N. L., Kotz S. and Balakrishnan, N (2004): Continuous

- Univariate Distributions. Volume-I. Wiley.
- Johnson, N. L., Kotz S. and Balakrishnan, N (2004): Continuous Univariate Distributions. Volume-II. Wiley.
- 06 Rao, C. R. (2002): Linear statistical Inference and its Applications. Wiley.
- 07 Rohatgi V.K. & Saleh A.K. Md. Ehasanes (2001) An Introduction to Probability and Statistics. Wiley.
- 08 Ross, S. M. (2014): Introduction to Probability Models. 11th edition. Elsevier.

Course Code	UNIT	Regression Analysis	Number of Lectures
	I	Multiple Linear regression models: Assumptions of Linear regression model and checking their assumptions, Box-Cox Power transformation, Diagnostics of Multicollinearity, Regression on Dummy variable, Variable Selection methods: Subset selection, Forward selection, backward elimination and stepwise.	15
	II	Regression diagnostics: Analysis of residuals, definition of ordinary and Studentized residuals, their properties and use in regression diagnostics, Autocorrelation, Influence Analysis, Cook's distance, PRESS Statistics, covariance ratio, Orthogonal polynomials.	15
PSST 202	Ш	Generalized Linear regression models: Logistic regression: Example, model, MLE of parameters, Iterative procedure to solve likelihood equations, multiple regressors. Multinomial and Ordinal Logistic Regression. Poisson Regression. Analysis of Categorical data: Log linear models, Contingency tables.	15
	IV	Ridge regression: Ill conditioned matrix, need of ridge regression, biased estimator, Mean square error. Bias and MSE of ridge estimator, ridge trace method. Sensitivity Analysis: Properties of Hat matrix, Role of variables in regression model.	15

- 1. Kshirsagar A.M.: A course in Linear Models
- 2. Draper N.R & Smith H: Applied Regression Analysis.
- 3. Song GUI Wang and S.C Chow: Advanced Linear Models.
- 4. Agresthi: Categorical data analysis.
- 5. Chatterjee and Haddi: Sensitivity Analysis
- 6. David W Hosmer and Stanley Lemeshow: Applied Logistic regression.
- 7. Healy M. J. R.: Matrices for Statistics
- 8. Shantinarayan: Textbook of Matrices
- 9. Bishop: discrete data analysis.
- 10. Cox, D. R.: Analysis of binary data.
- 11. Chaterjee and Price: Regression Analysis with examples
- 12. Finney D, J:- Statistical methods in biological assays.
- 13. Graybill F.A: An introduction to linear statistical models Vol. I.
- 14. Montgomery D.C. & Peck B.A.: Introduction to linear regression analysis.
- 15. Rao C.R: Linear statistical inference and its applications.
- 16. Searle S.R :- Linear models.
- 17. Seber G.A.F: Linear regression analysis.
- 18. Sen A & Srivastava M.:- Regression analysis. Springer.
- 19. Scheffe H:- Analysis of variance.

Course Code	UNIT	PLANNING AND ANALYSIS OF EXPERIMENTS - I	Number of Lectures
PSST203	I	Brief History of Statistical Design. Basic principles of design. Contrast, orthogonal contrast and mutual orthogonality of contrasts. General block design (GBD) - an example. C- matrix and its properties. Properties of design – Connectedness, Balance and orthogonal. Statistical analysis of GBD. Randomized Block Design as a particular case of GBD.	15
	II	Balanced incomplete block design (BIBD). C-matrix, properties, statistical analysis of BIBD. Resolvable BIBD, Affine resolvable BIBD Optimality of block design. : A,D,E – optimality.	15

	Ш	Factorial design – an example. Basic definitions and principles. The advantage of factorial designs. The 2² factorial design. The general 2k factorial design. Fitting response curves and response surfaces. A single replicate of 2k design. NPP method, half NPP method, hidden replication method, Lenth's method and Bisgaard's conditional inference chart method for detecting significant effects. The addition of centre points to the design.	15
Das method, contrast method and sign method to obtain principal block. Total and partial confounding. Two level fractional designs. The one half fraction and one quarter fract 2 ^k design. General 2 ^(k-p) fractional factorial design. structure. Complete defining relation. Resolution – designs. Resolution -IV and Resolution - V designs		Blocking and confounding of a replicated 2^k factorial design. Das method, contrast method and sign method to obtain principal block. Total and partial confounding. Two level fractional factorial designs. The one half fraction and one quarter fraction of the 2^k design. General $2^{(k-p)}$ fractional factorial design. Alias structure. Complete defining relation. Resolution – III designs. Resolution -IV and Resolution - V designs. Statistical analysis of all these designs.	15

- O1 Chakraborti, M. C. (1962): Mathematics of Design and analysis of Experiments. Asia Publishing House.
- O2 Cochran, W. G. and cox, G. M. (1959): Experimental Design. 2nd Edition, Asia Publishing House
- Davies, O. L. (1954): The Design and analysis of Industrial Experiments. Oliver and Boyd.
- Das, M. N. and Giri, N. C. (2015): Design and analysis of Experiments. 2nd edition. New Age International Publishers.
- 05 Fisher, R. A. (1935): The Design of Experiments. Oliver and Boyd.
- Montgomery, D. C. (2016): Design and analysis of Experiments. 8th edition, Wiley.

Course Code	UNIT	MULTIVARIATE ANALYSIS I	Books & Page Numbers
	I	i) Multivariate data and Multivariate graphical display. Multivariate normal distribution, Wishart distribution,	15
PSST301	II	Hotelling's T ² and its applications. Regression and correlation coefficients among several variables and their testing.	15
	III	Likelihood Ratio Tests, Multivariate Analysis of variance	15
	IV	Discriminant analysis, classification of the observations into one of the two populations. Extension to more than two populations.	15

- 1. Johnson Richard A and Wichern D.W.(1998) : Applied Multivariate Statistical Analysis $(4^{th}$ Edition)
- 2. Anderson T.W.(1958): An Introduction to Multivariate Statistical Analysis. John Wiley & Sons
- 3. Dillon William R & Goldstein Mathew (1984) : Multivariate Analysis : Methods and Applications.
- 4. Giri Narayan C. (1995): Multivariate Statistical Analysis.
- 5. Kshirsagar A. M. (1979): Multivariate Analysis, Marcel Dekker Inc. New York.
- 6. Hardle Wolfgang & Hlavka: Multivarite Statistics: Exercise & Solutions
- 7. Parimal Mukhopadhyay: Multivariate Statistical Analysis.

Course Code		STATISTICS PRACTICALS - III		
	Practicals based on Distribution Theory and Planning & Analysis of			
	Experi	Experiments-I		
	Sr.	Title of Practical		
	No.			
PSST	01	Generating random sample from discrete distributions.		
P2A	02	Generating random sample from continuous distributions.		
1 2/1	03	Probability plotting.		
	04	C Matrix: Checking Connectedness, Balance and		
		Orthogonality.		
	05	NPP, Half NPP and Hidden replication method for single		
		replicate 2 ^k Design.		
	Practicals based on Regression analysis			
	Sr. Title of Practical			
	No.			
	01	Multiple linear Regression: Assumption Checking,		
		Multicolliearity, Selection methods.		
	02	Regression Diagnostics		
	03	Binary Logistic Regression		
	04	Multinomial Logistic Regression		
	05	Ordinal Logistic Regression.		
	06 Poisson Regression.			
	07 Orthogonal Polynomials			
	08 Categorical Data Analysis			
	09	Ridge Regression		

Course Code	STATISTICS PRACTICALS - IV		
	Practicals based on Planning and Analysis of Experiments.		
	Sr. Title of Practical		
	No.		
	01 Completely Randomized design		
DOCE	02 General block design		
PSST	03 Randomized block design		
P2B	04 Balanced Incomplete block design		
	05 2^2 factorial design.		
	06 Single replicate 2 ^k design		
	07 Confounding in 2 ^k factorial design		
	08 Two level fractional factorial design		
	Practicals based on Multivariate analysis		
	Sr. Title of Practical		
	No.		
	01 Multivariate Normal Distribution.		
	02 Hoteling T^2		
	03 Multivariate Regression		
	04 Likelihood Ratio Test		
	05 Multivariate Analysis of Variance (MANOVA)		
	06 Discriminant Analysis		

Contents of PSST P2A & PSSTP2B $\,$ to be covered with the help of Statistical Software like SAS, SPSS, MINITAB, ' R' Software etc

8 hours practical per week

Therefore Practicals with Software = 8 hours per week

Hence 120 Teaching hours + 120 Notional hours

= 240 hours

= 8 credits

PSSTP2A for 4 credits and PSSTP2B for 4 credits

Reference Books: Statistical Software

- 10. Carver R.H. & others Data analysis with SPSS.
- 11. Cody R.P. & Smith J.H. Applied Statistics and the SAS programming language.
- 12. Darren Georage and Paul Mallery SPSS for windows.
- 13. Spencer N.H.(2004) SAS Programming, the one day course.
- 14. Practical Statistical for experimental biologists.
- 15. Random A and Everitt R.S.: A handbook of statistical analysis using R
- 16. Nom o' Rowke, Larry Hatcher, Edward J. Stepansk : A Step by step approach using SAS for univariate and multivariate Statistics (2nd Edition)
- 17. A step by step Approach using SAS for unvariate and multivariate Statistics-2nd Edition by Nom O' Rourke, Larry Hatcher Edward J. Stepansk. SAS Institution. Inc. Wily.
- 18. Data. Statistics and Decision Models with Excel Donald L. Harmell, James F.Horrell.

Data Site:

http://www.cmie.com/ - time series data (paid site)

www.mospi.nic.in / websitensso.htm (national sample survey site)

www.mospi.nic.in /cso_test.htm (central statistical organization)

www.cenrusindia.net (cenrus of India)

www.indiastat.com (paid site on India statistics)

www.maharashtra.gov.in /index.php (Maharashtra govt.site)

www.mospi.gov.in (government of India)

Case studies:

- 1. A.C Rosander: Case Studies in Sample Design
- $2. \quad Business\ research\ methods-Zikund$

(http://website, swlearning.com)

- 3. C. Ralph Buncher 21 and Jia-Yeong Tsay: Statistical in the Pharmaceutical Industry
- 4. Contempory Marketing research carl McDaniel, Roges Gates. (McDaniel, swcollege.com)
- 5. Edward J Wegmes g. Smith: Statistical Methods for Cancer Studies
- 6. Eugene K. Harris and Adelin Albert: Survivorship Analysis for Clinical Studies
- 7. Marketing research Zikmund
 - (http://website.swlearing.com)
- 8. Marketing research Naresh Malhotra (http://www.prenhall.com/malhotra)
- 9. http://des.maharashtra.gov.in (government of maharashtra data)
- 10. Richard G. Cornell: Statistical Methods for Cancer Studies
- 11. Stanley H. Shapiro and Thomas H.Louis Clinical Trials
- 12. William J. Kennedy, Jr. and James E. Gentle. Statistical Completing
- 13. Case Studies in Bayesion Statistics vol. VI Lecture notes in Bayesion Statistics number 167 (2002)

Constantine, Gatsonis Alicia, Carriquary Andrew, Gelman 14. Wardlow A.C (2005) Practical Statistical for Experimental bilogoists (2nd Edition)

Seminar: Case Studies listed in the paper to be discussed and brief summary should be prepared.

2 hours per week: 30 Teaching hours+ 30 Notional hours

= 60 hours

= 2 credits

Total number of Credits for Second Semester Theory 16 + Practicals 8 = 24

Exam Pattern For Theory

Internal Exam 40 Marks

Semester End Exam 60 Marks of 3 hours duration

At the end of second Semester there will be a practical examination based on practical's listed in practical papers PSSTP2A and PSSTP2B using statistical software where necessory .

Exam Pattern For Practical

Practicals	Practical	Viva	Journal	Total
papers	examination			
PSSTP2A	80 marks	10 marks	10 marks	100
PSSTP2B	80 marks	10 marks	10 marks	100

_	Theory	4 x 4=16
Semester I	Practicals	8
		24 credits
	Theory	4 x 4=16
Semester II	Practicals	8
		24 credits