
Chapter 1: Introduction & Building a software testing Strategy

1 Unedited Version: Software Testing

Chapter 1: Introduction

Learning objectives:

1.1 Introduction

1.2 What Is a Defect?

1.3 Defect versus Failures

1.4 Process Problems and Defects Rates

1.5 The Business Perspective for Testing

1.6 How Good Are Your Existing Test Process and Your Testers?

1.7 Assessing the Quality of Your Existing Test Process

1.8 Practice Workbench

1.9 Input Products

1.10 Implementation Procedures

 Step 1: Build the Assessment Team

 Step 2: Complete Assessment Questionnaires

 Step 3: Build Kiviat Chart

 Step 4: Assess Results

1.11 Check Procedures

1.12 Deliverables

1.13 Assessing the Quality of Your Testers

1.14 Practice Workbench

1.15 Input Products

1.16 Implementation Procedures

 Step 1: Understand CSTE CBOK

 Step 2: Complete Assessment Questionnaires

 Step 3: Build Kiviat Chart

 Step 4: Assess Chart

Chapter 1: Introduction & Building a software testing Strategy

2 Unedited Version: Software Testing

1.17 Check Procedures

1.18 Deliverables

1.19 Summary

1.20 References

1.21 Review questions

1.1 Introduction

The products created within this process are unique are may not resemble any other product. An

example of professional products would be working with consumers to determine how computer

technology can assist them in solving their business problems. When you are using a professional

product, the customer is generally the one who validates whether the product is satisfactory.

However, testing of a sort can occur in a professional process by using peers to assess the

reasonableness of the product. For instance, in determining whether technology has been used

effectively, a group of senior analysts may evaluate the recommended solution, or independent

consultants can be brought in to perform the evaluation.

In any of these processes, any variation noted by the tester is a defect.

1.2 What Is a Defect?

A defect is a variance from a desired product attribute. Testers look for defects. There are two

categories of defects.

1.2.1 Defect from product specifications: The product built differs from the product

specified. For instance, the specifications may say that “A” is to be added to “B” to produce

“C“. If the algorithm in the built product varies from that specification, it is considered to be

defective.

1.2.2 Variance from customer/user expectation: This variance is something that the user

wanted that is not in the built product, but also was not specified to be included in the built

product. The missing piece may be a specification or requirement, or the method by which

the requirement was implemented may be unsatisfactory.

Defects generally fall into one of the following three categories:

1. Wrong. The specifications have been implemented incorrectly. This defect is a variance from

customer/user specification.

2. Missing. A specified or wanted requirement is not in the built product. This can be a

variance from specification, an indication that the specification was not implemented, or a

requirement of the customer identified during or after the product was built.

Chapter 1: Introduction & Building a software testing Strategy

3 Unedited Version: Software Testing

3. Extra. A requirement incorporated into the product that was not specified. This is always a

variance from specifications, but may be an attribute desired by the user of the product.

However, it is considered a defect.

1.3 Defect versus Failures

 A defect is incorporated into the software system. It can be classified as wrong, missing or

extra. It can be found within the software itself or in the supporting manuals and

documentation. While the defect is a flaw in the software system, it has no impact until it

affects the user/customer and the operational system.

 A defect that causes an error in operation or negatively impacts a user/customer is called a

failure. The main concern with defects is that they will turn into failures. It is the failure that

damages the organization.

 Some defects never turn into failures. On the other hand, a single defect can cause millions

of failures that damages organization.

1.4 Process Problems and Defects Rates

 The processes that do not work properly usually causes defects. For instance, if the

requirements process is flawed, the user of that process will not gather the proper

information. If the training process taught a programmer that the ADD command would

cause subtraction to occur, the programmer would write a defective line of code every time

the ADD command was used. Quality experts, such as the late Dr. W. Edwards Deming, have

frequently stated that at least 90 percent of all defects are caused by process problems.

 Evidence from leading corporations has proved Dr. Deming to be correct. This is significant

to the tester, because it makes the tester aware that any time a process is used, defects of

approximately the same type and frequency will occur. For example, experience has shown

that approximately 60 percent of all defects in the requirements phase are due to missing

requirements. This is because the process was not effective in gathering all of the customer

needs during that phase of software development. The implication is that testers should

focus the majority of their efforts on looking for missing requirements, as opposed to wrong

requirements.

 Developers of sophisticated commercial software have used this premise in defining defect

expectations. Through experience they determined, for example, that there should be 30

defects per thousand lines of code uncovered during testing. If testing does not uncover the

30 defects, a logical conclusion is that the test process was not effective. Thus, in some

commercial software development organizations the software will be retested because of

the very high probability that the first test effort did not uncover all of the defects. In most

instances, the extra tests validate the assumption that more defects were present.

 The number of defects produced during the building software will depend on the maturity of

the process-maturity meaning how much variability is permitted in the process. For

Chapter 1: Introduction & Building a software testing Strategy

4 Unedited Version: Software Testing

example, the more those systems developers can deviate from the defined process, the

greater the variability.

 Using the software development process that exists in approximately 90 percent of all

information technology groups (i.e., those generally considered to be immature processes or

processes with great variability); one can expect approximately 60 defects per thousand

lines of source code to be created during development. As the processes mature, these

defect rate decrease.

 In production, for immature processes, defect rates of six defects per thousand lines of

source code are not anomaly. Until recently, leading commercial software developers were

producing software with production defect rates of one defect per thousand lines of source

code, with the leading software developers now producing production code with defect

rates of approximately one defect per 30,000 lines of source code.

1.5 The Business Perspective for Testing

 Senior organization executives use the PDCA cycle thinking in developing their corporate

strategy. Strategic plans are transformed into business initiatives. The plan-do components

of the PDCA cycle are easy to understand. From a senior executive’s perspective, the check

component is one that must address business risk.

 Risks is defined as the probability that undesirable events will occur. These undesirable

events will prevent the organization from successfully implementing its business initiatives.

For instance, there is the risk that the information used in making business decisions will be

incorrect, inaccurate or late. If the risk turns into reality and the information is late or

incorrect, an erroneous business decision may cause a failed business initiative.

 Controls are the means used by organizations to minimize risk. Software testing is a

control. It can assist in eliminating or minimizing risks such as information arriving late or

being generated in an incorrect manner. Thus, senior executives rely on controls such

software testing to assist them in fulfilling their business objectives.

 The purpose of controls such as software testing is to provide information to

management so they can better react to risk situations. For example, testing may indicate

that the system will be late, or there is a low probability that the information produced will

be correct. Knowing this information, management can then make decisions to minimize

that risk. Knowing that the project may be late, they could assign additional personnel to

speed up the software development effort.

 Testers must understand that their business role is to evaluate business risk and to report

those results to management. Viewed from this perspective, testers must first ensure they

understand the business risk, and then develop test strategies focused on those risks. The

highest business risk should receive the most test resources.

Chapter 1: Introduction & Building a software testing Strategy

5 Unedited Version: Software Testing

1.6 How Good Are Your Existing Test Process and Your Testers?

Improvement effort in software testing is a three-step process, which is described as follows:

Step 1. Determine the status of your testing capabilities. This involves understanding the capabilities

of your testing process as well as the capabilities of your individual testers.

Step 2. Establish improvement goals. Determine and define the type of testing organization you

would like to have in your organization, as well as the skill sets needed by your testers.

Step 3. Develop a plan to achieve your testing goals. The plan should be a well-defined series of tests

that will take you from where you are to where you want to be.

 The beginning step is one of self-assessment. Most testing organizations, as well as testers,

believe they are doing a good job. However, there is no basis for making that determination.

In order to make the determination, an assessment must assisted against a “model” of an

excellent testing organization, and a “model” of a fully competent tester.

 During the past 20 years, the Quality Assurance Institute has studied many organizations and

has developed a model of an excellent testing organization. In addition, the certification

board of the Quality Assurance Institute has established a common body of knowledge for a

software tester. You can assess your organization against the Quality Assurance Institute’s

world-class model, and your individual testers’ skill sets against the common body of

knowledge for software testers. These two assessments follow the same protocols.

1.7 Assessing the Quality of Your Existing Test Process

During the past 20 years, the Quality Assurance Institute (QAI) has been studying what makes

software-testing organizations successful. The results are that QAI has identified eight criteria that

are normally associated with excellent testing organizations. These eight criteria are test planning,

training of testers, management support for testing, user satisfaction with testing, use of testing

processes, efficient testing practices, use of test tools, and quality control over the testing process.

When these eight criteria are in place and working, the result is an excellent testing organization.

The assessment process developed by QAI has five areas to address within each of the eight criteria.

The more of those areas that are in place and working the more likely that category will contribute

to excellent testing.

1. Determine your current software testing status versus an excellent testing organization. The

responses in the area to address will indicate your strengths and weaknesses compared to an

excellent testing organization.

2. Develop a software testing goal/object to become an excellent testing organization. QAI’s

world-class model indicates a profile of a world testing organization. Achieving that profile

can become a goal/objective for your software testing organization.

3. Develop an improvement plan.

Chapter 1: Introduction & Building a software testing Strategy

6 Unedited Version: Software Testing

By doing the assessment, you will develop a Kiviat Chart that shows where improvements are

needed. Those areas in which you are deficient become the means for improving your software

testing organization.

1.8 Practice Workbench

This workbench (see Figure 1.3) is designed to lead you through an assessment of your software

testing function. The workbench begins with knowledge of your software testing function. A four-

step process is designed to lead you from building an assessment team to analyzing the results of

the assessment process. Because it is difficult for any organization to make significant improvements

until they know where they are and where they want to be, the assessment process becomes a key

component in any effective improvement plan.

1.9 Input Products

The only input needed to perform the above mentioned assessment is the knowledge of your

organization’s software testing activities. The knowledge is usually possessed by one of the many

senior software testers in your organization. Thus, the assessment can be performed by someone

who is a very knowledgeable software tester, or execution by several testers if the knowledge

needed is spread among two or more people. In some instances, documented software testing work

practices will be needed.

1.10 Implementation Procedures
This practice involves performing four steps that are explained in the following subsections.

Step 1: Build the Assessment Team

The assessment team needs to combine people who in totally possess the knowledge on

how software testing is performed in your organization. Prior to establishing the team, the

areas to address should be reviewed to determine the makeup of the team. It is

recommended that a Matrix be prepared with the areas to address on one dimension of the

Matrix and the recommended assessment team on the other. The Matrix should be

completed, indicating which assessment team member is knowledgeable about each of the

areas to address.

If all areas to address have been associated with an assessment team member, it can be

concluded that the assessment team is adequate to perform the assessment.

Step 2: Complete Assessment Questionnaires

The assessment questionnaire is comprised of eight categories and five areas to address for

each category (a total of 40 areas to address).

For each area to address a Yes or No response should be made. The meaning of a Yes or No

response follows:

Chapter 1: Introduction & Building a software testing Strategy

7 Unedited Version: Software Testing

A Yes response means all of the following:

 Criteria are formal and in place.

 Criteria are understood by testers.

 Criteria are widely used, where applicable.

 Criteria have produced some possible results.

A No response means any of the following:

 No formal item in place.

 Criteria’s application must be different for different test situations.

 No consistency as to when used or used very seldom.

 No tangible results were produced

 The assessment team should read aloud each area to address.

 The team should then discuss how that area is addressed in their software testing

organization.

Using the Yes/No response criteria, the assessment team need to come to a consensus on

whether a Yes or No response should be indicated for that area to address. The results of

that consensus should be recorded on Work Papers 1.1 through 1.8. The assessment team

may also wish to record comments that clarify the response and/or to provide insight in how

that area may be improved.

Step 3: Build Kiviat Chart

Using Work Paper 1.9 (Kiviat Work Paper for Recording Software Testing Assessment

Results), transcribe the results of completing Questionnaire 1. For each category the number

of Yes responses should be totalled. A dot should be placed on the Kiviat Chart on the line

representing the number of Yes responses. For example, if there were three Yes responses

for test planning a dot would be placed on the test planning line at the intersection of the

line representing three Yes responses. A dot should be put on the line representing all eight

categories for the number of Yes responses. The dot is then connected by a line resulting in

what is called a “footprint” of the status of your software testing organization versus a

world-class testing organization.

Step 4: Assess Results

Two assessments should be made regarding the footprint developed on the Work Paper 1.9

Kiviat Chart as follows:

1. Assess status of each category versus what that category should be in a world-class

testing organization.

 To do this you need to look at the number of Yes responses you have

recorded for each category versus a world-class organization, which would

have five Yes responses. For example, if you had three Yes responses for test

planning, that would indicate that improvements could be made in your test

Chapter 1: Introduction & Building a software testing Strategy

8 Unedited Version: Software Testing

planning process. The two areas that received No responses are indications

of where improvements are needed to move your test planning activities to

a world-class level.

2. Interpret your software testing assessment Kiviat Chart.

 The footprint in your Kiviat Chart provides an overview of the type of

software testing your organization is performing. Given the footprint, your

assessment team should attempt to draw some conclusions, shown in

Figures 1.4, 1.5, and 1.6.

1.11 Check Procedures

The following list of questions, if responded to positively, would indicate that the assessment has

been performed correctly:

1. Does the assessment team comprise the knowledge needed to answer all of the areas to

address within the eight categories?

2. Are the individual assessors free from any bias that would cause them not to provide proper

responses to the areas to address?

3. Was there general consensus among the assessment team to the response for each area to

address?

4. Are the areas to address appropriate for your testing organization?

5. Have the areas to address been properly totalled and posted to the Kiviat Chart Work Paper?

6. Does the assessment team believe the Kiviat Chart footprint is representative of your

software testing organization?

7. Does your assessment team believe that if they improve the areas to address, which have NO

responses, the software testing organization will become more effective?

8. Does your software testing organization believe that the overall assessment made of the

Kiviat footprint is representative of your software testing organization?

1.12 Deliverables

There are two deliverables from this self-assessment.

1) The first is the Kiviat Chart Work Paper.

2) The second is the analysis of the Kiviat Chart footprint.

1.13 Assessing the Quality of Your Testers

Chapter 1: Introduction & Building a software testing Strategy

9 Unedited Version: Software Testing

 This practice will enable you to assess your individual testing competencies against five

skill categories in QAI’s Common Body of Knowledge (CBOK) for the Certifies Software Test

Engineer (CSTE) certificate. At the conclusion of the assessment, you will develop a Kiviat

Chart that shows your competencies against the skill categories needed to become a CSTE.

You can use the results for designing a program to improve your personal test competencies.

 The certification board of the Quality Assurance Institute established a common body of

knowledge in 1998 for software testing profession, and establishes a base for evaluating

testers to become certified software test engineers. The building of the common body of

knowledge was a two-year effort and involved 100 experienced software testers.

 The common body of knowledge for software testers involves fie categories and 16

knowledge domains. The five categories are General Skills, Test Skills/Approaches, and Test

Planning, Executing the Test Plan, and Test Analysis Reporting and Improvement.

 Using the CSTE CBOK, QAI has developed an assessment process for use by an individual

tester. Note that this is significantly different from the examination software testers take to

become certified. The assessment process provides a quick overview and a good indicator of

the current status of an individual tester’s competency.

 Figure 1.7 shows a cause-effect diagram indicating the areas of competency assessment.

In the diagram these are called the drivers that result in becoming a fully competent

software tester. The drivers are in fact the five CBOK skill categories.

1.14 Practice Workbench

This workbench (see Figure 1.8) is designed to lead you through an assessment of your individual

software testing competencies. The workbench begins with the CSTE CBOK. The three-step process

is designed to lead you from understanding the CSTE CBOK to analyzing and using the results of the

assessment process. Knowing the current status of your software testing competencies will enable

you to develop an effective plan for improving your competencies.

1.15 Input Products

The only input needed to perform this assessment is the CSTE CBOK. Assessment is based on the five

CBOK skill categories. The questions within the skill categories are based on the knowledge domains

within those skill categories.

1.16 Implementation Procedures

This practice involves performing three steps that are explained in the following sub-sections.

Step 1: Understand CSTE CBOK

Chapter 1: Introduction & Building a software testing Strategy

10 Unedited Version: Software Testing

Before you can effectively evaluate your software test competencies, you need to

understand the common body of knowledge for software testing. The CSTE CBOK is available

through the Quality Assurance Institute. This step requires you to read through the CBOK

and to obtain clarifications of the material as necessary. The best source for these

clarifications is the CSTE CBOK study guide, which is also available from the Quality

Assurance Institute. (Note: The study guide can be obtained by applying for the CSTE

certificate.)

Step 2: Complete Assessment Questionnaires

The assessment questionnaire in Work Paper 1.10 is comprised of five categories and 10

items in each category. There is a total of 50 items to assess. For each item to assess, a Yes

or No response should be made. The meaning of the Yes and No responses follows:

A “Yes” response means all of the following:

 You have had formal training, experience, or self-study supporting this skill item.

 You have actively used the skill in your personal or work life.

 You have accomplished some positive result using this skill item.

A “No” response means any of the following:

 You do not understand the theory and concepts supporting the skill item.

 You have never used the skill item in a personal or work situation.

 You have used the skill item but you have never achieved any positive results.

Prior to answering each question, you should think through the meaning of the question.

This may require referring back to the CSTE study guide. Using the Yes/No response criteria,

you need to come to a consensus on whether a Yes/No response should be indicated for the

skill item. The result of your assessment should be recorded on the appropriate

questionnaire.

You need to progress sequentially through questionnaire 1 through 5. Note that you may

wish to make notes on the questionnaire to clarify your response, or to indicate ideas on

how you could improve your competency in that skill item.

 Step 3: Build Kiviat Chart

For each of the five questionnaires completed in Step 2, total the number of Yes responses.

Convert the number of Yes responses to a percentage by multiplying the number of Yes

responses by 10 (eg. 3 Yes responses X 10 = 30%).

 For the lines corresponding to the questionnaire name, put a dot on the Kiviat Chart for the

percentage of Yes responses for that assessment competency category. For example, if there

were three Yes responses for the test planning category, a dot would be placed on the test

planning line at the intersection of the line representing 30 percent of responses. When all

five dots have been placed on the Kiviat Chart, a line should be drawn connecting the five

Chapter 1: Introduction & Building a software testing Strategy

11 Unedited Version: Software Testing

dots. This line is called a footprint that represents the status of your software testing

competencies versus the competency specified in the CSTE CBOK.

Step 4: Assess Chart

Two assessments should be made regarding the footprint developed on Work Paper 1.11 as

follows:

1) Assess the status of each category versus what the category should be as indicated

in the CSTE CBOK. Any rating less than 100 percent indicates a potential area of

improvement in that skill category. An analysis of the CBOK domains within the

category will be helpful in determining where to focus improvement, as will studying

the CSTE guide to identify areas for potential improvement.

2) Interpret your software testing competencies against your current job

responsibilities. The footprint in your Kiviat Chart provides an overview of your

current test competencies. Using your current job description, develop another

footprint, which you believe is needed to achieve your current job responsibilities.

Any deficiencies should be your first objective for improvement; your second for

improvement would be to achieve the skill competencies needed to become a CSTE>

1.17 Check Procedures

The following list of questions, if responded to positively, would indicate that the competency

assessment has been performed correctly.

1. Do you have enough knowledge of the CBOK for CSTEs to correctly understand the

assessment questions?

2. Do you understand the skill implications for each of the 50 assessment items in the

questionnaires?

3. Do you understand the Yes and No response criteria, and have you used them in developing

the competency assessment?

4. Do you believe the 50 assessment items fairly represent the competencies needed to be

fully effective in software testing?

5. Do you believe that the Kiviat Chart footprint developed from this assessment is

representative of your personal testing competencies?

1.18 Deliverables

There are two deliverables from this self-assessment. The first is the Kiviat Chart with the recorded

footprint. The second is the analysis of the Kiviat Chart footprint. The analysis of the Kiviat chart

should follow the guidelines provided in Step 4.

1.19 Summary

Chapter 1: Introduction & Building a software testing Strategy

12 Unedited Version: Software Testing

This chapter provides a general introduction to software testing, the roles of testers, the concepts of

defects and failures, as well as the business perspective for testing. It also provides a self-assessment

document for your testing capabilities and your testing capabilities and your testing competencies.

From this baseline the chapter proposes establishing improvement goals based on the Quality

Assurance Institute’s world-class testing model, and the common body of knowledge for a certified

software test engineer. The results of those self-assessments will provide you with a baseline of your

current capabilities and competencies as a software tester.

1.20 References

 “Effective Methods of Software Testing”, William Perry, John Wiley

 “Introducing Software Testing” Louise Tamres, Pearson Education

1.21 Review questions

 Define defect. Explain the different types of defect.

 Differentiate between defect and failure.

 Explain the business perspective of testing.

 Describe testing process briefly.

Chapter 1: Introduction & Building a software testing Strategy

1 Unedited Version: Software Testing

Chapter 2: Building a Software Testing Strategy

Learning Objectives :

2.1 Introduction

2.2 Computer system strategic Risks

2.3 Economics of testing

2.4 Common computer Problems

 Software Problems

 Data Problems

2.5 Economics of system Development Life cycle (SDLC) Testing

2.6 Testing – An Organizational Issue

2.7 Establishing a Testing Policy

2.8 Methods

2.9 Structured Approach to Testing

2.10 Test strategy

2.11 Test Factor

2.12 Developing a Test Strategy

2.13 Use Work Paper

2.14 Testing Methodology

2.15 Status of Software Testing

2.16 Summary

2.17 References

2.18 Review questions

2.1 Introduction

The solution and solving of the problems pertaining to testing techniques are implemented.

Testing mentioned in the book encompasses three concepts of working:

1. The Validity of the software is documented at every stage in life cycle of system

development

2. Behaviour of the system is determined by executing the system as per the requirements and

needs of the user.

3. A sample test data is executed for the examination of the system behaviour.

Validation of the solution is determined according to the abundance for the solution of the problem.

A computer system to control airplane landings or to direct substantial money transfers requires

higher confidence in its proper functioning than does a carpool locator program, since the

consequences of malfunction are more severe. Along with the product requirement, Validation of

the solution is also determined at the initiation of the project. Project size, uniqueness, critically, the

cost of malfunction, and project budget all influence the validation needs. Specific techniques for

testing are chosen, once the testing requirements are clearly stated.

2.2 Computer system strategic Risks

Chapter 1: Introduction & Building a software testing Strategy

2 Unedited Version: Software Testing

A condition defining the state of loss is termed as Risk. The concern about a risk is related to the

probability that a loss will occur. The risk situation always exists Occurrence of the loss is totally

presumable Risk cannot be eliminated, but its occurrence and impact could be moderated to an

extent of the limit. The development and installation of a computer system introduces risk into the

organization these risks are ever present and need to be addressed in the development process in

order to reduce the probability Of loss associated with these risks.

The priority ordered occurring strategic risk associated to the installation and development of a

computer system could be:

 Manipulation in results by the system could be kept in count.

 Concreteness of the processes shall be overlooked by the systems.

 Redundancy could be considered among the computer files.

 Processing cannot be reconstructed.

 Continuity of processing will be lost.

 Degradation of the services provided to the user would be up to an unacceptable level.

 Systems security shall be compromised.

 Processing will not comply with organizational policy or governmental regulation.

 Results of the system will be unreliable.

 System will be difficult to use.

 Programs will be unmaintainable

 System will not be portable to other hardware and software.

 System will not be able to interconnect with other computer systems.

 Performance level will be unacceptable.

 System will be difficult to operate.

Identification and evaluation of the risk into computer system is an effective approach to the testing. Those

risks deemed important to reduce become the areas for testing. A test plan is designed to achieve the goal

on the acceptance of the risk.

2.3 Economics of testing

 There is a definite economic impact of software testing. One economic impact is from the cost of defects.

This is very real and tangible cost.

Another economic impact is from the way we perform testing. It is possible to have very good motivations

and testing goals while testing in a very inefficient way.

Problems occur during testing due to the following reasons:

 Testing objectives definition failure.

 Testing in wrong phase of the cycle.

 Ineffective techniques usage.

Chapter 1: Introduction & Building a software testing Strategy

3 Unedited Version: Software Testing

 A cost-effective perspective means testing until the optimum point is not reached, which is declared to

be the point where the value received from the defects uncovered exceeds the costs if testing,

Few organizations have established a basis to measure the effectiveness of testing. This makes it difficult

for the individual systems analyst/ programmer to determine the cost-effectiveness of testing. Testing

standards are set, the effectiveness of the process cannot be evaluated in sufficient detail to enable the

process to be measured and improved on the basis of the testing standards.

The use of a standardized testing methodology provides the opportunity for a cause and effect

relationship to be determined in other words The effect of the methodology is adapted on the basis of

the change comprehended to determine whether that effect resulted in a smaller or larger number of

defects. The establishment of this relationship is an essential step in improving the test process. The

main objective of this study is how to enhance testing methodology in optimum cost-effective process

for a convenience usage. The cost-effectiveness of a testing process can only be determined When the

process can e measured, it can be improved for the cost-effectiveness of the testing on the organization.

2.4 Common computer Problems

The common computer problems are broadly categorized as software problems and data problems.

Software Problems

The most commonly identified software problem because of the automated applications into the

 computer systems are counted to be as follows:

 Designing software with incomplete or erroneous decision making criteria Action have been

incorrect because the decision –making logic omitted factors that should have been included. In

other cases, decision-making criteria included in the software were inappropriate, either at the

time of design or later, because of changed circumstances.

 Failing to program the software as intended by the customer (user) or designer, resulting in logic

errors often referred to as programming errors

 Omitting needed edit checks for determining completeness of output data Critical data elements

have been left blank on many input documents and because no checks were included, the

applications processed the transactions with incomplete data.

Data Problems

The commonly encountered problem arising can be mentioned in these criteria as follows:

 Automated decision making applications using incomplete data. Some input documents

prepared by people omitted entries in data elements that were not rejected when incomplete

data was being used. In latter words, the application needed the input data, information

services (IS) files was not able put into the system.

 Automated decision making applications working on incorrect data. Its seen often that people

introduce often incorrect data to the IS system.

Chapter 1: Introduction & Building a software testing Strategy

4 Unedited Version: Software Testing

 Automated decision making applications working on the obsolete data, Data in the IS files

become obsolete due to new circumstances. Due to the unavailability of the data to the

system on the required conditions.

2.5 Economics of system Development Life cycle (SDLC) Testing

Studies at IBM demonstrated that an application system during the system during the system

development life cycle (SDLC) will produce 60 errors (defects). These studies also showed that testing

Prior to coding is 50 percent effective in detecting errors, and after coding, 80 percent effective. This

study and other show that it is at least 10 times as costly to correct an error after coding as before, and

100 times as costly to correct a production error.

2.6 Testing – An Organizational Issue

IT issues aren’t limiting with Testing system services, but rather is an organizational issue. The IT

department can verify that the system structure functions correctly and can verify that the executable

system performs the requirements as IT understands those requirements; the executable system satisfies

the needs of the organization. The following technological developments are causing organizations to

revise their approach to testing:

 Integration. In day to day business technology is becoming closely integrated, such that the

Business cannot operate without computer system is operational.

 System chains. Computer systems are interconnected into cycles of chains such that problems in

one can Cascade into and affect others.

 The domino effect. One problem condition such as a wrong price or a program defect, can cause

hundreds or Even thousands of similar errors within a few minutes.

 Reliance on electronic evidence. With hard-copy documents being removed from processing, the

adequacy of Controls validates the transaction dependency, an extensive loss may appear in control

error.

 Multiple users. Multiple users systems are being adapted. But rather to Multiple users, making it

difficult to identify a single organizational unit responsible for a System.

2.7 Establishing a Testing Policy

A testing policy is management’s definition of testing for a department. A testing policy involves the

following four criteria

Chapter 1: Introduction & Building a software testing Strategy

5 Unedited Version: Software Testing

1. Definition of testing .A clear, brief , and unambiguous definition of testing

2. Testing system. The method through which testing will be achieved and enforced.

3. Evaluation. How information services management will measures and evaluate

testing.

4. Standards. The standards against which testing will be measured

A good testing never happens its own until it is planned; and a testing policy should be the

cornerstone of that plan. Testing tools such as test data generator are the few frequent

testing tools that are kept in usage, which makes the system programmer/analyst aware of

those testing tools, and then Leave it to the discretion of the staff how testing is to occur

and to what extent.

2.8 Methods
The establishment of a testing policy is an IT management responsibility. Testing policies are

established by three policies.

1. Management directive. Policies are written by IT managers. IT managers determine what they

want from testing, document that into a policy, and issue it to department. Which stands to be

the economically effective method to write the policy; By not being the Organizational policy it

becomes a potential disadvantage rather declaring the policy to be the policy of a IT

management.

2. Information services consensus policy. IT management convenes a group of the more

senior management must have the responsibility for accepting and issuing the policy,

the development of the policy is responsibility for accepting and issuing the policy, the

development of the policy is representative of the thinking of all the IT department

rather than just senior management. The advantage of this participation staff is

encouraged to follow the policy. The disadvantage is that it is an IT policy and not an

organizational policy.

3. Users’ meeting. Key members of user management meet in conjunction with the IT

department to jointly develop a testing policy, but the actual policy is developed using people

from all major areas of the organizational policy. The advantage of this approach is that it is a

true organizational policy and involves all of those areas with an interest in testing. The

disadvantage is that it takes time to follow this approach and a policy might be developed that

Chapter 1: Introduction & Building a software testing Strategy

6 Unedited Version: Software Testing

the It department is obligated to accept because it is a consensus policy and not the type of

policy that IT itself would have written.

Testing is an organizational responsibility. The testing policies are convened under user

committees. This meeting of the user’s committees serves the following purpose:

 It permits all involved parties to participate in the development of a testing policy.

 It is an educational process where users understand the options and costs associated with

testing.

 It clearly established for all involved departments that testing is an organizational

responsibility and not just and is responsibility.

2.9 Structured Approach to Testing

The traditional view of the development life cycle places testing immediately prior to operation and

maintenance. All too often, testing after coding is the only verification technique used to determine

the adequacy of the system. The Structured Approach to testing involves four core approaches:

 The first cost is developing the program erroneously, which may include writing the wrong

specifications, coding the system wrong, and documenting the system improperly.

 Second, the system must be tested to detect the error.

 Third, the wrong specifications and coding must be removed and the proper specifications,

coding, and documentation added.

 Fourth, the system must be retested to determine that it is now correct.

If lower cost and higher quality systems are the information services goals, verification must not be

isolated to a single phase in the development process, but rather, incorporated into each phase of

development module projects.

Requirements

 Determine verification approach

 Determine adequacy of requirement

 Generate functional test data

 Determine consistency of design with requirements

 Design

 Determine adequacy of design

 Generate structural and functional test data

 Determine consistency with design

Program (build/ construction)

 Determine adequacy of implementation

 Generate structural and functional test

 data for programs

Test

Chapter 1: Introduction & Building a software testing Strategy

7 Unedited Version: Software Testing

 Test application system

Installation

 Place tested system into production

Maintenance

 Modify and retest

2.10 Test strategy

The objective of testing is to reduce the risks inherent in computer systems. The strategy must address

the risks and present a process that can reduce those risks. The two components of the testing strategy

are defined as follows:

 Test factor. The risk or issue that needs to be addressed as part of the test strategy. The

strategy will select those factors that need to be addressed in the testing of a specific

application system.

 Test phase. The phase of the systems development life cycle in which testing will occur.

Not all test factors will be applicable to all software systems. The development team will need to
select and rank the test factors for the specific software system being developed. Once selected and
ranked the strategy for testing will be partially defined. The test phase will vary based on the testing
methodology used. For example, the test phases in a traditional waterfall life cycle methodology will
be much different from the phases in a Rapid Application Development methodology.

2.11 Test Factor

Counting the risk factor being the basis of the testing strategies or objective of testing the risks
associated with testing will be called “test factor” . The following list describes the test factors:

 Correctness. With a belief that the data entered, processed, and outputted by the

application system is accurate and complete. Accuracy and completeness are achieved
through controls over transactions and data elements, which should commence when a
transaction is originated and conclude when the transaction data has been used for its
intended purpose.

 File integrity. With a belief that the data entered into the application system will be
returned unaltered. The File integrity procedures ensure that the right file is used and that
the data on the file and the sequence in which the data is stored and retrieved is correct.

 Authorization. With a belief that data is processed in accordance with the intents of

management. In an application system, there is both general and specific authorization for

the processing of transactions. General authorization governs the authority to conduct

different types of business, while specific authorization provides the authority to perform a

specific act.

Chapter 1: Introduction & Building a software testing Strategy

8 Unedited Version: Software Testing

 Audit trail. The capability to substantiate the processing that has occurred. The processing

of data can be supported through the retention of sufficient evidential matter to

substantiate the accuracy, completeness, timeliness, and authorization of data. The process

of saving the supporting evidential matter is frequently called an audit trail.

 Continuity of processing. The ability to sustain processing in the event problems occur.

Continuity of processing assures that the necessary procedures and backup information are

available to recover operations should integrity be lost due to problems. Continuity of

processing includes the timeliness of recovery operations and the ability to maintain

processing periods when the computer is inoperable.

 Service levels. Assurance that the desired results will be available within a time frame

acceptable to the user. To achieve the desired service level, it is necessary to match user

requirements with available resources. Resources include input/output capabilities,

communication facilities, processing, and systems software capabilities.

 Access control. Assurance that the application system resources will be protected against

accidental and intentional modification, destruction, misuse, and disclosure. The security

procedure is the totality of the steps taken to ensure the integrity of application data and

programs from unintentional and unauthorized acts.

 Compliance. Assurance that the system is designed in accordance with organizational

strategy, policies, and standards. These requirements need to be identified, implemented,

and maintained in conjunction with other application requirements.

 Reliability. Assurance that the application will perform its intended function with the

required precision over an extended period of time. The correctness of processing deals with

the ability of the system to process valid transactions correctly, while reliability relates to the

system’s being able to perform correctly over an extended period of time when placed into

production.

 Ease of use. The extent of effort required to learn, operate, prepare input for, and interpret

output from the system. This test factor deals with the usability of the system to the people

interfacing with the application system.

 Maintainability. The effort required to locate and fix an error in an operational system. Error

is used in the broad context to mean both a defect in the system and a misinterpretation of

user requirements.

 Portability. The effort required to transfer a program from one hardware configuration

and/or software system environment to another. The effort includes data conversion,

program changes, operating system, and documentation changes.

 Coupling. The effort required to interconnect components within an application system and

with all other application systems in their processing environment.

Chapter 1: Introduction & Building a software testing Strategy

9 Unedited Version: Software Testing

 Performance. The amount of computing resources and code required by a system to

perform its stated functions. Performance includes both the manual and automated

segments involved in fulfilling system functions.

 Ease of operation. The amount of effort required to integrate the system into the operating

environment and then to operate the supplication system. The procedures can be both

manual and automated.

TEST FACTOR- EXAMPLE

Correctness Assurance that:

 Products are priced correctly on invoices

 Gross pay is properly calculated

 Inventory-on-hand balances are correctly accumulated

Authorization Assurance that:

 Price overrides are authorized by management

 Credits for product returns have been approved management

 Employee overtime pay is authorized by the employee’s supervisor

File integrity Assurance that:

 The amounts i9n the detail records of a file support the control totals.

 Customer addresses are correct

 Employee pay rates are correct

Audit trail Assurance that:

 Employee gross pay can be substantiated by supporting documentation

 Sales tax paid to a specific state can be substantiated by the supporting invoices

 Payments made to vendors can be substantiated should the vendor disavow receiving

the payment

Continuity of processing Assurance that:

 Banking transactions can continue if computer becomes in operational

 Recovery of an on-line system can occur within the predetermined

tolerances

Service levels Assurance that:

 Response time in an on-line system is within the time span tolerance

 Application workload can be completed in accordance with the application

schedule

 Changes to the system can be incorporated within the agreed upon schedule

2.12 Developing a Test Strategy

Four steps must be followed to develop a customized test strategy. The four steps are as follows:

Chapter 1: Introduction & Building a software testing Strategy

10 Unedited Version: Software Testing

1. Select and rank test factors. The customers/key users of the system in conjunction with the

test team should select and rank the test factors. In most instances, only three to seven

factors will be needed. Statistically, if the key factors are selected and ranked, the other

factors will normally be addresses in a manner consistent with supporting the key factors.

These should be listed in the matrix in sequence from the most significant test factor to the

least significant. Rank your factors in sequence from the most to least significant with Work

paper 21. Specific test risks can be substituted for factors, or you can expand the factors to

describe risks in more detail.

2. Identify the system development phases. The phase of development process shall be

identified by the development team. This is normally obtained from the system

development methodology. These phases should be recorded in the test phase component

of the matrix. Record these phases in the test phase component of Work Paper, then copy

the test factor appropriately from Work Paper to alternate Work Paper.

3. Identify the business risks associated with the system under development. The developers,

key users, customers, and test personnel should brainstorm the risks associated with the

software system. Most organizations have a brainstorming technique, and it is appropriate

for individuals to use the technique in which they have had training and prior use. Using the

technique, the risks should be identified and agreed upon by the group. The risks should

then be ranked into high, medium, and low. This is a relational severity indicator, meaning

that one-third of all risks should be indicated as high; one-third, medium; and one-third, low.

4. Place risk in the matrix. The risk team should determine the test phase in which the risk

needs to be addressed by the test team, and the test factor to which the risk is associated.

Take the example of a payroll system: If there was a concern about compliance to federal

and state payroll laws, the risk would be the penalties associated with noncompliance.

Assuming compliance was picked as one of the significant test factors, the risk would be

most prevalent during the requirements phase. Thus, in the matrix, at the intersection

between the compliance test factor and the requirements phase, the risk of “penalties

associated with noncompliance to federal and state payroll laws” should be inserted. Note

that this may be done by a reference number, cross-referencing the risk. The risk would then

have associated with it an H, M, or L, for high, medium, or

2.13 Use Work Paper

The most important specification is enabled by the work paper. The Work Paper should be

completed jointly by the project and test teams. Rank the 15 factors from 1 to 15, with 1 as the most

and 15 the least important factor.

The following table illustrates the proper use of the respective fields and their prescribed way of

updating the data.

Chapter 1: Introduction & Building a software testing Strategy

11 Unedited Version: Software Testing

FIELD----------------------------------- INSTRUCTIONS FOR ENTERING DATA-------------
Test Factors Contains the factors ranked in importance. If the testers ranked
the
 factors 1-15, then the number 1 test factor would be first in
this column
 and the number 15 test factor would be last. However, if five
test factor
 were ranked as important, then just those five test factors
would be
 listed in this column.
Test Phase The six most common test phases, as described in the text.

Test Concerns In the horizontal column under each of the six test phases, list
the test
 concern together with the strategy used to address that test
concern.
 Figure further describes documenting the test concerns and
test
 Strategy.

Step 1: Select and Rank Test Factors

For such situations inculcates accuracy, authorization, audit trail, and reliability: accuracy, because

your system must calculate taxes correctly; authorization because staff can pass inappropriately

approved documents through the system; audit trail because your organization must be able to

support the tax calculations; and compliance because your system must adhere to the laws

governing deductions and reporting.

In our example. We’ll address only compliance, but all four would be listed and ranked. In figure, in

the Test factor column, compliance is listed as the highest ranked factor, along with a more specific

description of how compliance relates to our example.

Step 2: Identify the Affected Phases

The objective of this step is to assess how many phases are affected by concerns, whether it is single

phase or all phases. In this example, compliance affects all Year 2000 phases.

Step 3: Identify the Test Concerns Associated with Each Phase and Factor

The objective of this step is to identify which concerns to address in which phase, with the concern

expressed as a question. For compliance, we’d express our concerns as, “Has the tax transmission

Chapter 1: Introduction & Building a software testing Strategy

12 Unedited Version: Software Testing

risk for our company and government been identified?” The following is a list of compliance

concerns for three of the four Years 2000 phases and for dynamic testing:

 Assessment. “Are all risks identified for both our company and governmental agencies?”

 Plan. “Is there a plan in place to address transmitting tax data after January 1, 2000?”

 Implementation. “Was the plan implemented?”

 Dynamic test. “Will the transmission be tested between our company and governmental

agencies?”

Step 4: Define the Test Strategy

You’ll need to develop a test strategy for each concern to determine how the testers will test the

implementation of the Year 2000 compliance solution. You will incorporate these strategies into the

test plan and thus form the basis for your testing.

2.14 Testing Methodology

Testing strategy and testing tactics are being incorporated by this study of testing. The tactics add

the test plans, test criteria, testing techniques, and testing tools used in validating and verifying the

software system under development.

The testing methodology cube represents a detailed work program for testing application systems. A

detailed work program is important to ensure that the test factors have been adequately addressed

at each phase of the systems development life cycle. This book provides a detailed description of the

work program represented by the testing methodology cube.

TEST FACTORS SOFTWARE DEVELOPMENT PHASE

(RANKED HIGH TO LOW) ASSESSMENT PLAN IMPLEMENT DYNAMIC

TEST

A three dimensional work program is defined to be the cube. The first and most important

dimensions are the test factors that are selected for a specific application system test strategy. If the

testing process can show that the selected test factors have been adequately handled by the

application system, the test process can be considered satisfactorily completed. In designing the test

work program, there are concerns in which phase of the life cycle that the test factors will not be

achieved. While the factors are common to the entire life cycle, the concerns vary according to the

phase of the life cycle. These concerns represent the second dimension of the cube. The third

dimension of the cube is the test tactics. There are criteria that, if satisfied, would assure the tester

that the application system has adequately addressed the risks. Once the test tactics have assured

that the risks are addressed, and then the factors can also be considered satisfied and the test

tactics are complete.

Chapter 1: Introduction & Building a software testing Strategy

13 Unedited Version: Software Testing

2.15 Status of Software Testing

Billions of dollars are spent by organization for software development, yet fail to adequately test the

software when completed. Thus, software is placed into production with embedded defects. Quality

Assurance Institute surveys conducted over the past several years show that most production

software contains three to six defects per thousand lines of source code.

2.16 Summary

This chapter presents a guide for developing your test strategy: identifying risks, translating them

into test factors, matching test factors with the concepts of concerns. The testing methodology cube

presents an easy way to structure your strategy.

2.17 References

 “Effective Methods of Software Testing”, William Perry, John Wiley

 “Introducing Software Testing” Louise Tamres, Pearson Education

2.18 Review Questions

 What is risk? Discuss the types of strategic risk associated with computer system.

 Explain economics of testing.

 Describe common computer problems in detail.

 What is testing policy? Discuss the different methods to establish testing policy.

 Explain structured approach to testing in detail.

 Write a short note on test strategy.

 Explain any 5 test factors in software testing.

 List and explain all the steps to develop a test strategy.

 What are the points to be considered while developing testing methodology?

Explain.

1 Unedited Version: Software Testing

Chapter 3: Verification and Validation

Learning objectives:

3.1 Introduction

3.2 What Are Verification and Validation?

3.3 Computer System Verification and Validation Examples

3.4 Functional and Structural testing

3.5 Why Use Both the Testing Methods?

3.6 Structural and Functional Tests Using Verification and Validation Techniques

3.7 Workbench

3.8 Eight Considerations in developing Testing Methodologies

3.9 Summary

3.10 References

3.11 Review questions

3.1 Introduction

The testing process is the means by which the test strategy is achieved. The team that

develops the testing process uses the test strategy as the requirements for the process.

Their task is to determine the tests and methods of performance needed to address the

risks that the test strategy identifies.

Following a test process has two significant advantages.

 First, the tester does not have to determine the process to be used for software

testing because that process already exists.

 Second, when all testers follow the same process, they will develop better means for

testing. These means will be incorporated into the process by continually improving

the software testing process.

2 Unedited Version: Software Testing

This chapter describes the construction of a workbench for building software.

Software Testing Guidelines

1. Software testing should reduce software development risk. Risk is present in all software

development projects, and testing is a control that reduces those risks.

2. Testing should be performed effectively. Testing should be performed in a manner in which

the maximum benefits are achieved from the software testing efforts.

3. Testing should uncover defects. Ideally, at the conclusion of testing there should be no

defects in the software.

4. Testing should be performed using business logic. Money should not be spent on testing

unless it can be spent economically to reduce business risk. In other words, it does not make

business sense to spend more money on testing than the losses that might occur from the

business risk.

5. Testing should occur throughout the development life cycle. Testing is not a phase, but

rather a process. It begins when development begins and ends when the software is no

longer being used.

6. Testing should test both structure and function. Testing should test the functional

requirements to ensure they are correct, and test the adequacy of the software structure to

process those functional requirements in an effective and efficient manner.

Testing of the software should begin during the first phase of the life cycle and continue throughout

the life cycle. It is important to recognize that life cycle testing is essential to reducing the cost of

testing. There is a brief outline of life cycle testing.

 Life cycle testing involves continuous testing of the solution even after software plans are

complete and the tested systems are implemented. At several points during the

development process, the test team should test the system in order to identify defects at

the earliest possible point.

 Life cycle testing cannot occur until you formally develop your process. Information

technology must provide and agree to a strict schedule for completing various phases of the

process for proper life cycle testing to occur. If It does not determine the order in which they

deliver completed pieces of software, it’s impossible to schedule and conduct appropriate

tests.

 Life cycle testing is best accomplished by forming a test team. The team is composed of

project members responsible for testing the system.

3 Unedited Version: Software Testing

 They must use structured methodologies when testing; they should not use the same

methodology for testing that they used for developing the system.

 The effectiveness of the test team depends upon developing the system under one

methodology and testing it under another.

 The development team defines and documents the requirements for testing the system at

appropriate points during the development process, the test team runs the compliance

process to uncover defects.

We have identified , what we are looking for, we are ready to break down the process into specific

testing tactics. The four testing tactics of validation, verification, functional test, and structural test,

which are the bread and butter of testing, can be separated into two groups:

(1) Validation and verification and

(3) Functional and structural testing.

3.2 What Are Verification and Validation?

 A tester uses verification methods to ensure the system (software, hardware,

documentation, and personnel) complies with an organization’s standards and processes.

 Relying on review ore non executable methods. Validation physically ensures that the

system operates according to plan by executing the system functions through a series of

tests that can be observed and evaluated. Verification answers the question, “did we build

the right system?” while validation addresses, “Did we build the system right?”

 Although this book will emphasize computer software, keep in mind that verification and

validation techniques can be applied to every element of the computerized system. You’ll

find these techniques in publications dealing with the design and implementation of user

manuals and training courses, as well as in industry publications.

3.3 Computer System Verification and Validation Examples

 Verification requires several types of reviews, including requirements reviews, code

walkthroughs, code inspections, design reviews, and review reviews. The system user

should be involved in these reviews to find defects before they are built into the system. In

the case of purchased systems, user input is needed to assure that the supplier makes the

appropriate tests to eliminate defects. Table 3.1 shows examples of verification. The list is

not exhaustive, but it does show who performs the task and what the deliverables are. For

purchased systems, the term “developers” will apply to the supplier’s development staff.

 Validation is accomplished simply by executing a real-life function if you wanted to check to

see if your mechanic had fixed the starter on your car, you would try to start the car.

Examples of validation are shown in Table 3.3. As in Table 3.1, the list is not exhaustive.

4 Unedited Version: Software Testing

 Determining when to perform verification and validation relates to the development,

acquisition, and maintenance of software. For software testing, this relationship is especially

critical because:

 The corrections will probably be made using the same process for developing the

software. If the software was developed internally using a waterfall methodology, that

methodology will probably be followed in making the corrections; on the other hand, if the

software was purchased or contracted the supplier will likely make the corrections. You will

need to prepare tests for either eventually.

 Year testers can probably use the test plans and test data prepared for testing the original

software.

 If testers prepared effective test plans and created extensive test data, those plans and test

data can probably be used in the testing effort, thereby reducing the time and cost of

testing.

3.4 Functional and Structural Testing

 Functional or structural testing is performed when tester’s test project team’s

solution. Functional testing is also known as black box testing since internal logic

doesn’t require any knowledge to develop test cases.

 For instance, if a certain function key produces a specific result when pressed, a

functional test would be to validate this expectation by pressing the function key and

observing the result. When conducting functional tests, you will be using validation

techniques exclusively.

 Structural testing is sometimes called as white box testing because knowledge of

the internal logic of the system is used to develop hypothetical test cases. Structural

tests use verification predominantly.

 If a software development team creates a block of code that will allow a system to

process information in a certain way, a test team would verify this structurally by

reading the code, and given the system’s structure, see if the code could work

reasonably. If they felt it could, they would plug the code into the system and run an

application to structurally validate the code. Each method has its advantages and

disadvantages:

 Functional Testing Advantages:

 Simulates actual system usage.

 Makes no system structure assumptions.

 Functional Testing Disadvantages:

 Potential of missing logical errors in software.

 Possibility of redundant testing.

 Structural Testing Advantages:

 You can test the software’s structure logic.

5 Unedited Version: Software Testing

 You would test where you would not think to if you performed only functional

testing.

 Structural Testing Disadvantages:

 Does not ensure that you have met user requirements.

 Its tests may not real-world situations.

3.5 Why Use Both the Testing Methods?

Both methods together validate the entire system. For example, a functional test case might be

taken from the documentation description of how to perform a certain function, such as accepting

bar code input. A structural test case might be taken from a technical documentation manual. To

effectively test systems, you need to use both methods.

3.6 Structural and Functional Tests Using Verification and Validation

Techniques

Testers use verification techniques to confirm the sustainability of a system by reviewing its

structure and logic. Validation, on the other hand, strictly applies to physical testing, to determine

whether expected results occur. You will conduct structural tests primarily using verification

techniques, and conduct functional tests with validation techniques.

Using verification to conduct structural tests would include:

 Feasibility reviews: tests for this structural element would verify the logic flow of a unit of

software.

 Requirements reviews: these reviews verify software relationships

Functional tests are virtually all validation tests and inspect how the system performs. Examples are

 Unit testing: verify the system functions properly; for instance, pressing a function key to

complete an action.

 Integrated testing: the system runs tasks that involve more than one application or

database to verify that it performed the tasks accurately.

 System testing: tests simulate operation of the entire system and verify that it ran

satisfactorily.

 User acceptance: this is real world test means organization’s staff, customers or vendors

begin to interact with the system and they will verify that system is working properly.

3.7 Workbench Concept

6 Unedited Version: Software Testing

In Information technology workbenches are referred as phases, steps or tasks. The

workbench is a way of demonstrating and documenting how a specific activity is to be

performed. There are four components to each workbench:

1. Input : the entrance criteria

2. Procedure to do: the work tasks that will transform the input into the output.

3. Procedure to check: the processes that determine that output meets the standards.

4. Output: the exit criteria from the workbench.

The programmer’s workbench consists of following steps:

1. Input products (program specs) are given to the producer (programmer).

2. Work is performed (e.g., coding/debugging); a procedure is followed; a product or interim

deliverable (e.g., a program/module/unit) is produced.

3. Work is checked to ensure product meets specs and standards, and that the procedure was

followed.

4. If check finds no problems, product is released to the next workbench.

5. If check finds problems, product is sent back to rework.

As an example of how a project team would use the workbench to guide them through a project

phase, a sample validation of computer code is explained. The programmer’s unit test consists of

following steps:

1. Give input products (e.g., program code) to the tester.

2. Perform work (e.g., coding and debugging); follow a procedure; product or interim/

3. Check work to ensure test results meet test specs and standards and that the test procedure

was followed.

4. If the check process finds no problems, release the product (i.e., test result) to the next

workbench.

5. If the check process finds problems, send the product back for rework.

3.8 Eight Considerations in developing Testing Methodologies

The following are eight considerations you need to address when customizing the eight-step

software-testing process:

1. Determine the test strategy objectives.

2. Determine the type of development project.

3. Determine the type of software system.

4. Determine the project scope.

5. Identify the software risks.

7 Unedited Version: Software Testing

6. Determine when testing should occur.

7. Define the system test plan standard.

8. Define the unit test plan standard.

Determining the Test Strategy Objectives

Test strategy is normally developed by a team very familiar with the business risks associated with

the software; tactics are developed by the test team. Thus, the test team needs to acquire and study

the test strategy. In this study, the test team should ask the following questions:

 What is the ranking of the test factors?

 Which of the high-level risks are the most significant?

 What damage can be done to the business if the software fails to perform correctly?

 What damage can be done to the business if the software is not completed on time?

 Which individuals are most capable of understanding the impact of the identified business

risks?

Determining the Type of Development Project

The type of development project refers to the environment/methodology in which the
software will be developed. As the environment changes, so does the testing risk. For
example, the risks associated with the traditional development effort differ from the risks
associated with off-the-shelf purchased software. Different testing approaches must be
used for different types of projects.

Determining the Type of Software System

The type of software system refers to the processing that will be performed by that system.

This step contains 16 different software system types. However, a single software system

may incorporate more than one of these types. Identifying the specific software type will

help build an effective test plan.

 Batch (general): Can be run as a normal batch job and makes no unusual hardware

or input-output actions (for example, a payroll program or a wind tunnel data

analysis program).

 Event control: Performs real-time data processing as a result of external events (for

example, a program that processes telemetry data).

8 Unedited Version: Software Testing

 Process control: Receives data from an external source and issues commands to that

source to control its actions based on the received data.

 Procedure control: Controls other software (for example, an operating system that

controls the execution of time-shared and batch computer programs).

 Advanced mathematical models: Resembles simulation and business strategy

software, but has the additional complexity of heavy use of mathematics.

 Message processing: Handles input and output messages, processing the text or

information contained therein.

 Diagnostic software: Detects and isolates hardware errors in the computer where it

resides or in other hardware that can communicate with that computer.

 Sensor and signal processing: Similar to that of message processing, but requires

greater processing to analyze and transform the input into a usable data processing

format.

 Simulation: Simulates an environment, mission situation, other hardware; inputs from these

to enable a more realistic evaluation of a computer program or hardware component.

 Database management: Manages the storage and access of (typically large) groups of data.

Such software can also prepare reports in user-defined formats based on the contents of the

database.

 Data acquisition: Receives information in real time and stores it in some form suitable for

later processing (for example, software that receives data from a space probe and files it for

later analysis).

 Data presentation: Formats and transforms data, as necessary, for convenient and

understandable displays for humans. Typically, such displays would be for some screen

presentation.

 Decision and planning aids: Uses artificial intelligence techniques to provide an expert

system to evaluate data and provide additional information and consideration for decision

and policy makers.

 Pattern and image processing: Generates and processes computer images. Such software

may analyze terrain data and generate images based on stored data.

Determining the Project Scope

The project scope refers to the totality of activities to be incorporated into the software

system being tested the range of system requirements/specifications to be understood. The

9 Unedited Version: Software Testing

scope of new system development is different from the scope of changes to an existing

system.

Identifying the Software Risks
Strategic risks are the high-level business risks faced by the software system; software

system risks are subsets. The purpose of decomposing the strategic risks into tactical risks is

to assist in creating the test scenarios that will address those risks. It is difficult to create

test scenarios for high-level risks.

Tactical risks can be categorized as follows:

 Structural risks: the risks associated with the application and the methods used to

build the application.

 Technical risks: The risks associated with the technology used in building and

operating the application.

 Size risks: The risks associated with bigness in all aspects of the software.

Determining When Testing Should Occur
The previous steps have identified the type of development project, the type of software

system, the project scope, and the technical risks. Using that information, the point in the

development process when testing should occur must be determined. The previous steps

have identified what type of testing needs to occur, and this step will tell when it should

occur. Testing can and should occur throughout the phases of a project . Examples of test

activities to be performed during these phases are:

 Requirements phase activities
o Determine test strategy
o Determine adequacy of requirements
o Generate functional test conditions

 Design phase activities
o Determine consistency of design with requirements
o Determine adequacy of design
o Generate structural and functional test conditions

 Program phase activities
o Determine consistency with design
o Determine adequacy of implementation
o Generate structural and functional test conditions for programs/units

 Test phase activities
o Determine adequacy of the test plan

10 Unedited Version: Software Testing

o Test application system

 Operations phase activities
o Place tested system into production

 Maintenance phase activities
o Modify and retest

Defining the System Test Plan Standard

A tactical test plan must be developed to describe when and how testing will occur. This test
plan will provide background information on the software being tested, on the test
objectives and risks, as well as on the business functions to be tested and the specific tests
to be performed.

The test plan is the road map you should follow when conducting testing. The plan is then

decomposed into specific tests and lower-level plans. After execution, the results are rolled up to

produce a test report.

Defining the Unit Test Plan Standard
During internal design, the system is divided into the components or units that perform the

detailed processing. Each of these units should have its own test plan. The plans can be as

simple or as complex as the organization requires based on its quality expectations.

The importance of a unit test plan is to determine when unit testing is complete. It is a bad

idea economically to submit units that contain defects to higher levels of testing.

Thus, extra effort spent in developing unit test plans, testing units, and ensuring that units

are defect free prior to integration testing can have a significant payback in reducing overall

test costs

3.9 Summary

Effective and efficient testing will occur only when a well-defined process exists. This

chapter presented six guidelines to improve the effectiveness and efficiency of software

testing process.

The chapter explained the workbench concept to be used in building your software-testing

process. A seven-step software-testing process was presented that can be viewed as seven

major testing workbenches; each of these steps incorporate several minor or sub-

workbenches within the step workbench.

11 Unedited Version: Software Testing

3.10 References

 “Effective Methods of Software Testing”, William Perry, John Wiley

 “Introducing Software Testing” Louise Tamres, Pearson Education

3.11 Review Questions

 Explain verification and validation methods in detail.

 Define functional and structural testing. Why to use both testing methods? Explain.

 Differentiate between black box and white box techniques.

 Discuss the eight considerations in developing testing methodologies.

 Explain the concept of workbench.

1 Unedited Version: Software Testing

Chapter 4: Determining Software Testing Techniques

Learning Objectives:

4.1 Introduction

4.2 Concept of Application Fit

4.3 Software Testing Techniques and Tool Selection Process

4.3.1 Selecting Techniques and Tools

4.3.2 Difference between Testing Techniques and Tools

4.4 Structural System Testing Techniques

4.5 Functional System Testing Techniques

4.6 Unit Testing Techniques

4.6.1 Functional Testing and Analysis

4.6.1.1 Functional Analysis

4.6.1.2 Functional Dynamic Testing

4.6.2 Structural Testing and Analysis

4.6.2.1Structural Analysis

4.6.2.2 Structural Testing

4.6.3 Managerial aspects of Unit Testing and Analysis

4.6.3.1 Selecting Techniques

4.6.3.2 Control

4.7 Test Factor and Test Technique Matrix

4.8 Summary and References

4.9 Review Questions

4.1 Introduction:

The chapter introduces the concept of automation using suitable tools and techniquesby adopting

appropriate selection process. The chapter further explains various techniques of testing divided

into categories as

1. Structural Analysis and Testing Techniques

2. Functional Analysis and Testing Techniques

3. Unit Testing Techniques

A matrix representing the relationship between test factors and testing techniques is also

presented.

4.2 Concept of Application Fit:

 The effectiveness of a computer application in a business environment is determined by

how well that application fits into the environment where it is supposed to operate.

 Concept of fit implies how usable, helpful, and meaningful the application is in the

performance of the day-to-day function of the user.

 The more valuable is the application in performing the user's function, the better is the fit

while the less valuable is the application, and the poorer is the fit.

 The concept of fit is important during both designing and testing.

 Design must attempt to build the application that fits into the user's business process and

2 Unedited Version: Software Testing

requirements in general and the test process must ensure the degree of fit.

 Testing that concentrates only on structure and design only may fail to assess fit, and thus

fail to test the value of the automated application to the business.

 The four components of fit are:

1. Data: The reliability, timeliness, consistency, and usefulness of the data included in

the automated application to the user.

2. People: The skills, training, aptitude, and desire to properly use and interact with the

automated application.

3. Structure: The proper development of application systems to optimize technology

and satisfy requirements.

4. Rules : The procedures that are to be followed in processing the data

Figure 4.1 Testable Components

 If any of the components fails to fit properly, the success of the application system will

be not be achieved.

 Testing must therefore ensure that all the components are effectively prepared and

developed by checking for all inadequacies.

 The four components described above must fit together to provide the best possible

solution to the business problem.

4.3 Software Testing Techniques and Tool Selection Process:

 The third dimension of the testing cube is strategies or tactics.

 This dimension outlines in detail the criteria that should be tested for each of the

identified risks.

 To evaluate these risks testing techniques and tools are needed.

 To help in determining a Testing Techniques/Tool Selection a flowchart is provided

 However, prior to reviewing the flowchart t is necessary to review the three testing

concepts:

1. Structural versus Functional testing :

3 Unedited Version: Software Testing

 Structural test: These tests uncover the errors that occur during “coding” of the

program (How the system performs its requirements?)

 Functional test: These tests uncover the errors that occur in implementing

requirements or design specifications. (What the system does?)

2. Dynamic versus Static testing

 Dynamic testing:

o It involves program execution.

o It is traditional notion of program testing.

o The actual results are compared with desired result.

 Static testing:

o There is no program execution.

o Syntax is checked for errors.

3. Manual versus Automatic testing

 Manual testing is done by humans.

 Automatic testing is done by computers.

4.3.1 Selecting Techniques and Tools:

 Testing tools should be selected based upon their ability to accomplish test objectives

 The flowchart illustrated in Figure 3.2 outlines the steps required to select the most

appropriate techniques and tools for accomplishing the test objectives. This flowchart is

applicable to all phases in a systems development life cycle.

Figure 4.2 Testing Technique/ Tool Selection Process

4 Unedited Version: Software Testing

 The structural test evaluates how the system performs its requirements, while the

functional testing is more concerned with what the system does.

 Both types of testing are important, but different tools are used depending on the type of

testing selected.

 Chapter 4 describes the more common testing tools.

4.3.2 Difference between Testing Techniques and Tools:

 A tool is a vehicle for performing a test process.

 The tool is a resource to the tester, but by itself is insufficient to conduct testing.

 For example, a hammer is a tool, but until the technique for using that hammer is

determined the tool will lie dormant.

 A testing technique is a process for ensuring that some aspect of an application system or

unit functions properly.

 The concept of tools and techniques is important in the testing process.

 It is a combination of the two that enables the test process to be performed.

 The tester should first understand the testing techniques and then understand the tools

that can be used with each of the techniques.

4.4 Structural System Testing Techniques:

The structural system testing techniques are

1. Stress testing

2. Execution testing

3. Recovery testing

4. Operations testing

5. Compliance testing

6. Security testing

1. Stress Testing Technique:

 Stress testing is designed to determine if the system can function when subject to

volumes-larger than would be normally expected.

 The areas that are stressed include input transactions, internal tables, disk space, output,

communications, computer capacity, and interaction with people.

 If the application functions adequately under test, it can be assumed that it will function

properly with normal volumes of work.

 The objective of stress testing is to simulate a production environment.

 Online systems should be stress tested by having people enter transactions at a normal or

above-normal pace.

 Batch systems can be stress tested with large input batches.

 Error conditions should be included in tested transactions.

 Transactions for use in stress testing can be obtained from one of the following three

sources:

1. Test data generators

2. Test transactions created by the test group

3. Transactions previously processed in the production environment

5 Unedited Version: Software Testing

 Following are Stress Testing examples:

1.Test if sufficient disk space is allocated.

2. Overload the network with transactions to check the communication capacity.

3. Enter large transactions to overflow tables.

 Disadvantage of Stress testing Technique is the amount of time it takes to prepare for the

test and the resources consumed during the actual execution of the test.

2. Execution Testing Technique:

 Execution testing is designed to determine whether the system achieves the desired level

of proficiency in a production status.

 Can be conducted in any phase of the system.

 Execution testing can verify response times, turnaround times, as well as design

performance.

 It is used for determining the performance of the system structure.

 It can verify the optimum use of hardware and software.

 Execution testing is used to determine response time to on-line use requests.

 It can be used for determining transaction processing turnaround time.

 The earlier the technique is used, the higher the assurance that the completed application

will meet performance criteria.

 Execution testing is performed by using hardware and software Simulation model and by

creating quick programs to approximate the performance of a completed system.

3. Recovery Testing Technique:

 Recovery is the ability to restart operations after the integrity of the application has been

lost.

 The process normally involves reverting to a point where the integrity of the system is

known, and then reprocessing transactions up until the point of failure.

 The time required to recover operations is affected by the number of restart points, the

volume of applications run on the computer center, the training and skill of the people

conducting the recovery operation, and the tools available for recovery.

 The importance of recovery will vary from application to application

 Recovery testing is used to ensure that operations can be continued after a disaster.

 Recovery testing not only verifies the recovery process, but also the effectiveness of the

component parts of that process.

 Recovery testing can involve loss of communication lines, hardware or operating system

failure, loss of data base integrity, operator error, or application system failure.

 It is desirable to test all aspects of recovery processing.

 Recovery testing should be performed whenever the user of the application states that the

continuity of operation of the application is essential to the proper functioning of the user

area.

 The user should estimate the potential loss associated with inability to recover operations

over various time spans; for example, the inability to recover within five minutes, one

hour, eight hours, and a week.

 Backup data is preserved and Recovery procedures are documented.

 For testing, the failure is intentionally introduced and recovery measures are tested.

6 Unedited Version: Software Testing

5. Operations Testing Technique:

 After testing, the application will be integrated into the operating environment.

 At this point in time, the application will be executed using the normal operations staff,

operations procedures, and documentation.

 Operations testing technique is designed to verify prior to production that the operating

procedures and staff can properly execute the application.

 Operations testing technique is primarily designed to determine whether the system is

executable during normal systems operations.

 Specific objectives of operations testing include:

o Determining the completeness of computer operator documentation

o Evaluating the completeness of operator training

o Testing to ensure that operators using prepared documentation can, in fact,

operate the system

o Operations testing should occur prior to placing any application into a production

status.

6. Compliance Testing Technique:

 Compliance testing verifies that the application was developed in accordance with

information technology standards, procedures, and guidelines.

 The methodologies are used to increase the probability of success, to enable the transfer

of people in and out of the project with minimal cost, and to increase the maintainability

of the application system.

 The type of testing conducted varies on the phase of the systems development life cycle.

 Evaluating the completeness and reasonableness of application system documentation

 The most effective method for compliance testing is the inspection process.

 A peer group of programmers would be assembled to test line-by-line that a computer

program is compliant with programming standards

7. Security Testing Technique:

 Security testing should be performed both prior to the system going to operational status

and after it is placed in operational status

 Security is a protection system that is needed for both secure confidential information and

to assure third parties that their data will be protected.

 The amount of security provided will be dependent upon the risks associated with

compromise or loss of information.

 Protecting the confidentiality of the information is designed to protect the resources of

the organization.

 However, information such as customer lists or improper disclosure of customer

information may result in a loss of customer business to competitors.

 Security testing is designed to evaluate the adequacy of the protective procedures.

 Specific objectives of security testing include:
o Determining that adequate attention has been devoted to identifying security risks

7 Unedited Version: Software Testing

o Determining that a realistic definition and enforcement of access to the system has

been implemented

o Conducting reasonable tests to ensure that the implemented security measures

function properly

o We have to determine that the resources being protected are identified, and access is

defined for each resource.

o Access can be defined by program or individual.

8 Unedited Version: Software Testing

4.5 Functional System Testing Techniques:

 Functional system testing is designed to ensure that the system requirements and

specifications are achieved.

 The process normally involves creating test conditions for use in evaluating the

correctness of the application.

 The types of techniques useful in performing functional testing include:

1. Requirements testing

2. Regression testing

3. Error-handling testing

4. Manual-support testing

5. Inter-Systems testing

6. Control testing

7. Parallel testing

1. Requirements Testing Technique:

 Requirements testing must verify that the system can perform its function correctly

 Specific objectives of requirements testing include the following:

o User requirements are implemented.

o Correctness is maintained over extended processing periods.

o Application processing complies with the organization’s policies and procedures.

 To check if Secondary user needs have been included, such as:

o Security officer

o Database administrator

o Internal auditors

 To check records retention such as :

o System processes accounting information in accordance with generally accepted

accounting procedures.

o Application systems process information in accordance with governmental

regulations.

 Requirements testing are primarily performed through the creation of test conditions and

functional checklists.

 Test conditions are generalized during requirements, and become more specific as the

SDLC progresses

 The requirements testing process should begin in the requirements phase, and continue

through every phase of the life cycle into operations and maintenance.

9 Unedited Version: Software Testing

2. Regression Testing Technique:

 One segment of the system is developed and thoroughly tested. Then a change is made to

another part of the system, which has a disastrous effect on the previously thoroughly

tested portion.

 Regression testing retests previously tested segments to ensure that they still function

properly after a change has been made to another part of the application.

 Regression testing involves assurance that all aspects of an application system remain

functional after testing.

 It is used for determining whether systems documentation remains unchanged.

 It also determines that system test data and test conditions remain unchanged

 It normally involves rerunning tests that have been previously executed to ensure that the

same results can be achieved currently as were achieved when the segment was last

tested.

 While the process is simple, unless the process is automated it can be a very time-

consuming and tedious operation.

3. Error-Handling Testing Technique:

 One of the characteristics that differentiate automated from manual systems is the

predetermined error-handling features.

 Manual systems can deal with problems as they occur, but automated systems must

preprogram error handling.

 Error-handling testing determines the ability of the application system to properly process

incorrect transactions.

 Errors encompass all unexpected conditions.

 In some systems, approximately 50 percent of the programming effort will be devoted to

handling error conditions.

 Specific objectives of error-handling testing include:

1. Determining that all reasonably expected error conditions are recognizable by the

application system

2. Determining that reasonable control is maintained over errors during the correction

process

 Error-handling testing requires a group of knowledgeable people to anticipate what can

go wrong with the application system.

 Error testing should occur throughout the system development life cycle.

4. Manual-Support Testing Technique:

 Manual testing means ease of use testing. It is best done in installation phase.

 Manual-support testing involves all the functions performed by people in preparing data

for and using data from automated applications.

 Specific objectives of manual-support testing include:

1. Verifying that the manual-support procedures are documented and complete

2. Determining that manual-support responsibility has been assigned

10 Unedited Version: Software Testing

 The system can be tested having the actual clerical and supervisory people prepare, enter

and use the results of processing from the application system.

 Some specific examples of manual-support testing include the following:

o Provide input personnel with the type of information they would normally receive

from their customers and then have them enter it into the computer.

o Output reports are prepared from the computer based on typical conditions, and the

users are then asked to take the necessary action based on the information contained

in computer reports.

o Users can be provided a series of test conditions and then asked to respond to those

conditions.

o Manual support testing is like an examination in which the users are asked to obtain

the answer from the procedures and manuals available to them.

5. Intersystem Testing Technique

 Application systems are often interconnected to other application systems.

 Intersystem testing is designed to ensure that the interconnection between applications

functions correctly.

 It is used to ensure that correct data and parameters are passed between applications.

 It ensures that the documentation for the involved systems is accurate and complete

 The files or data is passed from one system to another to check if it is acceptable and

processed properly.

 For example, there is a revenue function or cycle that interconnects all of the income-

producing applications such as order entry, billing, and receivables, shipping, and

returned goods.

6. Control Testing Technique:

 Control testing includes data validation, file integrity, backup and recovery,

documentation etc.

 It ensures integrity of the system and is mostly covered in other testing techniques

 It is used to ensure accuracy of data, authorized transactions etc.

 The risk matrix method identifies the risk, the controls and the segment in the application

system where the control resides.

 Control testing requires maintenance of an adequate audit trail of information.

 Control testing can be performed by selecting transactions and verifying that the

processing for those transactions can be reconstructed on a test basis.

 Control testing should be an integral part of system testing.

7. Parallel Testing Technique:

 Parallel testing is used to determine that the results of the new application are consistent

with the processing of the previous application or version of the application.

 In this we demonstrate consistency and inconsistency between two versions of the same

application system

 Specific examples of parallel testing include:

o Operating a new and old version of a payroll system to determine that the pay checks

11 Unedited Version: Software Testing

from both systems are reconcilable.

o Running the old version of the application system to ensure that the operational status

of the old system has been maintained in the event that problems are encountered in

the new application.

o Parallel testing should be used when there is uncertainty regarding the correctness of

processing of the new application, and the old and new versions of the application are

similar.

4.6 Unit Testing Technique

Figure 4.3 Unit testing Techniques

 In this we examine the techniques, assessment, and management of unit testing and

analysis

 Testing is a dynamic approach to verification in which code is executed with test data to

assess the presence (or absence) of required features.

 Analysis is a static approach to verification in which required features are detected by

analyzing, but not executing, the code

 What constitutes a "unit" has been left imprecise-it may be as little as a single statement

or as much as a set of coupled subroutines.

 The essential characteristic of a unit is that it can meaningfully be treated as a whole.

 In this we also require associated documentation that states the desired features of the

unit.

 This documentation may be a comment in the source program, a specification written in a

formal language, or a general statement of requirements.

 Any document containing information about the unit may provide useful information for

testing or analysis.

Unit Testing

Functional

Testing

Structural

Testing

Analysis

Testing
Dynamic

Testing

Analysis

Testing

Dynamic

Testing

12 Unedited Version: Software Testing

4.6.1 Functional Testing and Analysis

 Three major classes of testing and analysis are discussed-functional, structural, and error

oriented.

 Functional testing and analysis ensure that major characteristics of the code are covered.

 Error-oriented testing and analysis ensure that the range of typical errors is covered.

 Management of unit testing and analysis should be systematic.

 It proceeds in two stages. First, techniques appropriate to the project must be selected.

 Then these techniques must be systematically applied.

4.6.1.1 Functional Analysis

 Functional analysis seeks to verify, without execution, that the code faithfully

implements the specification.

 Various approaches are possible.

 In proof of correctness, a formal proof is constructed to verify that a program correctly

implements its intended function.

 In safety analysis, potentially dangerous behavior is identified and steps are taken to

ensure such behavior is never manifested.

4.6.1.2 Functional Dynamic Testing

 Program testing is functional when test data is developed from documents that specify a

module's intended behavior.

 These documents include, but are not limited to, the actual specification and the high- and

low-level design of the code to be tested.

 The goal is to test for each software feature of the specified behavior, including the input

domains and the output domains

 Equivalence partitioning is an example of Specification based testing technique.

o Specifications frequently partition the set of all possible inputs into classes that

receive equivalent treatment.

o Such partitioning is called equivalence partitioning.

o A result of equivalence partitioning is the identification of a finite set of functions and

their associated input and output domains.

o Input constraints and error conditions can also result from this partitioning.

o Equivalence partitioning is combined with boundary value analysis (BVA) while

testing

4.6.2 Structural Testing and Analysis

 In structural program testing and analysis, test data is developed from the source code.

 The goal is to ensure that various characteristics of the program are adequately covered.

4.6.2.1 Structural Analysis

 In structural analysis, programs are analyzed without being executed.

 The goal here is to identify fault-prone code, to discover anomalous circumstances, and

to generate test data to cover specific characteristics of the program's structure

13 Unedited Version: Software Testing

Structural Analysis can be done in two ways

1. Complexity measures.

2. Data flow analysis.

1. Complexity measures

 As resources available for testing are always limited, it is necessary to allocate these

resources efficiently.

 It is intuitively appealing to suggest that the more complex the code, the more thoroughly

it should be tested.

 Evidence from large projects seems to indicate that a small percentage of the code

typically contains the largest number of errors.

2. Data flow analysis

 A program can be represented as a flow-graph annotated with information about variable

definitions and references.

 From this representation, information about data flow can be deduced for use in code

optimization, anomaly detection, and test data generation.

 Data flow anomalies are flow conditions that deserve further investigation, as they may

indicate problems.

 Data flow analysis can also be used in test data generation.

4.6.2.2 Structural Testing

It can be done in following ways:

o Statement testing

 Statement testing requires that every statement in the program be executed.

o Branch testing

 Branch testing seeks to ensure that every branch has been executed.

o Path testing

 In path testing, data is selected to ensure that all paths of the program have been

executed.

 In practice, of course, comprehensive coverage is impossible to achieve

4.6.3 Managerial Aspects of Unit Testing and Analysis:

 Administration of unit testing and analysis proceeds in two stages.

1. First, techniques appropriate to the project must be selected.

2. Then these techniques must be systematically applied.

4.6.3.1 Selecting Techniques

 It requires assessment of many issues, including the goal of testing, the nature of the

software product, and the nature of the test environment.

 It is important to remember the complementary benefits of the various techniques and to

14 Unedited Version: Software Testing

select as broad a range of techniques as possible,

 No single testing or analysis technique is sufficient

 Goals, Nature of the product, Nature of the testing environment have to be considered

while selecting the testing techniques

4.6.3.2 Control

 To ensure quality in unit testing and analysis, it is necessary to control both

documentation and the conduct of the test

 Several items from unit testing and analysis should be placed under configuration

management, including the test plan, test procedures, test data, and test results

 A test bed is an integrated system for testing software.

 Minimally, such systems provide the ability to define a test case, construct a test driver,

execute the test case, and capture the output.

4.7Test Factor Test Technique Matrix

 The recommended test process is first to determine the test factors to be evaluated in the

test process; and second, to select the techniques that will be used in performing the test.

 Figure shows a test factor/test technique matrix that shows which techniques are most

valuable in evaluating the various test factors.

Figure 4.4 Test Factor Test Technique Matrix

15 Unedited Version: Software Testing

4.8Summary:

 Techniques are the means by which testers perform their job tasks.

 This chapter describes the more common testing techniques used for structural,

functional, and unit testing.

 The chapter then shows which techniques are most effective in testing the

implementation of the 15 test factors.

 See learning objectives

S = Static

D = Dynamic

M = Manual

A = Automated

References and Bibliography:

 Effective methods of Software Testing, William Perry, Wiley Publication, Edition 2

 Effective methods of Software Testing, William Perry, Wiley Publication, Edition 3

4.9 Review Questions:

1. Explain the concept of application fit.

2. Compare and contrast between:

 a) Structural versus functional testing

 b) Dynamic versus Static testing

 c) Manual versus Automated tests

3. 3. Explain the difference between testing techniques and testing tools.

4. Explain briefly the various Structural System testing Techniques.

5.Explain briefly the various Functional System Testing Techniques.

6.Explain Unit testing techniques.

7. Write a note on Functional testing and Analysis.

8. Highlight the managerial aspect of unit testing and analysis.

S/W Testing

Verification Validation

Functional Structural Functional Structural

S S S D S D

M/A M/A M/A M/A M/A M/A

16 Unedited Version: Software Testing

1 Unedited Version: Software Testing

Chapter 5 : Selecting and Installing Software Testing Tools

Learning Objectives:

5.1 Introduction

5.2 Integrating Tools within Work Processes

5.3 Tools Available for Software Testing

5.4 Selecting and using Test Tools

5.5 Training Testers for using the Tools

5.6 Appointing Tool Managers for Testing Tools

5.6.1 Duties of a Tool Manager

5.6.2 Prerequisites of Appointing a Tool Manager

5.6.3 Process for Using Tool Manager

5.7 Summary and References

5.8 Review Questions

5.1 Introduction:

A tool is a means that enables us to perform a task with ease and efficiency. The tester must first

identify the task to be performed before acquiring the tool. Work process is a means of

accomplishing the testing objective. A work process may use one or more tool which may be

helpful in effectively accomplishing the objective.

The chapter describes the steps involved in selecting and installing the right tool for the right

work process.

The chapter further proposes to designate a tool Manager for providing necessary support to the

testers using the tool and also provide them with adequate training for using the tools.

5.2 Integrating Tools within Work Processes:

 While integrating the tools in any work process, it is important to identify the relationship

between a tool and a technique. A tool serves as a means for performing an operation

while a technique describes the procedure for performing an operation. E.g. To fix a nail

on the wall, the technique used is hitting the nail and a hammer is a tool that can help us

hit on the nail effectively thus helping in accomplishing the said objective.

 The use of tools in work processes is not mandatory and it is not necessary that the tester

uses all the tools while testing but the work processes should offer choice of a specific

tool for accomplishing a specific task. However, once the tool is mapped to a work

process, the tester must use the tool in the specified work process.

5.3 Tools Available for Software Testing:

 Vendors of software testing provide a wide range of automated tools which may be

applicable for use throughout the System development life cycle. However there are

many manual tools like code inspection, walkthrough etc. which can significantly aid in

testing software. Whether automated or manual, tools cover various techniques which

may either be static or dynamic, functional or structural.

 The skill to use the tool and the cost of execution of the tool may vary significantly.

Some tools are general use whereas some tools may require in-depth knowledge of

programming while others may involve skills that are highly technical in nature.

Therefore selecting and installing the right tool is an important aspect of test Process.

 Techniques are few and tools are large in numbers therefore selection of tool affects the

2 Unedited Version: Software Testing

effectiveness and efficiency of testing (hammer and technique). More than 42 common

testing tools available some of which are enlisted as follows:

 Boundary Value Analysis: Application system is divided into segments and testing

happens at the boundaries of the segments assuming that most errors cluster around

the boundaries.

 Cause-effect Graphing: Tests are categorized by the effects occurring as a result of

testing thereby eliminating multiple conditions for testing which have the same

effects.

 Capture/ Playback: This tool enables to capture the inputs, procedures and results of

testing and play the same in future for testing purpose.

 Checklists: A list of probing questions designed keeping in mind a specific task or

function, to be used for review in future.

 Control Flow Analysis: A graphic representation of the program to analyze

branching conditions used to analyze programming logic

 Code Comparison: Code Comparison can be sued to compare two versions of the

code for finding difference between object code and even source code. It is static tool

of testing.

 Data Flow Analysis: This is done to ensure that the data to be used in the program is

defined properly and used appropriately.

 Design Reviews: Design reviews are conducted to ensure the compliance of design

methodology. Reviews are conducted during the system development process to

check its compliance with design methodology.

 Error Guessing: This technique uses experience and judgment of domain experts

who can predict could be the probable errors in the system and how the systems

handle those errors if any.

 Fact Finding: This technique used to ensure the correctness offacts about

predetermined condition and information obtained using methods like document

search, interviews or questioning.

 Flow Charting: Uses graphical representation of the flow of the program to ensure

that all the requirement and design specifications are taken care of.

 Inspections: A step-by-step review of deliverables in every phase of development life

cycle to ensure that the specifications are thoroughly followed.

 Mapping: This method is used to identify system flaws, areas in the program that are

defective or areas that are more effective or statements that are frequently exercised

during program execution.

 Parallel Simulations: this technique uses a less precise version piece of computer

system to determine if the results produced by the test are in accordance to the

requirements of the user. This method is more effective with voluminous data

although it can only approximate the actual processing.

 Peer Reviews:A process where the peer team members who are familiar with the

system review the aspects of the system with an intension to check if the system

complies with standards, procedures, guidelines etc. rather than checking its

efficiency or economy.

 Risk Matrix: Checks for the adequacy of controls exercised by identification of risks

and controls implemented in each part of the application system so as to reduce the

risks to the acceptable level.

3 Unedited Version: Software Testing

 System Logs: This technique uses information generated at run time with an

intension of analyzing the system performance.

 Snapshots: This method records the status of the computer memory at predetermined

points during system processing. This status analyses the usages of computer memory

during processing of specific data with or program with a specific level of

complexity.

 Test data Generators: This software is used to automatically generate volumes of

test data for testing purposes. These generators require feeds in the form of

parameters to generate data from transactions.

 Test Scripts: These are series of automated actions that the tester uses to validate

correctness of software processing.

 Tracing: It is representation of paths followed by computer programs to process data

like tracing the paths from data definition to usage of definition to the location of

storage in the database.

 Use Cases: Scenario based testing with a focus on how different transactions will be

used by users in the operational environment.

 Walkthroughs: Walkthrough is a process where the analyst explains the working of

application system to the testing team, typically by executing the application

provoking questions from the testers with an objective of finding defects.

5.4 Selecting and Using Test Tools:

It is important that testing happens throughout the software development life cycle rather than as

a single phase after the software is developed and before it is released. Tools can aid in automatic

analysis during the requirement and design phase.

 Code generator tools use more sophistication and precision while coding.

 The execution tools provide automation while generation tests cases and emphasize

control during execution of test case.

 The management tools assist in monitoring the results and test processes.

A disciplined approach with careful planning, well defined testing objectives, appropriately

identified tools, good test management and systematic record keeping with complete

commitment is critical for successful testing. Tools selection is an integral part of this process.

The four steps involved in selecting appropriate tool:

1. Matching the tool to its intended use

2. Selecting a tool appropriate to the life cycle (SDLC)

3. Matching the tool to the skill level of the tester

4. Selecting an affordable tool

1. Matching the Tool to its Intended Use:

 The more the tool is suited for a particular task, the more efficient is the

performance of the test process.

 A wrong tool may not only decrease the efficiency but also would not allow the

testers to achieve the test objectives.

 The tester should be familiar with both the tool and its use in order to make a

proper selection.

 The goal of using the tool must be integrated in the test process where the tool is

4 Unedited Version: Software Testing

being incorporated.

 While developing a test process, decision should be made as to whether a specific

task can be better performed using a tool or manually. The test processes and test

techniques should be chosen before selecting a tool.

 The test processes may have to be modified when a new tool or a better

performing tool is introduced in the organization in order to realize its full

capabilities.

 It is important that the tool becomes an integral part of the test processes rather

than being used externally at discretion of the tester.

 As the test processes are continually improved, new and better performing tools

can be incorporated into the test processes

 Continuous research and analysis of available tools helps in incorporating more

effective and efficient tools into test processes thereby continually improving the

processes.

2. Selecting a Tool appropriate to the Life Cycle (SDLC):

 The types of testing processes varythrough the phases of the life cycle. It therefore

becomes necessary to select tools appropriate to the phases of the life cycle.

 As we progress through the phases of the life cycle the tools mature from manual to

automatic. However manual tools cannot be considered less effective than the automatic

as the most significant and cost effective testing happens in the early stages of the

software life cycle where mostly manual tools are used

The following table 4.1 shows the phases of the software life cycle with its most effective testing

tools identified amongst some of the commonly used testing tools.

Testing Tool Requirement

Analysis

Design Coding/

Programming

Testing Operational Maintenance

Boundary

value

Analysis

Capture/

Playback

Cause effect

graphing

Checklist

Code

comparison

Compiler

based

analysis

Confirmation

test

Control flow

analysis

5 Unedited Version: Software Testing

Correctness

proof

Data flow

analysis

Design

reviews

Error

guessing

Fact finding

Flow

charting

Inspections

Modeling

Parallel

simulations

Peer reviews

Risk matrix

Snapshots

System logs

Test data

Tracing

Test scripts

Use cases

Walkthrough

Table 5.1 Software Development Life Cycle related to Tools

3. Matching the Tool to the Skill Level of the Tester :

 The tester must select the tools matching to his/her skills for the effective operation of the

said tool. The tester can then be easily trained to use the tool for specific task as he/she

would already have the basic skills necessary for undergoing the training to use the tool.

 Following are some skills that the tester would possess based on which the matching tool

can be selected

o User Skill: Includes In-depth knowledge of application and business processes for

which the application would be used. It also includesgeneral managerial skills,

knowledge of user problems in the area of business process being computerized.

o Programming skill: Includes understanding of computer concepts, flowcharting,

different programming languages, debugging and documentation of the computer

programs.

o System skill:Includes ability to translate the requirement to the specification. It

also includes skills for system modeling, flowcharting, using different design

methodologies, error identification, project management skills and basic

programming skills (Design Skill, SAD Skill, Programming Skill)

o Technical skill:Requires understanding of highly technical specialty like system

6 Unedited Version: Software Testing

programming, DBA, accounting etc.

Following table shows the skill set of tester for using the commonly identifies testing tools:

Skills Testing Tools

User Skills Check list , Peer Review, Risk Matrix, Use Case, Scoring,

Walkthrough

Programming skills Boundary Value Analysis, Capture/ Playback, Code

Comparison, Control Flow Graphing, Coverage based Metric

testing, Data Flow Analysis, Design based functional testing,

Error Guessing, Flow Charting, Mapping, Parallel

Simulation,Peer Review, Snapshot, System Logs, Test Data,

Test Scripts, Tracing, Volume Testing, Walkthroughs

System Skills Cause Effect Graphing, Checklists, Confirmation Testing,

Design based Testing, Error Guessing, Design Reviews, Fact

Finding, Flow Charting, Inspections, Mapping, Parallel

Simulation, Peer Review, System Logs, Test Data, Test

Scripts, Tracing, Volume Testing , Walkthroughs

Technical Skills Checklist, Coverage based Metric testing, Parallel Operation,

Peer Reviews, Instrumentation, Ratio and Relationships

Table 5.2 Skill Set of the Tester related to Tools

4. Selecting an Affordable Tool :

 Testing should be completed within budget and a give time span

 A tool which is time consuming or very costly is not affordable considering testing

budget and testing schedule. Therefore selecting an affordable tool is one of the last but

significant criterions for selecting appropriate tool for test processes.

 Tools should be selected such that they have less over heads and the probing effect of the

tool does not affect the schedule.

Following table shows the cost comparison of popular testing tools:

Testing Tool Estimated

Cost

Category

Description

Correctness Proof

High

Coverage based Metric Testing
Major Cost–developing the Metric but not its

usage

Inspection

7 Unedited Version: Software Testing

Modeling

Parallel Operation

Parallel Simulation

Test Data Cost may vary based on the volume of tests

Capture/ Playback

Medium

Cause-effect Graphing

Code Comparison Major cost – acquisition of Utility Program

Control Flow Analysis

Design based Functional Testing

Design Reviews Cost varies as per size of review team

Integrated Test Facility Major cost – building ITF

Mapping Major cost – Software

Peer Review

Risk Matrix

Snapshot Major Cost – Building Snapshots

System Logs Assumption : logs already in operation

Test Data Generators Major cost – acquiring software

Test Scripts

Volume testing

Walkthroughs Cost varies as per size of walkthrough team

Boundary Value Analysis

Low

Boundaries to be established during

development

Checklist

Confirmation Testing

Compiler based Analysis

Error Guessing

Fact Finding

Flow Charting Assumption : software is available

Scoring

Ratio/

Table 5.3 Cost Comparison of Implement Tools

5.5 Training Testers for Using the Tools:

Thought the testers may possess basic skills necessary for using the tool but they need to be

trained to use any new tools before incorporating them into test processes. Testers are more

confident of using the tools once they are trained moreover it eliminates the direct and indirect

cost due to misuse of the tool or delay that may be caused due to trial and error. For effective

use of the tool, it is recommended that the tools be used by the trained testers who have gained

proficiency of using the tools. The tools also should be assigned as per skills of the testers. It is

further proposed that a mentor or supervisor should assist the testers while using the tool so as to

ensure the most effective use and performance of the tool.

8 Unedited Version: Software Testing

5.6.1 Duties of a Tool Manager:

A tool Manager can be assigned the following duties:

 Budgeting for the tool and getting the budget approved from the management

 Liaison with the vendor for acquiring the tool

 Planning the tool introduction and facilitating its usage in test processes

 Preparing annual plans for tool usage and its integration with the test processes

 Training the testers before incorporating the tool in the actual test processes

 Installation and upgradation of the tool

 Providing necessary assistance and support for using the tool

 Timely Reporting of the tool usage

 Determining the time for upgradation and replacement of tools

 Overall management of the tool

 Create necessary ground for training future managers

Following Figure illustrates the Tool Manager’s Workbench for managing Testing Tools:

Fig: 5.1Tool Manager’s Workbench for Managing Testing Tools

5.6.2 Prerequisites of Appointing a Tool Manager:

Once the management has identified that a specific tool would be required for testing, it is

recommended that a Tool Manager be appointed.

The two inputs to this workbench are :

1. Clearly stated objectives for acquiring and using the tool

2. Potential candidature list for the position of Tool Manager

Before appointing the Tool Manager following questions should be answered by the IT

management of the organization:

1. Are the objectives for the tool to be managed established?

2. Is the use of tool specified in the work procedures defined by IT management?

Tool

Manager

Effective

Do Check

ToolObjec

tives

Candidates for

tool Managers

Test

Report

Managerial

Training

Task 1: Select

Tool Manager

Task 2: Assign

Tool Manager

Duties

Task 3: Limit

Tool Manager

Tenure

Rework

9 Unedited Version: Software Testing

3. Are the candidates trained to use and manage the tool?

4. Is the training program for using the tool designed?

5. Do the potential candidates have enough experience of using the tool in the production

environment?

6. Do the potential candidates for tool Manager have prior managerial experience?

7. Does the potential candidate agree to carry out all responsibilities of a manager?

8. Does the potential candidate agree that the tool is effective and in line with the mission

statement of the organization?

9. Can the candidate for the manager have enough time to perform his duties?

10. Have the duties listed to be assigned to the manager reasonable?

11. Does the tool Manager understand and agree that the duties enlisted for him/her are

reasonable?

12. Is the tenure of the manager fixed according to the length of the service for a tool

Manager?

5.6.3 Process for Using Tool Manager

In addition to the above, the work processes should clearly indicate when a specific tool should

be used and whether a particular tool can be selected amongst the recommended tools. The tool

manager cannot be biased for using a specific tool but rather provide assistance of the effective

usage of the tool. The three step process for using a manager to manage the use of IT tools is as

follows:

1. Tool manager selection

2. Assign the tool manager duties

3. Limiting the tool manager’s tenure

1. Tool Manager Selection:

 Tool manager should be selected during the process of selecting the tool; so that he

agrees to the selection decision.

 Tool manager should possess following skills:

o Organization skills

o Training abilities

o Tool proficiency

o Managerial qualities like planning, organizing, directing, monitoring and

controlling.

 The tool manager can also be trained in developing and enhancing above skills during his

tenure under supervision of a senior mentor.

 If the tool manager is required to train the future managers than technical skills and

proficiency in using the tools are basic requirements.

 An assistant tool manager may also be assigned for every tool who could serve as backup

for the tool manager. The assistant tool manager may not be assigned primary

responsibilities like that of a tool manager but is capable of handling those in absence of

the tool manager. Assistant Tool Manager is generally an individual who is competent in

the use of the tool just next to the tool manager.

2. Assign the Tool Manager’s Duties:

 Assisting colleagues in the use of the tool:The tool managershould be availableto

provide necessary assistance and support to other staff members for the use of the

10 Unedited Version: Software Testing

toolHotline may be used for providing assistance depending upon the expected frequency

of calls.

 Tool training: The initial tool training is given by the vendor.Additional tool training is

responsibility of tool manager. In case of a complex tool the tool manager may arrange

training by inviting external expertise and technically competent staff. The tool manager

should ensure that the testers are trained for the tool usage before they use it in the

production environment.

 Liaison with Tool vendors: The tool manager is the official contact for the vendor. All

the queries should go through the tool manager. Similarly all the information related to

the tool is passed on to the organization through the Tool Manager

 Annual tool plan:The tool manager should develop an annual plan with planned tool

usage, schedule and resources needed to effectively utilize the tool. The tool manager

may define percentage wise and process wise utilization of tool. The tool manager should

submit annual budget for upgradation, training and other overhead cost with respect to

tool utilization.

 Installing tool upgrades:As the new versions are introduced by the vendor, it is the tool

manager’s responsibility to ensure that the upgrades are installed periodically and

integrated appropriately into the processes. The tool manager should also make sure that

adequate training is imparted to the staff involved in the usage of the tool.

 Preparing annual tool reports: As per the requirement of the organization or annually

the tool manager is responsible for preparing the reports related to usage, problems, cost

and upgrades of the tool. Therefore the tool manager must keep all the statistical reports

related to the tool right from its introduction to usage, to maintenance until it retires.

 Determining timing of tool replacements:The tool manager should determine when the

next version or better tools should be acquired to replace the old tools. It is the

responsibility of the tool manager to send the proposal to the IT management regarding

the replacement.

The role of the tool manager can be enhanced in different ways like giving adequate time

and freedom to individuals to perform as a tool manager and including the performance

as a tool manager in the appraisal of the individual.

3. Limiting the Tool Manager’s Tenure: Tenure is the term during which some position is

held.

 After some time manager tends to lose the perspective of new uses of the tool and may

overlook its deficiencies in comparison to the new available tool in the market.

 It is proposed that by bringing in a new tool manager every two years, the tool can be

utilized more effectively

 Tool manager can be transferred to manage another tool but in exceptional cases where

the tool is specialized and complex and less used then it is advisable to lengthen the

tenure of the tool manager.

5.7 Summary:

Tools are necessary for effective and efficient testing. Organizations should therefore budget for

acquiring necessary tools for testing.

11 Unedited Version: Software Testing

The chapter describes the popularly used tool for testing in various phases of software life cycle.

The selection of appropriate tool to map the phases of the life cycle is very important. For the

most effective use of the tool it should be matched to the skills of the tester.

Testing technique should come before the tool as techniques are few where as tools are many and

may only provide point solution. The tools should be cost effective and only then they are

affordable.

It is desirable to appoint tool manager who can assist and supervise the individual testers and

train them for using the tool. The three step process for using a tool manager is also discussed in

the chapter.

References and Bibliography

 Effective methods of Software Testing, William Perry, Wiley Publication, Edition 2

 Effective methods of Software Testing, William Perry, Wiley Publication, Edition 3

5.8 Review Questions

1. What is a Tool? What are the advantages of integrating a tool in the test process?

2. Explain in brief the steps for selecting a testing tool.

3. Explain the significance of matching the tool with the skills of the tester?

4. Why should a tester be trained to use a testing tool? What is the objective of appointing a

tool manager?

5. What are the things that an organization should check before appointing a Tool Manager?

6. What duties can be assigned to a Tool Manager?

7. Explain the process of using a Tool Manager.

8. Explain the Tool Manager’s workbench for managing the testing tool with the help of a

diagram.

1 Unedited Version: Software Testing

Chapter 6 : Software Testing Process Overview

Learning Objectives:

6.1 Introduction

6.2 Advantages of Software Testing Process

6.3 Cost of Computer testing

6.3.1 Quantifying the Cost of Removing Defects

6.3.2 Reducing the Cost of Testing

6.4 Life cycle testing concept

6.4.1 ‘V’ Testing Concept

6.4.2 Organizing for Testing

6.4.2.1 Functions of Software Testing Team

6.4.2.2 Selecting Software Testing Team Members

6.5 Verification and Validation in the Software Development Process

6.5.1 Verification Testing

6.5.2 Validation Testing

6.6 Software Testing Process Overview

6.7 Workbench Skills

6.7.1 Using Testers Workbench for Eleven-step Software Testing Process

6.8 Summary and References

6.9 Review Questions

6.1 Introduction:

Software testing is not a single phase activity but is an ongoing process and forms an integral

part of the software development life cycle. There are many advantages of following a process

for testing software. Different approaches like verification and validation can be used to test the

different aspects of software during the software development process. The importance of

selection of techniques and tools is already discussed. Organizing the software testing team is the

first step in the testing process. Without formalization of testing team, it is difficult to introduce

formal testing processes into development process.

6.2 Advantages of Software Testing Process:

There is no best designated process for software testing. However, understanding and following

a process for testing software has following advantages:

1. Consistent Testing: Testing can be consistently performed using a process approach as

it will considerably reduce the variability and will increase the confidence in the testing

and its deliverables.

2. Education of testing: When a disciplined approach or a process is followed for testing it

can be broken down into steps and methodically be taught by describing the inputs to be

given and outputs to expect when performing any task.

3. Test processes can be continually be improved: Test processes can be continually be

improved as when test processes are used the advantages and shortcomings of the

processes are uncovered. Moreover they can be improved with experience to suit a

specific task.

4. Management of Test processes: When processes are followed people have to adhere to

2 Unedited Version: Software Testing

processes. This approach enables the test manager to manage the processes rather than

manage people performing haphazard tasks. With process the manager can emphasize

better control and monitoring.

6.3 The Cost of Computer Testing:
In general there are two categories of testing:

 Pre-implementation:It covers all the activities that occur prior to placing the system into

production environment. The main objective is to determine whether the system

functions as specified and that defects in the system are removed prior to placing the

system into operation.

 Post-implementation: It covers the activities that occur after the system goes into the

operation. It could also be considered a part of system maintenance.

The cost of removing system defects prior to system going into the production includes:

 Building the defects into the system

 Identifying existence of the defect

 Correcting the defect

 Testing to determine that the defect is removed

Defects uncovered after the system goes into operation generate the following costs:

 Identifying, Specifying and coding the defect in the system

 Detecting the defect in the system application

 Reportingthe problem to the user or escalating it to the system manager

 Actually correcting the problem caused by the identified defect

 Finding the root cause of the problem

 Operating the system until the defect is removed

 Retesting the entire system to determine that the defect is removed

 Integrating the corrected components or programs into Production environment

The cost of testing not only includes the testing cost but also includes the cost of undetected

defects. Generally organizations consolidate all these cost under the umbrella of ‘Cost of

Testing’. Testing is not a single point activity but an ongoing step-by-step process used to find

defects and ensure that the system functions without any problems or failures. However, as

enlisted above the cost of building test cases and correcting defects may exceed the cost of

detecting defects.

The National Institute of Standards and Technology has estimated that testing, including the

correction of all defects prior to the system going into production, accounts for at least half of the

total system development effort and cost.

When the cost of system defects is high, the organization may face challenges of quantifying the

exact cost of removing the defects and another as to how to reduce the overall testing cost

6.3.1 Quantifying the Cost to Removing Defects:

Surveys undertaken by Quality Assurance Institutes indicate that on an average there are 20 to 60

defects in most of the application systems per 1000 lines of source code. It is further indicated

3 Unedited Version: Software Testing

that approximately two-third of defects for every 1000 lines of source code occur in early stages

of development process. As the development process mature over a period of time, the defects

produced may also reduce.

The causes of defects getting built into the application include:

 Improper interpretation of requirements: The system analyst may misinterpret the

actual user requirements but has correctly implemented the technical requirements of the

system.

 Requirements wrongly stated by the user: The first hand requirements specifications

given by the user to the system analyst are incorrect or incomplete.

 Requirements are incorrectly recorded: The system analyst has not been able to

correctly capture and record the user requirements.

 Design specifications incorrect: The application design not complying with the system

requirements although the designed correctly as per design specification.

 Program specifications incorrect: When the design specifications are incorrectly

interpreted, the program specification would also be incorrect although the program is

correctly coded as per the program specification.

 Program coding error: The program coding does not match with the program

specification.

 Program structural or instructional error: The program constructs used

inappropriately resulting in defects due to improper program structure or improper

instruction or improper logic.

 Data entry error: The system or application data incorrectly entered into the computer.

 Testing error: Tests either fail to detect errors when the error is present or wrongly

detects errors when errors are absent resulting in false positives and false negative

respectively.

 Error correction error: Mistakes made while correcting an existing error.

 Corrected condition causes another defect: It may so happen that while correcting an

error, another error is introduced in the same piece of code or another related portion of

code. It is like side effect or cascading effect of correcting an error.

The areas associated with the test processes can be identified easily but to estimate the cost

related to these areas may be a difficult task. Again, unless the cost of testing is not known it is

difficult to find the cost of uncovering defects and correcting them.

There are two methods identified for estimating cost of testing:

Taking help of an expert to estimate the time and effort, keeping in mind the preconditions of

testing and accordingly arrive at cost of testing. Although the actual time and effort may vary

considerably in case of complex systems but still an approximation can be made for the cost of

testing.

1. A more practical approach is to record the total number of defects encountered as a result

of testing. The phase of life cycle in which the defect is uncovered is also noted. The cost

of re-designing and correcting the defects is also noted. This may include all the tangible

costs like the cost of correction and intangible costs like cost incurred due to delay in the

schedule.

The cost is then multiplied by the factor representing the totality of error and problems

4 Unedited Version: Software Testing

associated with the defect as follows:

 Defects encountered during design: cost equal to the cost associated with the

correction of the defect

 Defects corrected during the system test phase: cost to correct is multiplied by a

factor of 10

 Defects corrected after the system goes into production: cost to correct is multiplied

by a factor of 100

Note that Cost of error correction increases as the system life cycle progresses.

6.3.2 Reducing the cost of Testing:

The above discussion clearly indicates the economics of testing. The method to reduce

the cost of testing is to locate the defects in very early stages of the life cycle. The sooner

the defects are uncovered and corrected, less will be the cost incurred. This signifies that

testing should begin as soon as requirement gathering begins. Therefore the objective of

testing is to uncover defects as early as possible in the development life cycle.

6.4 Life Cycle Testing Concept:

 Life cycle testing concept can best be achieved by the formation of a test team.

 A Test Team is made up of the members of the project who may be both implementing

and testing the system

 Test Team members should follow the same methodology for testing as they used for

developing the system.

 The effectiveness of the test team is using different methods for development and the

testing phase.

 The development team begins the development process and test team begins the test

process.

 Both the teams - the development team and the test team start at the same point with the

same information.

 Development team has the responsibility to define and document the requirements.

 Test team will used the same requirements for testing.

 Following should be defined for the complete Test Process:

 Inputs

 Do procedures

 Check procedures

 Outputs

 If there are more do procedures accordingly there will be more check procedures.

 Before creation of a new product, prototype is designed by the development team and

checked by the testing team.

6.4.1 ‘V’ Testing Concept:

Do and check procedures slowly begin converge from start to finish, which indicates that as the

do team attempts to implement a solution, the check team concurrently develops a process to

minimize or eliminate the risk.

The following figure illustrates the concurrent Do and Check Procedures of the Development

5 Unedited Version: Software Testing

and Test processes undertaken by the Development and the Testing team respectively.

Figure 6.1 ‘V’ Testing Concept

6.4.2 Organizing for Testing:

Life cycle testing goes along the software development life cycle. Organization of the teams for

development and testing is the first and the foremost step in the V Testing Process.

1. Software Development Team:

The team is responsible for:

 Requirement gathering

 Design and implementation

Team should include:

 Representatives of the staff or departments for whom the project is being developed

 Designated members of IT department

2. Software Testing Team:

 A member of the project team with testing experience organizes the testing team.

 The testing team is separate from the development team.

 The testing team may have to report to development team or test manager depending on

the team layout.

 The testing team would require taking requirements from the project team.

 The number of test members in the testing team varies depends upon the project size and

project time frame.

6 Unedited Version: Software Testing

6.4.2.1 Functions of Software Testing Team:

 The members should ensure that the project development plan includes testing

capabilities.

 The test manager should confirm that management has allocated adequate resources for

testing.

 The members should ensure that testing happens in the specified time frame

 The test manager should develop and present the test plan to the project development

team.

 The test manager should evaluate the implementation plan to confirm that

implementation is testable.

 The testing team should periodically report to project development team as planned.

 The testing team must ensure that testing occurs throughout the development process.

6.4.2.2 Selecting Software Testing Team Members: When selecting the members of the testing

following

 The testing team members should be skilled to fulfill the responsibilities of testing.

 They should be familiar with the application or business domain

 They should have the right mix of skills based on the tasks and activities of testing.

 They should be aware of the issues, limitations and capabilities of the technology being

used.

 They should be able to effectively use testing techniques to carry out testing activities.

 Further based on the expertise, various specialized roles can be identified in the team like,

o For performing automation testing – Tool experts

o Technology and business domain experts

o Regressing testing experts

o Programmers

o Integration test experts

 Type of projects, location of team and management support may be a guide to define

various roles

 The members other than the testing team, who play an important role in testing are :

o Users

o Computer operators

o DBA

o Internal auditors

o Quality assurance staff

o Information services management

o Security administrator

 Following are the three steps that can be followed to from the best test team

o Identifying potential test team members

o Recruiting test team members and developing tentative test assignments (different

roles are assigned to the team members)

o Define an individual work assignment: Once the individual is assigned by the

management, prepare a work paper and include personal information and the test

assignment

 Management should be aware of the following when selecting a testing team member:

7 Unedited Version: Software Testing

o The candidate’s importance as a team member.

o Role to be assigned to the candidate and the task he will perform.

o The correlation between the candidate’s skill and the testing skills needed.

o The candidate’s willingness to participate as a member of testing team.

o Amount of time the candidate will have to devote to the effort.

6.5 Verification and Validation in the Software Development Process:

Verification and Validation (also known as VV) is a process of checking whether the software

meets the specifications and satisfies the intended purpose for which it was built. Verification

and validation is a responsibility of the tester in the software development life cycle.

The difference between as defined by Boehm is:

o Verification: Are we building the product right?

o Validation: Are we building the right product?

6.5.1 Verification testing:
The main objective of verification is to ensure that the system is built correctly. It is done

through the different phase of the development life cycle with the goal to check if it meets the

specifications of the user. Verification done during the requirement and design stage is helpful to

find if any requirement is not missed in the early stages of development. It can therefore save a

lot of effort of undoing things. During coding phase verification of code can be useful to find

code coverage errors and data flow errors. Static testing techniques can be used for conduction

verification.

6.5.2 Validation testing:
The main objective of validation is to determine whether the right system is built. It is also done

during all the phases of development life cycle with the intention to check its functionality to

meet its intended use. Test cases can be built to dynamically check the system while it is running

to ensure that the actual outputs are as per expected output. Dynamic testing techniques can be

used for conducting validation.

6.6 Software Testing Process Overview:

The software testing process follows the ‘V’ concept of testing. The V represents both the

software development and eleven-step process of software testing. Both the processes commence

at the same time and proceed simultaneously until the end of the project. The post

implementation analysis occurs after step 7 in both the development and testing processes with

the objective to find if the development and testing can be performed more effectively in future.

1. Assess Development Plan and Status:

 Tester will challenge the completeness and correctness of the development plan.

 Based on that the tester would estimate the amount of resources that would be needed

to test the implemented software solution.

2. Develop the Test Plan:

 Structure of all Test plans would be same but the content would vary.

3. Test Software requirements:

 If the requirements are not taken properly at the beginning then the cost of

implementation increases significantly.

 Tester must take care that the requirements are accurate and complete and they do not

8 Unedited Version: Software Testing

conflict each other.

4. Test Software Design:

 Checking external and internal design through verification technique.

 The design should fulfill all the requirements.

 It should be effective and efficient.

5. Test Software Construction:

 Tests are dependent on the method chosen to build the software.

 As the construction becomes more automated, less testing would be needed.

 It is cheaper to identify the defects during this phase.

6. Execute Tests:
 The test should take care that the code should fulfill the software requirements and

structural specifications of the design.

7. Acceptance Test:

 Acceptance test enables user to evaluate the usability of the software.

8. Report Test Results:

 Reporting is a continuous process.

 It can be both oral as well as written.

 Testers should report to appropriate stakeholders at the earliest so the correction can

be made at the lowest cost.

9. Test software installation:

 After the software is ready for the production (green signal from test team),

installation can start.

 The ability to run the software in a production environment should be tested.

 It includes testing the interface to O.S., to related software and operating procedures.

10. Test software changes:

 After implementation whenever requirements change the test plan must change.

 The impact of that change on software system must be tested and evaluated.

11. Evaluate test effectiveness:

 Testing improvement can be achieved by evaluating the effectiveness of testing at the

end of each software testing assignment.

9 Unedited Version: Software Testing

Figure : 6.2 Eleven Step Software Testing Process

6.7 Workbench Skills:

Whenever any tool or operation is designed, it is designed such that it is user friendly and

minimum skills are required by the users to operate the same. Moreover it is also accompanied

with adequate documentation so that the user can perform all the operations correctly with ease.

More detailed the documentation is; less is the probability of error on the user’s part. In case of

complex operation which are designed only for professionals to use, require more advanced

skills and are not generally supported with documentation as it is assumed that the professional

has enough know how to operate the tool or perform the operation.

A pilot, for example has undergone enough training and completed stipulated flying hours to

obtain his license. Although there are standard procedures for flying an aircraft but individual’s

skill does matter.

Similar is the situation when obtaining requirements from the end user. The system analyst is

dependent on the work papers but it involves individual skills and experience to convert the work

papers into the actual requirements. Following figure illustrates the relationship between the

tester’s competency and tester’s workbench. The workbench assumes average skills for the user

which are included in the description of procedures to do. Similarly it is also assumed that a

professional tester possesses certain basic skills while the competency of an individual tester is

evaluated through certification programs. Training programs can be undertaken by the testers to

10 Unedited Version: Software Testing

enhance their skills and competency level as a tester.

Figure 6.3 Relationship between Testing Skills and Workbench

6.7.1 Using Testers Workbench for Eleven-step Software Testing Process:

A tester’s workbench forms a template describing the procedures that the tester will perform

during the steps of software testing process. Although all the steps have a separate workbench

but use a similar approach as follows:

Overview: A brief description of the step of software testing.

Objective: Description of purpose of the step used to measure the progress.

Concerns: Describes the challenges that testers would have to face and overcome to complete

the step.

Workbench: Describes the process that the testers perform in the step.

Input: Enlists the document, information, skills, resources needed in the step.

Do Procedures: Detailed step-by-step task to be performed by the tester in the step.

Check Procedures: Detailed checklist which the tester uses to verify if the step is

correctlyperformed that is in line with the testing objective.

Output: list of deliverables that the tester is expected to generated at the end of the step.

Guidelines: Suggestions for effectively performing the step.

6.8 Summary:

The importance of the process is discusses at the beginning of the chapter. The cost of testing

and the related issues regarding its estimation and quantification of cost to removing defects are

also discussed. The methods for testing in cost-effective manner are also proposed.

The chapter further introduced the Life cycle approach of testing where the V concept of

software development and testing is explained.

Mix of Skill

Competency versus Test

Process Effectiveness

Test

Execution

Project Completion

Reporting Time
Test planning and

Analysis

Low 0 %

High 100%

100%

Skill Competency of Tester

Process Maturity

Completeness and effectiveness of

Test Process

11 Unedited Version: Software Testing

The importance of the team approach for Life cycle testing is emphasized and the considerations

while organizing the teams are discussed. The functions to be performed by the testing team are

elaborated.

The verification and validation process of the software development life cycle is explained

highlighting the objectives and importance of verification and validation processes.

A brief overview of eleven-step software testing process is given in the chapter, the details of

which will be discussed in the following chapters.

The workbench skills for the testers are discussed and a workbench competency scale for

evaluating individual tester’s competency is presented.

References and Bibliography:

 Effective methods of Software Testing, William Perry, Wiley Publication Second Edition

 Effective methods of Software Testing, William Perry, Wiley Publication Third Edition

 https://en.wikipedia.org/wiki/Software_verification_and_validation

6.9 Review Questions:

1. Define Process. Explain the advantages of software testing process.

2. Write a note on ‘Cost of Computer Testing’.

3. What are the different causes of defects in an application? Explain how the cost of

removing defects can be calculated.

4. Explain the advantages of Life Cycle Testing Process.

5. Explain with the help of diagram the ‘V’ Concept of Testing. How is it relevant to Life

cycle testing?

6. Describe the functions of the software testing team members.

7. What are the considerations while selecting the members of the testing team?

8. Explain the significance of verification and validation in the software development

process. Also explain the difference between validation and verification.

9. Give a brief account of the eleven-step software testing process.

10. Write a note on workbench skills of a tester.

1 Unedited Version: Software Testing

Chapter 7: Software Testing Process Section - I

7.1 Introduction

7.2 Step 1: Assess Project Management Development Estimates and Status

7.2.1 Objective

7.2.2 Workbench

7.2.3 Input

7.2.4 Do Procedure

7.2.4.1 Task 1: Testing the Validity of the Software Estimates

7.2.4.2 Task 2: Testing the Status of the Software System

7.2.5 Check Procedure

7.2.6 Output

7.3 Develop Test Plan

7.3.1 Objective

7.3.2 Workbench

7.3.3 Input

7.3.4 Do Procedure

7.3.4.1 Task 1: Form the Test Plan

7.3.4.2 Task 2: Understand the Project Risk and Concerns

7.3.4.3 Task 3: Inspect Test Plan

7.3.5 Check Procedure

7.3.6 Output

7.4 Summary and References

7.5 Review Questions

7.1 Introduction:

Testers play a significant role in project management as the output from the workbench of each

step may directly affect the software development in that phase. The testers are responsible for

performing.

• Testing validity of software cost/effort estimate

– Developers should not compromise on software quality

• Testing the status of the software system

– Incorrect status leads to incorrect decisions

– Progress of the system should be known to testers and management

– Testers will be provided with simple tool for measuring the status of software

development

7.2 Step1: Assess Project Management Development Estimates and Status

 Tester will challenge the completeness and correctness of the development plan

 Based on that he will be in position to estimate the amount of resources they will need to

test the implemented s/w solution

7.2.1 Objective:

 Determine what resources are available to develop and maintain the software

2 Unedited Version: Software Testing

 Resources include staff, computer time and environment available to complete the project

 Estimation of Cost from start to end of project

 Tester can compare the estimates to know the project status and take corrective actions

7.2.2 Workbench:

Figure 7.1Workbench for Testing Validity of the Software Estimates

7.2.3 Input:

The inputs required in this step are:

1. Project Plan

2. Project Estimates

3. Methods to derive Project Estimates

7.2.4 Do Procedure
Following are the tasks in this step:

 Task 1: Testing Validity of the Software Estimates

 Task 2: Testing the Status of the Software System

7.2.4.1 Task 1: Testing Validity of the Software Estimates: Testing validity of software cost

estimate is important as if the estimates are wrongly calculated; the quality of software

will suffer considerably.

Some concerns while obtaining software estimates are as follows:

 Lack of understanding of process of software development.

 Lack of understanding of impact of various constraints on the project.

 Project is unique and processes being executed first time.

3 Unedited Version: Software Testing

 Historic data or model not available for comparison.

 Inadequate or unclear specification of project scope.

 No methods available to track cost components.

Some commonly used methods for cost estimation are as follows:

 Using historic data and precious experience from similar projects which are not very

large

 Constraint method based on schedule, cost and staffing can be used for estimation where

specification are adjusted to fit the constraints

 Percentage of hardware method assumes software development cost to be fixed

percentage of hardware cost. This may not be accurate in today's scenario where

hardware cost is considerably reducing and software development cost is increasing.

 Parametric Modelling or scientific modelling uses various methods for estimation like:

o Regression Models use statistical analysis and curve fitting based on past data

relationships. Estimates are found with input parameters and hypothetical

relationships are established.

o Heuristic Models use observation and interpretation of historic data along with

supposition and experience.

o Phenomenological Models are based on specific assumption that can explain the

software development process. Based on these assumption estimates are arrived

at.

 Most of the models following similar steps :

o Estimation of software size.

o Convert the size estimate to effort in terms of manpower and time.

o Adjust the estimates of a specific feature of the software.

o Dividing the estimates phase wise.

o Estimating non-technical cost like the computing time and tool cost etc.

o Summing up all the costs.

 Testing the validity of software cost estimates can be carried out in following three steps:

1. Validate of the estimating model is reasonable: The cost estimating model should

possess most of the desirable characteristics of a good cost estimating model as

listed below.

2. Validate if the estimation model includes all the factors required: The 14 factors

or characteristics of a good estimation model are listed below:

i. Model should have well defined scope.

ii. Model should have Wide applicability.

iii. Model should be Easy to use.

iv. Model should use actual project data.

v. Model should allow use of historic data for calibration purpose.

vi. Model should be checked using considerable number past projects.

vii. Model should accept input based on project properties for generating

estimates.

viii. Model should accept objective rather than subjective inputs.

ix. Model should deal differently with subjective inputs.

x. Model should accept all the parameters that can affect the cost of project.

xi. Model should estimate how much and when a resource would be needed.

4 Unedited Version: Software Testing

xii. Model should produce a range of likely values as estimates.

xiii. Model should include possibility of sensitive analysis using various input

parameters.

xiv. Model should include risk of failure to complete the project within

estimated time or cost.

 To validate that the model includes all needed factors, following aspects which can

influence the cost are considered:

1. Project Specific Factors:

o Size of software

o Percentage of new design/code being introduced

o Complexity of software

o Complexity of design and coding

o Software quality

o Programming languages to be used

o Security levels in project

o Volatility of requirements

o Hardware utilisation

2. Organisation dependent factors:

o Project schedule

o Personnel both technical and non – technical

o Staffing cost

o Configuration of Development Environment

o Indirect Resources

o Direct or computed Resources

o Inflation

3. Verify the correctness of cost-estimating model: Following tests can be used for

verifying correctness of cost-estimating model:

o Recalculating the estimates

o Comparison with past similar projects

o Prudent Person Test

o Redundancy test in cost estimation

7.2.4.2 Task 2: Testing Status of the Software System: There are different methods that can be

used to measure the progress of the project some of which are explained below:

1. Point Accumulation Tracking System:

 The progress of the project can be measured by accumulating points of progress

of the project and comparing them with the accounting or project management

progress reporting.

 Points are assigned for each step in software development life cycle.

 As the software units are accepted the points are earned.

 Ratio of points earned to total points is compiled on unit, functional area or the

complete system basis to determine its progress.

5 Unedited Version: Software Testing

 Point accumulation tracking system has following advantages:

o It is simple, efficient and objective method

o It uses data based on deliverables of software units in the development

process

o Results can be interpreted in numerical format

o It can be used for both large and small projects

o It can be automated and provides accurate measure of progress indicating

deviation from planned and prediction for future.

2. Percent Completed Method:

 The project development team assigns a percentage value to the work completion

and by taking the sum total the project progress can be measured. Since the

project work is divided percentage wise, this method is called Percent Completion

Method.

 A schedule of the tasks or milestones is used to compare the project status.

 The project team members assign the value to the work status.

 The disadvantages of using this method are:

o It is a subjective method and hence can be manipulated.

o Many times the project development team is more optimistic rather than

realistic while estimating time for certain work completion.

o The perception of team members who estimates the percentage may have

different perception than the project manager. This difference in

perception may bring in difference in estimation.

 Depending on the estimation done, the Project Manager may apply ‘Correction

Factor’ to derive better and workable estimates.

3. Milestone Method:

 The Milestones are predefined points in the progress of the project which are

similarly understood by everyone in the project team.

 Milestones are kind of indicators for the reporting the status of the project

development.

 The progress of the project is estimated by summing up the number of milestones

that have been met.

 This method has following advantages:

o It eliminates the problem of poor definition of tasks by clearly defining

milestones.

o It is an objective method so cannot be manipulated.

o It defines the tasks completely for assigning milestones.

o It can be easily and uniformly interpreted by all the team members.

 Some drawbacks of this methods are :

o When more milestones are defined in shorter duration it may show a wrong

picture of estimation. Moreover the resolution becomes more so any small

deviations are visible.

o When there are more number of milestones for large projects, data

6 Unedited Version: Software Testing

collection, analysis, processing and presentation become a problem. There

are more collection points and representationof progress in form of bar

charts becomes incomprehensive. Moreover its takes great effort to keep the

charts up-to-date.

o Milestones may not always accurately reflect the real picture if it is task

based. Only if it is based on tangible deliverables will it clearly depict the

appropriate project status.

While choosing from the above Performance Measurement Scheme following criteria

should be considered:

1. The scheme should be objective

2. The claim of performance and estimation of work completion should be made by

different persons.

3. Monitoring of performance should done by a person who exactly knows what

performance measurement represents.

4. The status of development should be visible and measurable by any project team

member.

5. The scheme should measure performance based on accomplishment of tasks.

6. The resolution of measurement should be reasonable to indicate weekly or monthly

progress as per the requirement of organisation.

7. The scheme should take timely measurements and reflect the progress appropriately

7.2.5 Check Procedure:

The quality checklist of Do Procedures comprises of the following:

1. Does the project management support the idea of test team assessing the development

estimate and status

2. Are the testers knowledgeable in estimation process?

3. Do the testers know the method of reporting the project status?

4. Is the test team aware of how the project estimate was calculated?

5. Has the test team performed a reasonable test to determine the validity of the estimate?

6. If the test team finds the estimates inappropriate or invalid, will a process be followed to

resolve the difference?

7. Does the test team have reasonable test reporting system?

8. Does the project team agree to report the development status to test team periodically?

9. If the project progress status indicates behind or ahead of estimates, is there a process to

be followed planned?

10. Are the influencing factors taken into account while evaluating estimates?

11. Will the test tea receive copies of the status report?

12. Is there a process defined in the test plan to act upon the status reports when received?

13. Is the test team aware of how projects are planned?

14. Does the test team understand the process of project estimation used?

15. Does the project team understand the developmental process that will be used to build the

software specified in the project?

16. Is the project plan complete?

17. Is the project estimate and developmental process fully documented?

18. Are the estimating methods reasonable for the project characteristics

19. Are the estimates appropriate to complete the project as planned?

20. Has the project been completed using the developmental process?

7 Unedited Version: Software Testing

21. Does the project team have a method of determining and reporting project status and is it

used accordingly?

22. Do the testers agree that the project status as reported is representative of the actual

status?

Some Concerns for Testing the Validity of Software Estimates :

• Lack of understanding of the process of software development and maintenance

• Lack of understanding of the effects of technical and management constraints on the

project

• Uniqueness of project discouraging comparisons

• Unavailability of historical data

7.2.6 Output:

A Test Report on the adequacy of the test estimates and reasonableness of the project status is

submitted to the Project Manager.

7.3 Step 2: Assess and Develop Test Plan:

 The Test Plan describes all testing that is to be accomplished with the resources and

schedules

 The test plan provides the information on the software, test objectives, risks, specific test

to perform

7.3.1 Objectives:

 To describe in detail the schedule and resources needed for complete testing process.

 To provide information of the software being tested.

 The Test Plan is an agreement between the testers and Project team members describing

the role of testing during the project development.

7.3.2: Workbench:

8 Unedited Version: Software Testing

Figure 7.2Workbench for Assessing and Developing Test Plan

7.3.3 Input:

1. Project Plan

2. Project Plan assessment and status

7.3.4 Do Procedure :

Following are the tasks in this step:

Task 1: Form the Test Team

Task 2 : Understand the Project Risk and Concerns

Task 3 : Build Test Plan

7.3.4.1 Task 1 : Form the Test Team

The test team can be organized using following four approaches:

1. Internal IT Test Team approach:

 The development team members, usually Information Services members share the

responsibility of testing.

 Project Manager leads the testing process as the development team members

participate as testers.

 The testing process is independent of the development process and each team

member tests other members work.

 Advantages:

o Minimize the cost of appointing a separate testing team.

o The entire team is responsible for both development as well as testing.

o This approach provides opportunity to develop cross-skills, such as

development and testing thus making the skills complementary and

supplementary.

9 Unedited Version: Software Testing

 Disadvantage:

o Enough time may not be given to testing as same members perform

development so they may compromise over testing time.

o Independent and Objective quality testing may not be possible with all

team members.

o Since there is no independent testing some defects may be not be

uncovered due to perception issues.

o As the reporting occurs to Information Service Department only, the

ability to act is limited.

2. External IT Test Team approach:

 Information Services personnel who are not a part of the development team are

referred to as External IT Team for testing.

 The system development verifies that the software is structurally and functionally

correct, then after the external team verifies whether the software satisfies the user

requirements.

 Quality Assurance team can take responsibility of performing testing.

 Advantages:

o Independent testing and is therefore unbiased.

o Versatile domain experience and specialized testing ensures high quality

software to be delivered to the users.

 Disadvantages:

o Addition cost required to monitor and administer the external testing team.

o Overreliance of development team on the testing team as a result of which

overburden on the testing team may escalate the costs.

o Non-cooperation and competition between the developers and tester may

cause the software quality to suffer.

o As the reporting occurs to Information Service Department only, the

ability to act is limited.

3. Non-IT Test Team approach:

 The test team comprises of representatives of Users, Auditors and Consultants

who carry out testing on behalf of users.

 The team is concerned in protecting the interest of the organization on the whole.

 Advantages:

o Independent testing and is therefore unbiased.

o The results are reported on the behalf of the entire organization and is not

limited to the IS Department only so there is greater scope for action.

 Disadvantages:

o The cost of testing is very high.

o It may be time consuming as the team is neither familiar with the

development process nor with the testing process.

o Quality of software may suffer due to lack of knowledge and experience

of testers.

4. Combination Test Team approach

10 Unedited Version: Software Testing

 Any or all of the above approaches can be combined to form a testing team.

 Domain experts in the team may carry out testing in their specific areas.

 Advantages:

o A multidisciplinary approach makes the testing process more mature.

o Gives an opportunity to develop cross-skills for testing under the expertise

of domain experts.

o A combination team has greater clout in approving or disapproving or

even modifying the application.

 Disadvantage:

o Higher cost of formation, administering and monitoring the testing effort.

o There may be scheduling problems based on availability of team members.

o As the team is diverse, it may be difficult to arrive at consensus.

7.3.4.2 Task 2 : Understand the Project Risk and Concerns

 Test factors describe the broad objective of testing and therefore the testers should

investigate the system for following 15 test factors enlisted in the table below:

1. Reliability 6. Continuity of Processing 11. Correctness

2. Authorization 7.Security Level 12. End of Use

3. File Integrity 8. Access Control 13. Maintainable

4. Audit Trail 9. Methodology 14. Portable

5. Coupling 10. Performance 15. Ease of Operation

Table 6.1 Test Factors

 Following are the major project concerns to be considered while testing:

o Not enough training : The tester may not have been formally trained on testing

techniques or tools which causes a great deal ofmisapplication

o US-versus-them mentality: The relationship between the developer and tester

can have a great impact on the project.

o Lack of test tools: Sometimes manual testing is difficult in case of some projects

and if test tool is not affordable then it may create a concern.

o Lack of support from management: The support from management is useful to

build the morale and confidence of the tester.

o Lack of user involvement: The involvement of the user is necessary since they

will make sure that the software works fine from a business perspective.

o Not enough time for testing: Testing is an ongoing process so it does not have an

end time.

o Over-reliance or over-dependency on testers:Developers may rely on the

testers for testing and may not analyze their work for error which may lead to

considerable amount of undoing and redoing

o Rapid change:Rapid changes in development processes may require retesting of

software

o Testers are in a lose-lose situation: The tester has to communicate the defects to

the development team even if they may have to redo all the tasks.

o Having to say NO: It is the testers who will have to identify and communicate to

the developer about the causes of the defects and which procedures to discontinue.

11 Unedited Version: Software Testing

7.3.4.3 Task 3 : Build Test Plan

Building the Test Plan has following subtasks:

1. Subtask 1:Set Test Objectives
o There should be approximately 10 testing objectives defined which should match

and restate the project objectives.

o These objectives must be measurable and the means of measurement be defined.

o The objectives should be prioritized as High, Medium and Low.

o Completion criteria for each objective be defined.

2. Subtask 2 : Develop Test Matrix

A matrix is developed by plotting feature to be tested on one side and the test to be

performed on the other side.

Listing what is to be tested:

Software module: - Name of the project and its number, name of the module,

description of the module and criteria that will be used to evaluate module’s

processing.

Structural attributes: - Software project name and its number, structural attribute,

explanation of the attribute, evaluation criteria. The structural attributes can be

maintainability, reliability, efficiency, performance, interconnection between the

systems etc.

Listing Tests to be performed:

Batch tests: - Batch tests must be composed during execution phase. Name of the

project – name of test, test objective, test input, test procedure, test output, test

controls, software module to be tested.

Conceptual test :- same as batch test but works for online systems.

Verification test :- for large complex documents verification is review and for small

documents verification is inspection.

The work paper is made to include: - name of the project, test no, name of the

document to be verified,purpose, a group responsible for testing, and the schedule i.e.

the time when the test will complete.

Software test matrix is prepared using the above:

The vertical axis of the matrix lists the software modules and structural attributes.

The horizontal axis lists the different test from batch, conceptual/online and

verification. Check marks are indicated on the matrix.

3. Subtask 3 : Define Test Administration
• Identifies schedule, milestones and resources needed to execute the test plan.

• Prior to developing the test plan the test team needs to be organized. Initially test team is

responsible for developing the test plan and then defining the administrative resources

needed to complete the plan.

• The test plan general information includes name of the project, summary i.e. overview of

12 Unedited Version: Software Testing

what is to be tested and how testing will be performed, summary of any previous test

experiences that would be helpful, test environment i.e. the computer center or facilities

used to test the application, test constraints i.e. some of the testing is not possible if the

infrastructure is not available.

References: Any documents,policies, procedures or regulations applicable to the

software being tested or the test procedures. Documentation of why the reference is

given and how it is used in testing is done.

When to stop testing:Under what circumstances the testing can be stopped and the

software should be returned to implementation team is recorded.

Test milestones: The work paper is designed to indicate the start and completion date

of each test. The dates can be in days, weeks or dates.

Checkpoint administration:Checkpoint should be defined for each test milestone.

Work paper can be used to schedule work as well as to monitor its status. It also

covers the administrative aspects associated with each testing milestone. If the test

has five milestones then the tester needs to fill 5 work papers for each milestone. It

involves identifying what is to be tested, who will test it, when it will be tested, when

it is to be completed, the budget and resources needed for testing, any training the

testers needed and the material and other support for conducting testing.

4. Subtask 4:Write a Test Plan

• It can be a formal or informal document as per the organization’s requirement.

• It is a dynamic document and changes as per implementation.

• The Four parts of a test plan are:

• General information

o Summary

o Pretest background

o Test objectives

o Expected defect rates

o References

• Plan

o Software description

o Test team

o Milestones

o Budgets

o Systems checkpoints

• Specifications and evaluations

o Business function

o structural functions

o Methods and constraints

o Evaluation criteria

• Test Descriptions

13 Unedited Version: Software Testing

o Test control

o Input

o Outputs

o Procedures

7.3.4.4 Task 4 : Inspect the test plan:

• Inspect the corrected software prior to its execution.

• It is more economical to remove the defects at inspection stage rather than at system

testing.

• Defects checked for are error, missing and extra.

Inspection concerns:

• Delay in the start of actual testing.

• Resistance to accept inspection role.

• Difficult to obtain space for conducting inspections.

• Inspection result may impact individual performance appraisal.

Product/Deliverables to inspect:

• Project requirements specifications

• Software rework/maintenance documents

• Updated technical documentation

• Changed source code

• Test plans

• User documentation

Formal inspection roles:

• Moderator

o Organizes the inspection by selecting participants.

o Leads and controls the inspection process.

o Ensures the author completes follow up tasks.

o Completes activities listed in moderator checklist.

• Reader

o Not moderator or author.

o Should be thorough with the material to be inspected.

o Reads the product material line by line pacing for clarity and comprehension.

• Recorder

o Lists and presents defect list for consensus by all participants in the inspection.

o Classifies the defects by type, class and severity.

o Can be moderator but cannot be reader or author.

• Author

o Determines when the product is ready for inspection.

o Assists the moderator in selecting inspection team.

o Clarifies inspection material during process.

• Inspectors

o Review and understand the material.

14 Unedited Version: Software Testing

o Record all preparation time.

o Present potential defects and problems encountered before and during the

inspection meeting.

o Moderator, reader and recorder may also be inspector.

Formal inspection defect classification:

• Origin:where the defect was generated (design, code, requirement…)

• Type : cause of the defect

• Class : missing, wrong,extra

• Severity : major or minor

Inspection procedures:

• Planning and organizing

o Defines participant’s roles

o Defines how defects will be classified

o Initiates, organizes and schedules the inspection

• Overview session

o Optional but recommended session

o Moderator : request an authority to present an overview of the product

o Author : organizes, schedules and presents the overview

o Inspector : attends the overview session to understand the product

 Individual preparation

o Allot time for each inspection participant to acquire a thorough understanding of

the product to be inspected and identify any defects found and create inspection

preparation report and inspection defect list

o The inspector performs desk review of the material which involves activities like:

 Review input product

 Review output product

 Cross reference output to input specification

 Inspection meeting

o The purpose of the meeting is to find defects in the product, not to correct the

defects.

o Notice is sent to all participants notifying them of the meeting.

 Rework and follow-up

o Complete required rework, obtain sign-off or initiate re-inspection.

7.3.5 Check Procedure:The quality control checklist is divided intofollowing sections:

1. Software Functions /Attributes:

 Have all business software functions and attributes identify and agreed upon by

the users?

 Is the criteria for evaluating the software functions and attributes been identified

and is it measurable?

 Has the description for structural attributes been given?

2. Tests to be Conducted:

 Are the tests named and given unique identity?

 Do the tests have clearly defined objectives and evaluate the functions defined?

15 Unedited Version: Software Testing

 Are the verification tests named and directed at project products?

 Have the products been tested adequately

 Have all the sequences in on-line tests been identified?

 Is the stop criteria been defined, is it measurable and reasonable?

3. Software Function/Test Matrix:

 Does the matrix contain all the software attributes and functions and are related

tests included?

 Are there tests for evaluating each software function and attribute identified?

4. Administrative:

 Has the date for starting training of testing team, collecting testing material actual

testing and concluding testing been defined?

 Is the test budget calculated and is it consistent with the workload?

 Is the schedule based on the workload and are the equipments for testing

identified?

 Are the software and documents needed for testing identified?

 Are the test inputs, needed tools and type of testing identified?

 Have the personnel involved in testing including the testing team been notified?

 Has the test summary been described and does it indicate which software is to be

tested?

 Is the test environment defined and does it indicate permissions and requirements

for testing?

 Have all the appropriate references been stated and are they complete?

 Are the tools appropriate and consistent with the standards?

 Have the extent of testing and constraints defined?

 Are the constraints reasonable with the test objectives?

 Is the method for recording result been defined?

 Is the documentation adequate as per test plan?

5. Test Milestones:

 Has the start date of testing and tasks of testing been identified?

 Is the start and stop dates for each test indicated?

 Is the time allocated for each task sufficient?

 Will the task be completed before starting a depending task?

7.3.6 Output:

Single deliverable from this step is Test Plan.

7.4 Summary:

This chapter decribed in detail the first two impartant steps of software testing process.

Assessing the estimates and planning for testing are significant and important steps of the

testing process which are explained with their workbench.

References and Bibliography

 Effective methods of Software Testing, William Perry, Wiley Publication, Edition 2

16 Unedited Version: Software Testing

 Effective methods of Software Testing, William Perry, Wiley Publication, Edition 3

7.5 Review Questions:

1. Explain the objective and importance of assessing project management development

estimates and status?

2. Explain any two commomly used parametric models for estimation.

3. What are the characteristics of a good estimation model?

4. List and explain the factors that influence the software cost.

5. Explain the methods for testing status of software system.

6. What are the characteristics of a good performance measurement scheme.

7. Explain the various approaches of team organization for testing.

8. Describe the task of building test plan in detail.

9. Give an account of the process and concerns of Inspection of test plan.

10. State and explain the quality control checklist for Developing Test plan.

1 Unedited Version: Software Testing

Learning Objectives:

8.1 Introduction

8.2Step 3 : Test Software Requirements

8.2.1 Objectives

8.2.2 Workbench for Test Software Requirements

8.2.3 Input

8.2.4 Do Procedure

8.2.4.1.Task 1 : Prepare Risk Matrix

8.2.4.2 Task 2: Perform a Test Factor Analysis for Requirement Phase

8.2.4.3 Task 3: Conduct a Requirements Walkthrough

8.2.5 Check Procedure

8.2.6 Output

8.3 Step 4 : Design Phase Testing

8.3.1 Objective

8.3.2 Workbench for Design Phase Testing

8.3.3 Input

8.3.4 Do Procedure

8.3.4.1 Task 1 : score Success Factor

8.3.4.2 Task 2: Analyze Test Factors

8.3.4.3Task 3: Conduct Design Review

8.3.5 Check Procedure

8.3.6 Output

8.4 Step 5 : Program Phase Testing

8.4.1 Objectives

8.4.2 Workbench for Program Phase Testing

8.4.3 Input

8.4.4 Do Procedure

8.4.4.1 Task 1 : Desk Debug Program

8.4.4.2 Task 2: Perform Program Phase Test Factor Analysis

8.4.4.3Task 3: Conduct a Program Peer Review

8.4.5 Check Procedure

8.4.6 Output

8.5 Summary and References

8.6 Review Questions

8.1 Introduction: Following steps of software testing process are discussed so-far…..

Step 1: Assess Development Plan and Status

• Tester will challenge the completeness and correctness of the development plan

• Based on that he will be in position to estimate the amount of resources they will need to

test the implemented s/w solution

Step 2: Develop the Test Plan

• Structure of all plans should be same but the content will vary

Further Steps explained in this chapter

Step 3 : Testing Software Requirement

Step 4: Testing Software Design

2 Unedited Version: Software Testing

Step 5: Program Phase Testing

Considerations at all steps….

• Objective

• Concerns or Risks

• Workbench

– Inputs

– Do procedures

• Tasks

– Check Procedures

– Outputs (in form of documents generally reports)

• State outputs and Test deliverables

8.2 Step 3: Requirements Phase Testing: This step includes –

• Testing whether the requirements are taken properly at the beginning otherwise the cost

of implementation increases significantly.

• Tester must take care that the requirements are accurate and complete and they do not

conflict each other.

8.2.1 Objectives :

 Determine that the requirements match the needs of the user.

 Determine whether the needs are defined and documented correctly.

 Perform cost benefit analysis to check the feasibility of testing.

 Determine if the business problem is solved.

 Verify if the controls are specified for the requirements.

8.2.2 Workbench:

Figure 8.1 Workbench for Requirement Phase Testing

3 Unedited Version: Software Testing

8.2.3 Inputs:

1. Proposal to management stating the problem, proposed solution and alternatives.

2. Cost-benefit study describing the feasibility of the proposed solution.

3. Description of recommended solution and its method.

4. List of System assumptions and deliverables from the requirement phase.

8.2.4 Do Procedure:

Following are the tasks to be performed:

Task 1 : Prepare Risk Matrix

Task 2 : Perform a Test Factor Analysis for the Requirements Phase

Task 3: Conduct a Requirements Walkthrough

Walkthroughandrisk matrixare two recommended test tools in this phase.

8.2.4.1 Task 1 : Prepare Risk Matrix

 Risk Matrix is a Design Tool as well as Test Tool.

 It is a tool to assess the adequacy of controls in computer systems

 It identifies risks and helps to set up actions to mitigate those risks thus minimizing their

undue effects on the business in case the risks come true.

 Testers start preparing the Risk Matrix in Requirement Phase and extend it up to Design

Phase

 Following steps are followed to prepare the Risk Matrix:

1. Identification of the Risk Team: Risk Team should comprise of 3 – 6 members

with following skills:

 Understanding of user applications

 Knowledge of Risk Concepts

 Ability to identify controls

 Familiarity with system design and information service risks

 Understanding of computer operation procedures

Team members can be chosen amongst Internal Auditors, Risk Consultants,

Security Officers or Computer Operations Managers.

2. Identify Risks: There are 2 methods that can be used for identifying risks-

 Risk Analysis Scenario:

• Team members try to find the risk, based on their experience,

judgment and knowledge of the application area.

• Team members must define category of risks and analyze using

risk matrix by the way of scenario, viewpoints, ethnography and

interviews.

 Risk checklist:

• The risk team is provided with a list of more common risks that

occur in an automated application. From this the team selects the

risks that are applicable to the application.

• Team members should prepare a yes/no matrix for the list of risks

to be checked.

• The risk categories are :

4 Unedited Version: Software Testing

o Uncontrolled system access

o Ineffective security practices for the application

o Procedural errors of the information services facility

procedures and controls

o Program errors

o Operating system flaws

o Communication system failures

o Etc.

3. Establish Control Objectives for Requirement Phase :

 The control objectives established define the acceptable level of loss for

each identified risk

 An alternative way is to state the controls in measurable terms, such that

controls to achieve the objectives have certain requirements for control-

decision purpose.

 Once the control objectives are defined with the associated risks, the

requirements can be tested to determine if the objectives are achievable.

4. Identify Controls in each System Segment:
 During the design phase, the risk team will identify the controls to be

exercised in designing each segment of the application system. The

segments are:

o Origination

o Data entry

o Communication

o Processing

o Storage

o Output

o Use

 The risk team will determine which controls are applicable to which risk

and record them in the correct segment.

 The team will decide whether the controls are adequate to reduce the risk

to an acceptable level identified in control objective

5. Determine Adequacy of Controls:

 The risk team determines if each identified risk is adequately mitigated

by the controls suggested.

 The risk levels should be reduced to less than or equal to acceptable

levels.

 The mitigation cost should justify the coverage of the risk as in the cost

to control a risk should not exceed the losses that should occur if the risk

becomes true.

 The experience and judgment of the risk team members is important in

this step.

5 Unedited Version: Software Testing

8.2.4.2 Task 2: Perform a Test Factor Analysis for the Requirements Phase

 There are 15 concerns each related to a test factor.

 These test factors should be analyzed by the risk team members using a questionnaire to

access if the risk is addressed satisfactorily.

 Accordingly a report is prepared stating that the risk was adequately, satisfactorily or

inadequately covered.

 The risk should be tested using an appropriate tool or method.

 The test concludes when the risk team assess whether controls are adequate to reduce

each of the identified risks to the acceptable level.

 Following table shows the Concerns and the associated Test Factor:

Sr.

No.

Concerns Test Factor

1. Requirements comply with Methodology Methodology

2. Functional Specification defined Correctness

3. Usability Specification determined Ease-of-Use

4. Maintenance Specification determined Maintainable

5. Portability Needs defined Portability

6. System Interface defined Coupling

7. Performance Criteria established Performance

8. Operational Needs defined Ease of operations

9. Tolerance established Reliability

10. Authorization Rules defined Authorization

11. File Integrity Requirements specified File Integrity

12. Reconstruction Requirements defined Audit Trail

13. Impact of Failure defined Continuity of operation

14. Desired Service Level defined Service Level Security

15. Each test process contains test to be

performed for each evaluation criterion

Questions

Table 8.1 Requirement Phase Concerns and its Test Factor

Eight consideration in developing testing methodologies:

1. Acquire and study test strategy

2. Determine the type of development project

3. Determine the type of software system

4. Determine the project scope

5. Identify the tactical risks

6. Determine when testing should occur

7. Build the system test plan

8. Build the unit test plan

8.2.4.3 Task 3: Conduct a Requirements Walkthrough: Walkthrough is conducted by

walkthrough team consisting of 3 -6 members and is a 5-step process which should be completed

sequentially:

1. Establish ground rules

6 Unedited Version: Software Testing

2. Select team/notify participants

3. Project presentation

4. Questions/recommendations

5. Final report

The project people are made to give presentation explaining the functioning of the system. That

initiates the questions, comments and recommendations by the walkthrough team.

1. Establish Ground Rules: The ground rules must be understood and accepted by both the

walkthrough team and project team.

 Size and makeup of walkthrough team (3-6 skilled members).

 Responsibility of walkthrough team.

 Project team is obliged to answer all questions.

 Confidentiality of the walkthrough is discussed.

 Length, time and location of walkthrough to be known to all participants.

 Aspects of the system that are not changeable should be discussed

 How the results of walkthrough are used and who would use it should be known to all

participants.

2. Select team and notify participants: The team should be based on the concerns

involved in the project. The most common participants are:

 Project manager/system analyst

 Senior management with it knowledge

 Operations management

 User management

 Consultants with required expertise

3. Project Presentation: Following are the suggested points to be covered in the project

presentation:

 Statement of the goals and objectives of the report

 Background information including business statistics

 List of any exceptions

 Discussion of any alternatives considered

 Step wise execution of some common transactions can be explained to show how it

will be processed as per requirements.

4. Questions/Recommendations:There is a recorder appointed for walkthrough who

captures questions for which satisfactorily answers are not provided. Moreover the

recorder records recommendations which are accepted during the walkthrough

 The very purpose of a walkthrough is to initiate discussion between walkthrough

team and project team on the application requirements.

 The project team should be willing to answer all questions during the presentation

and handle recommendation given by the walkthrough team.

5. Final Report (optional):

 It is optional to prepare Final report. Ground rules would state if the report should be

prepared and whom should it be issued to.

7 Unedited Version: Software Testing

 The final report is prepared by one of the responsible team member. The entire team

should be agreed on the report.

 The information recorded by the recorder would be used to prepare the final report.

 The report should be submitted within 5 days after walkthrough for it to be useful to

the project team

8.2.5 Check Procedure:

Following 8 questions are recommended to perform check:

1. Are the defined requirements testable?

2. Does the user agree that the defined requirements are correct?

3. Do the developers agree with and understand the requirements?

4. Do the stated requirements meet the stated business objectives?

5. Have the project Risks been identified?

6. Is a reasonable process followed while defining requirements?

7. Are the project control requirements adequate to minimize the risks?

8. Was the Project Requirement Walkthrough planned and conducted as per planned?

8.2.6 Output: The output from requirements phase testing is a report indicating requirement

deficiencies. These will indicate whether the requirements are inaccurate or incomplete.

8 Unedited Version: Software Testing

8.3 Step 4: Design Phase Testing:

• It gives the testers an opportunity to check external and internal design through

verification technique.

• The design should fulfill all the requirements.

• It should be effective and efficient.

8.3.1 Objective:

 Testing the system design

 Describe the design phase concerns

 Propose testing process to address those concerns

 Scoring success factor, conduct design reviews and inspect design deliverables

8.3.2 Workbench:

Figure 8.2 Workbench for Design Phase Testing

8.3.3 Inputs: There are two inputs:

1. Understanding the methods and identifying the tools to construct the design

2. Deliverables produced during the design phase such as input specifications,

processing specifications, file specifications, control specifications, system flowchart,

hardware and software requirements, manual operating procedure specifications,

output specifications, data retention policies.

8.3.4 Do Procedures:

There are 4 tasks in the design phase testing step:

1. Task 1 : Score Success Factor

2. Task 2 : Analyze Test Factors

9 Unedited Version: Software Testing

3. Task 3 : Conduct Design Review

4. Task 4 : Inspect Design Deliverables

8.3.4.1 Task 1: Score Success Factor

 Scoring is a predictive tool which utilizes the experience from the previous systems.

The existing systems are analyzed to determine their attributes which are their

correlated to the success or failure of that application

 When the attributes correlating to success or failure are identified, they can be used to

predict the behavior of the system under development.

 Following criteria can be used for making predictions:

o Sampling: Use a sample of all the criteria used in implementation of a system

o High positive correlation: Identify a criteria which has a high positive

correlation with the success or failure of the system

o Ease of Use: Scoring process should be simple

o Develop Risk Score: Risk score should be measurable so that total risk score

can be established for each application system.

 The scoring test tool is prepared for evaluating diverse application.

 The user can then assess the risk level of the current system, for the identified

characteristics.

 A score is then developed indicating the number for Low Risk, Moderate Risk or

High Risk.

 To calculate a single risk score for entire system, we assign a multiplication factor

(like 3 for high risk, 2 for moderate risk and 1 for low risk), carry out multiplication

and then sum it up. This will give the total risk score for the entire application

system.

8.3.4.2Task 2: Analyze test factors : The concerns in the design phase are as follows:-

1. Data integrity controls designed

2. Authorization rules designed

3. File integrity controls designed

4. Audit trail controls designed

5. Contingency plan designed

6. Methods to achieve service level designed

7. Access procedures designed

8. Design complies with methodology

9. Design conforms to requirements

10. Design facilitates use

11. Design is maintainable

12. Design is portable

13. Interface design is complete

14. Design achieves criteria

15. Needs to be communicated to operations

8.3.4.3 Task 3: Conduct design review:

• The design review is structured using the same basis that was used for scoring.

10 Unedited Version: Software Testing

• The objective is to identify the attributes of design that correlate to system problems and

determine that they have been appropriately addressed by the project team.

• Design review team comprises of

– Project personnel

– Independent review team

• The design review is conducted by a team knowledgeable in the design process. It is not

necessary that the team is knowledgeable about the application but they should know the

design methodology.

• General guidelines for a review are as follows:-

o Select the review team

o Train the review team members

o Notify the project team

o Allot adequate time

o Document the review facts

o Review the facts with the project team

o Develop review recommendations

o Review recommendations with project team

o Prepare formal report

• The review process can be customized based on the design methodology, information

services policies and procedures.

• The first review determines how the business problem will be solved.

• The review is carried out for following individual components specific to the

organization:

– System Overview

– System Description

– Design Input and output data

– Design output documents

– Design input elements

– Design computer processing

– Design manual processing

– Organizational controls

– Input controls

– Output controls

– System Test Plan

– Plan user procedures

• The second review is conducted after the system design is complete.

8.3.4.4 Task 4: Inspect Design Deliverables

• Inspection is a process through which design products are evaluated to check whether

specified changes are installed correctly.

• Inspectors examine the unchanged product, changed specifications and changed product.

• Inspectors look for defects like errors, missing and extra items in the design.

• Firstly, all the inspectors review the design individually and then come to a consensus as

a team.

• After the product is changed for defects it is re-inspected for correctness.

11 Unedited Version: Software Testing

• Inspection is not only a tool for examination by peers but also serves to improve the

quality of work by removing the defects.

8.3.5 Check Procedure

• Few quality control checks for this step are as follows:

1. Is the team knowledgeable in design process?

2. Are the testers knowledgeable of the tool used in designing?

3. Have the testers received all the design phase deliverables used to perform the test?

4. Do the users agree to the design?

5. Do the project team members believe that the design is realistic?

6. Have the testers identified success factors both positive and negative which can affect

the success of the design?

7. Have the testers analyzed the 15 test factors to evaluate their potential impact on

success of the design?

8. Do the testers understand the review process

9. Is the design review conducted in appropriate time and were the items identified for

review reasonable?

10. Has the inspection process been planned and recognized positively by management?

11. Have the inspectors been trained

12. Did all the inspectors prepare their individual defect list and then agree on the final

list?

13. Were the defects identified during the review meeting recorded by the author?

14. Has the author agreed upon the necessary correction?

15. Has a process been defined to determine that defects have been corrected

satisfactorily?

16. Has the final moderator certification been issued for the product or deliverable

inspected?

(Note: the above checklist is indicative and not exhaustive)

8.3.6Output from design phase testing:

 Design review and inspection process produce a defect list.

 One of the three categories of result is produced

o No defects found

o Minor work required

o Major work required

 At the end, moderator’s certification of the product, releasing the product to the next

phase of the process.

12 Unedited Version: Software Testing

8.4 Step 5: Program Phase Testing

• Tests are dependent on the method chosen to build the software.

• As the construction becomes more automated, less testing will be needed.

• It is cheaper to identify the defects during this phase.

8.4.1 Objectives:

 To ensure that design specifications have been implemented correctly.

 To ensure that the developed structures meet the design specifications.

 The objective of this step is not to meet the user needs but to ensure that

o The systems are maintainable.

o All system specifications have been correctly implemented.

o The programs comply with information services standards and procedures.

o Test plan is made to evaluate the executable programs.

o There is adequate documentation of the programs.

8.4.2 Workbench:

Figure 8.3 Workbench for Program Phase Testing

8.4.3Input: The common deliverables from the programming phase which are inputs for this

step are :

 Program Phase Process

 Program Specifications

 Program Documentation

 Program Listing

 Executable Programs

 Program Flowcharts

 Operator Instructions

8.4.4 Do Procedures: following are the tasks in this step:

13 Unedited Version: Software Testing

1. Task 1:Desk debug the program

2. Task 2:Perform program phase test factor analysis

3. Task 3:Conduct a program peer review

8.4.4.1 Task 1 : Desk Debug the Program:

• Desk Debugging is process that enables the tester to evaluate a program for its

correctness and completeness prior to conducting formal program testing which is

expensive.

• It can be conducted at any time during program development phase, such as program

design or coding.

• Desk debugging can be either minimal or extensive depending on the factors like

organization policy, efficiency of testing tools, implementation schedule, and availability

of testing resources including the next program deliverable.

• Desk debugging can be of three types:

o Syntactical Desk Debugging:It considers checking for correctness of the

following:

• Correct problem identification.

• Identification of appropriate program statements.

• Construction of program statements using appropriate structure.

• Identification of data elements.

• Appropriate use of data structure for data elements.

o Structural Desk Debugging: It includes checking for the following:

• All instruction entered correctly

• Data definitions appropriately used in the instructions.

• Usage of all the defined data elements.

• Appropriate and correct entry point for all branching structures

• The structure of all the internal tables and other limits so that overflow of

structures does not occur

o Functional Desk Debugging: It considers checking the following:

• Program functionality as per specifications.

• Mutually exclusive functions.

• Check for incorrect or unreasonable data definitions.

• Accumulation of the functional data at run time.

8.4.4.2 Task 2 : Perform Program Phase Test Factor Analysis

Following are the concerns in this step:

1. Data integrity controls implemented in programs

2. Authorization Rules implemented

3. File integrity controls implemented

4. Audit trails implemented

5. Security procedures implemented

6. Program complies to methodology

14 Unedited Version: Software Testing

7. Program conforms to design (correctness)

8. Program conforms to the design (ease of use)

9. Program is maintainable

10. Program conforms to the design (portability)

11. Program conforms to the design (coupling)

12. Program achieves criteria (performance)

13. Program documented correctly

14. Program testability (meets service levels)

8.4.4.3 Task 3 : Conduct a Program Peer Review

• Peer reviews give an opportunity for the domain experts to contribute to the

development of the program by informally but effectively reviewing the functionality

of the program in a non-threatening environment.

• Peer reviews can provide static analysis of structure as well as functioning of the

program.

• Peer reviews are helpful for detecting syntactical errors through observations.

• Peer reviews can also be formal and form an integral part of program development.

However informal peer reviews are optional and can be conducted at the discretion of

the project manager.

• The review team comprises of 3 to 6 members who may be at least 2 computer

programmers, a programming supervisor, a job control specialist and a control clerk.

• The tasks during the peer reviews are:

o Establish peer review ground rules

o Select peer review team

o Train team members

o Select review method:

– Flow chart

– Source code

– Sample transactions

– Program specifications

o Conduct peer review

o Draw conclusions

o Prepare report

8.4.5Check Procedure :The quality control checklist for Program Phase Testing is as follows:

1. Are programmers responsible for validation and verification of program?

2. Does the programmer understand the difference between static and dynamic testing?

3. Will the program undergo static testing before subjecting it to dynamic testing?

4. Does the programmer understand the process of generating program code through the

use of tools?

5. Does the programmer understand the importance of desk debugging?

6. Are the programmers aware of the concerns and do they agree to incorporate them in

program testing?

7. Is the program subjected to program review and code inspection?

8. Will the program be fully verified before subjecting it to higher level system testing?

9. Are all the defects found during testing recorded in detail?

15 Unedited Version: Software Testing

10. Are all the defects corrected before moving to the next level of testing?

8.4.6Output: There are two outputs from this step:

1. Fully debugged programs verified though static testing to uncover or remove defects.

2. List of defects uncovered during verification and static testing.

8.5 Summary :

The Chapter explained the following steps in the process of software testing:

Step 3: Requirement Phase Testing

Step 4: Design Phase Testing

Step 5: Program Phase Testing

 The objectives, inputs, the tasks, check and concerns and finally the output from each step

are detailed in the chapter. The workbench for each step gives the details for each step at a

glance.

References and Bibliography

 Effective methods of Software Testing, William Perry, Wiley Publication, Edition 2

 Effective methods of Software Testing, William Perry, Wiley Publication, Edition 3

8.6 Review Questions :

1. What is the purpose of Risk Matrix? Explain the steps to execute a Risk Matrix.

2. Explain the concerns and test factors for requirement phase testing.

3. Describe the significance of walkthrough in the requirement phase testing.

4. Explain the use of scoring tool in Design Phase Testing.

5. Why is Design phase review conducted? Explain the common guidelines for conducting

a design review.

6. Highlight the advantages of inspection of design deliverables.

7. Explain the workbench for Design Phase Testing using an illustrative diagram.

8. Explain the procedure for Program Phase Testing.

9. What is the significance of Peer Review in Program Phase Testing?

10. Enlist the quality control checks for program phase testing.

1 Unedited Version: Software Testing

Chapter 9

Chapter Structure:

9.1. Introduction

9.2. Execute Test and Record Results

9.2.1. Objective

9.2.2. Concerns

9.2.3. Workbench

9.2.3.1. Input

9.2.3.2. Do Procedures

9.2.3.2.1. Task 1: Build Test Data

9.2.3.2.2. Task 2: Execute Tests

9.2.3.2.3. Record Test Result

9.2.3.3. Check Procedures

9.2.3.4. Output

9.3. Acceptance Test

9.3.1. Objective

9.3.2. Concerns

9.3.3. Workbench

9.3.3.1. Input

9.3.3.2. Do Procedures

9.3.3.2.1. Task 1: Define the Acceptance Criteria

9.3.3.2.2. Task 2: Develop an Acceptance Plan

9.3.3.2.3. Task 3: Execute the Acceptance Plan

9.3.3.2.4. Task 4: Reach an Acceptance Decision

9.3.3.3. Check Procedures

9.3.3.4. Output

9.4. Summary

9.5. References and Bibliography

9.6. Review Questions

9.1. Introduction

In this chapter, two major points will be discussed.

 Execution of the test and recording of the results

 Acceptance test

9.2. Execute Test and Record Results

9.2.1. Objective
The objective of this step is to determine whether a software system performs

2 Unedited Version: Software Testing

correctly in an executable mode. The software is executed in a test environment in

approximately the same mode as it would be in an operational environment.

9.2.2. Concerns

Following are the concerns of the test execution phase:

1. Software not in a testable mode:

The previous testing steps will not have been performed adequately to

remove most of the defects and/or the necessary functions will not have

been installed, or correctly installed in the software. Thus, testing will

become bogged down in identifying problems that should have been

identified earlier.

2. Inadequate time/resources: Because of delays in development or failure

to adequately budget sufficient time and resources for testing, the testers

will not have the time or resources necessary to effectively test the

software. In many IT organizations management relies on testing to ensure

that the software is ready for production prior to being placed in

production. When adequate time or resources are unavailable, management

may still rely on the testers when they are unable to perform their test as

expected.

3. Significant problems will not be uncovered during testing: Unless

testing is planned and executed adequately, problems that can cause serious

operational difficulties may not be uncovered. This can happen because

testers at this step spend too much time uncovering defects rather than

evaluating the software’s operational performance.

9.2.3. Workbench

The testers use a test environment at this point in the testing life cycle. Themore

closely this environment resembles the actual operational environment, the

moreeffective the testing becomes. The test data will be created in this step, if not

created in the earlier step. Tests are then executed and the results recorded.The test

report should indicate what works and what does not work. The test reportshould

also give the tester’s opinion whether the software is ready for operation at the

conclusion of this step.

3 Unedited Version: Software Testing

Fig 1: Workbench for executing test and recording the result.

4 Unedited Version: Software Testing

9.2.3.1. Input
Testing of an application system during this step has few new inputs. Many

aspects of the developmental process are unavailable for evaluation during the

test phase. Therefore, thetesting during this phase must rely on the adequacy

of the work performed during theearlier phases. The deliverables that are

available during the validation testing include:

 System test plan (may include a unit test plan)

 Test data and/or test scripts

 Results of previous verification tests

 Inputs from third-party sources, such as computer operators

9.2.3.1.1. Do Procedures
The following three tasks are involved in this step.

9.2.3.1.2. Task 1: Build Test Data
The concept of test data is a simple one: to enable testers to create

representative processing conditions. The complex part of creating test data is

determining which transactions to include. Experience shows that it is

uneconomical to test every condition inan application system. Experience

further shows that most testing exercises fewer thanone-half of the computer

instructions. Therefore, optimizing testing through selectingthe most

important test transactions is the key aspect of the test data test tool.

1. Sources of Test Data/Test Scripts: Test data/Test Scripts required for

testing can be determined with the following sources:

 System documentation

 Use cases

 Test generators

 Production data

 Databases

 Operational profiles

 Individually created test data/scripts

2. Testing File Design: To design an adequate file of test data, testers

must be familiar with the IT department’s standards and other relevant

policies, include their provisions in the simulated transactions and

procedures, and supply input and output formats for all types of

transactions to be processed. To gain this knowledge, testers should

review and analyze system flowcharts, operating instructions, and

other documentation.

General types of conditions to test include the following:

 Tests of normally occurring transactions

 Tests using invalid data

 Tests to violate established edit checks

3. Defining Design Goals: Before processing test data, the test team

must determine the expected results. Any difference between actual

and predetermined results indicates a weakness in the system. The test

team should determine the effect of the weakness on the accuracy of

5 Unedited Version: Software Testing

master file data and on the reliability of reports and other computer

products.

4. Entering Test Data: After the types of test transactions have been

determined, the test data should beentered into the system using the

same method as users. To test both input and computer processing,

testers should ensure that all the data required for transaction

processing is entered.

5. Applying Test Files Against Programs That Update Master

Records: There are two basic approaches to test programs for

updating databases and/or production files. In the first approach,

copies of actual master records and/or simulated master records are

used to set up a separate master file. In the second approach, special

routines used during testing will stop testers from updating production

records.

Creating and Using Test Data:

The following is the recommended process for creating and using test data:

 Identify test resources

 Identify test conditions

 Rank test conditions

 Select conditions for testing

 Determine correct results of processing

 Create test transactions

 Document test conditions

 Conduct test

 Verify and correct test results

Creating Test Data for Stress/Load Testing:

The objective of stress/load testing is to verify that the system can perform

properly when internal program or system limitations have been exceeded.

This may requirethat large volumes of transactions be entered during testing.

The following are the recommended steps for determining the test data needed

for stress/load testing:

 Identify input data used by the program

 Identify data created by the program

 Challenge each data element for potential limitations

 Document limitations

 Perform volume testing

Creating Test Scripts:

Several characteristics of scripting are different from batch test data

development. These differences include the following:

 Data entry procedures required

 Use of software packages

 Sequencing of events

 Stop procedures

To develop, use, and maintain test scripts, testers should perform the

following five steps:

6 Unedited Version: Software Testing

 Determine testing levels.

There are five levels of testing for scripts

o Unit scripting

o Pseudo-concurrency scripting

o Integration scripting

o Regression scripting

o Stress/performance scripting

 Develop test scripts.

Typically, the capture/playback tool is used to develop test scripts.

 Execute test scripts.

Testers can execute test scripts either manually or by using the

capture/playback tools.

 Analyze the results.

After executing test scripts, testers must compare the actual results

with the expected results. Much of this should have been done during

the execution of the script, usingthe operator instructions provided.

The analysis should include the following:

o System components

o Terminal outputs (screens)

o File contents

o Environment variables, such as

 Status of logs

 Performance data (stress results)

o Onscreen outputs

o Order of outputs processing

o Compliance of screens to specifications

o Ability to process actions

o Ability to browse through data

 Maintain test scripts.

Once developed, test scripts need to be maintained so that they can be

used throughout development. The following areas should be

incorporated into the script maintenance procedure:

o Identifiers for each script

o Purpose of scripts

o Program/units tested by this script

o Version of development data that was used to prepare script

o Test cases included in script

9.2.3.1.3. Task 2: Execute Tests
The following describes some of the methods of testing an application system.

 Manual, regression, and functional testing (reliability).

o Manual testing ensuresthat the people interacting with the

automated system can perform their functions correctly.

o Regression testing verifies that what is being installed does

notaffect any portion of the application already installed or

other applications interfaced by the new application.

7 Unedited Version: Software Testing

o Functional testing verifies that the system requirements can be

performed correctly when subjected to a variety of

circumstancesand repeated transactions.

 Functional and regression testing (coupling)

o Functional testing verifies that any new function properly

interconnects, while regression testing verifies that unchanged

segments of the application system that interconnect with other

applications still function properly.

 Compliance testing

o Authorization: Testing should verify that the authorization

rules have been properly implemented and complied with. Test

conditions should include unauthorized transactions or

processes to ensure that they are rejected, as well as ensuring

authorized transactions are accepted.

o Performance: Performance criteria are established during the

requirements phase. These criteria should be updated if the

requirements change during later phases of the life cycle. Many

of the criteria can be evaluated during the test phase, and those

that can be tested should be tested.

o Security: Testers should evaluate the adequacy of the security

procedures by attempting to violate them.

 Functional testing

o File integrity: Testers should verify the controls over the file

integrity. Sufficient updates of the file should be performed so

that the integrity controls can be tested during several iterations

of executing the application system.

o Audit trail: Testers should test the audit trail function to

ensure that a source transaction can be traced to a control total,

that the transaction supporting a control total can be identified,

and that the processing of a single transaction or the entire

system can be reconstructed using audit trail information.

o Correctness: Functional correctness testing verifies that the

application functions in accordance with user-specified

requirements

 Recovery testing (continuity of testing)

If processing must continue duringperiods when the automated system

is not operational, alternate processingprocedures should be

tested.This may involve intentionally causing the system to fail so that

the recovery procedures can be tested.

 Stress testing (service level)

The application under stress to verify that the system can handle high-

volume processing. Stress testing should attempt tofind those levels of

processing at which the system can no longer functioneffectively.

 Testing complies with methodology

Testing should be performed in accordance with the organization’s

testing policies and procedures. The methodologyshould specify the

type of test plan required, the recommended test techniquesand tools,

8 Unedited Version: Software Testing

as well as the type of documentation required. The methodologyshould

also specify the method of determining whether the test is successful.

 Manual support testing (ease of use)

The ultimate success of the system is determined by whether people

can use it. It is important that the system is evaluated in as realistic a

test environment as possible.

 Inspections (maintainability)

Modifications made during the system’s development life cycle

provide one method of testing the maintainability of the application

system. The completed system should be inspected by an independent

group, preferably systems maintenancespecialists. System

development standards should be devised with maintainability in

mind.

 Disaster testing (portability)

Disaster testing simulates problems in the original environment so that

an alternative processing environment can be tested.

 Operations testing (ease of operations)

Testing in this phase should be conducted by the normal operations

staff.It is only throughhaving normal operation personnel conduct the

test that the completeness ofinstructions and the ease with which the

system can be operated can be properly evaluated.

9.2.3.1.4. Record Test Result
Testers must document the results of testing so that they know what was and

was not achieved. The following attributes should be developed for each test

case:

 Condition. Tells what is.

 Criteria. Tells what should be.

These two attributes are the basis for a finding. If a comparison between the

two gives little or no practical consequence, no finding exists.

 Effect. Tells why the difference between what is and what should be is

significant.

 Cause. Tells the reasons for the deviation.

Documenting a statement of a user problem involves three tasks:

1. Documenting the Deviation

Problem statements derive from a process of comparison. Essentially,

the user compares“what is” with “what should be.” When a deviation

is identified between what actuallyexists and what the user thinks is

correct or proper, the first essential step toward development of a

problem statement has occurred. The “what is” can be calledthe

statement of condition. The “what should be” can be called the

criteria. These concepts are the first two, and most basic, attributes of

a problem statement.Documenting deviation means to describe

conditions as they currently exist and criteria that represent what the

user wants. The actual deviation is the difference, or gap,between

“what is” and “what is desired.”

9 Unedited Version: Software Testing

The statement of condition uncovers and documents facts as they

exist. The statement of condition should document as many of the

following attributes as appropriate for the problem:

 Activities involved

 Procedures used to perform work

 Outputs/deliverables

 Inputs

 Users/customers served

 Deficiencies noted

The criterion is the user’s statement of what is desired. It can be

stated in either negative or positive terms.

10 Unedited Version: Software Testing

2. Documenting the Effect

Whereas the legitimacy of a problem statement may stand or fall on

criteria, the attention that the problem statement receives after it is

reported depends largely on its significance. Significance is judged by

effect.

Efficiency and economy are useful measures of effect and frequently

can be stated inquantitative terms such as dollars, time, units of

production, number of procedures andprocesses, or transactions.

Effect is frequently considered almost simultaneously with the first

two attributes(condition and criteria) of the problem. Reviewers may

suspect a bad effect even beforethey have clearly formulated these

other attributes in their minds. After the statementof condition is

identified, reviewers may search for a firm criterion against which

tomeasure the suspected effect. They may hypothesize several

alternative criteria, which are believed to be suitable based on

experiences in similar situations. They may conclude that the effects

under each hypothesis are so divergent or unreasonable that whatis

really needed is a firmer criterion—say, a formal policy in an area

where no policypresently exists.

The presentation of the problem statement may revolve around

thismissing criterion, although suspicions as to effect may have been

the initial path.The reviewer should attempt to quantify the effect of a

problem wherever practical.Although the effect can be stated in

narrative or qualitative terms, that frequently doesnot convey the

appropriate message to management

3. Documenting the Cause

In some cases, the cause may be obvious from the facts presented. In

other instances,investigation is required to identify the origin of the

problem.Most findings involve one or more of the following causes:

 Nonconformity with standards, procedures, or guidelines

 Nonconformity with published instructions, directives,

policies, or procedures from a higher authority

 Nonconformity with business practices generally accepted as

sound

 Employment of inefficient or uneconomical practices

The determination of the cause of a condition usually requires the

scientificapproach, which encompasses the following steps:

1. Define the problem (the condition that results in the finding).

2. Identify the flow of work and/or information leading to the

condition.

3. Identify the procedures used in producing the condition.

4. Identify the people involved.

5. Re-create the circumstances to identify the cause of a

condition.

9.2.3.2. Check Procedures

11 Unedited Version: Software Testing

A quality control checklist can be prepared (also known as work paper) for

this process. The “YES” responses indicate that good test practices are in

place. The “NO” responses indicates that additional investigation is needed. If

the responses are “NO” then the comment should be recorded as the results of

investigation. The N/A indicates that item in the checklist is not applicable to

the test situation.

9.2.3.3. Output
There are three outputs from this step:

1. The test transactions needed to validate the software system

2. The results from executing those transactions

3. Variances from the expected results

9.3. Acceptance Test
Acceptance decisions occur at prespecified times when processes, support tools,

interim documentation, segments of the software, and finally the total software

system must meet predefined criteria for acceptance. Subsequent changes to the

software may affect previously accepted elements. The final acceptance decision

occurs with verification that the delivered documentation is adequate and consistent

with the executable system and that the complete software meets all the buyer

requirements.

9.3.1. Objective
This step describes procedures for identifying acceptance criteria for interim life

cycle products and for accepting them. Final acceptance not only acknowledges that

the entire software product adequately meets the buyer’s requirements but also

acknowledges that the process of development was adequate.

As a life cycle process, software acceptance enables:

 Early detection of the software problem

 Preparation of appropriate test facilities.

 Early consideration of the user’s needs during software development.

Accountability for software acceptance belongs to the customer/user of the software,

whose responsibilities are as follows:

 Ensure user involvement in developing system requirements and acceptance

criteria.

 Identify interim and final products for acceptance, their acceptance criteria,

and schedule.

 Plan how and by whom each acceptance activity will be performed.

 Plan resources for providing information on which to base acceptance

decisions.

 Schedule adequate time for buyer staff to receive and examine products and

evaluations prior to acceptance review.

 Prepare the acceptance plan.

 Respond to the analyses of project entities before accepting or rejecting.

 Approve the various interim software products against quantified criteria at

the interim points.

12 Unedited Version: Software Testing

 Perform the final acceptance activities, including formal acceptance testing,

at delivery.

 Make the acceptance decision for each product.

Acceptance testing is designed to determine whether the software is “fit” for theuser

to use. The concept of fit is important in both design and testing. Design mustattempt

to build the application to fit into the user’s business process; the test processmust

ensure a prescribed degree of fit. Testing that concentrates on structure

andrequirements may fail to assess fit, and thus fail to test the value of the

automatedapplication to the business. The four components of fit are as follows:

 Data. The reliability, timeliness, consistency, and usefulness of the

dataincluded in the automated application

 People. The skills, training, aptitude, and desire to properly use and

interactwith the automated application

 Structure. The proper development of application systems to optimize

technology and satisfy requirements

 Rules. The procedures to follow in processing the data

The system must fit into these four components of the business environment. If any

of the components fails to fit properly, the success of the application system will be

diminished. Therefore, testing must ensure that all the components are adequately

prepared and/or developed, and that the four components fit together to provide the

bestpossible solution to the business problem.

9.3.2. Concerns
When considering acceptance testing, users must be aware of the following

concerns:

 Acceptance testing must be integrated into the overall development

process. Software acceptance is an incremental process of approving or

rejecting software systems, according to how well the software satisfies

predefined criteria. If the acceptance test criteria are not incorporated into

project plan, the probability that the final software will be unacceptable to the

software user is increased.

 Cost and time for acceptance testing will not be available.Each activity

appears to extend the time it will take to complete the project. Thus, it

becomes very important that the acceptance testing phase be planned for and

incorporated into all aspects of the project plan.

 The implementers of the project plan will be unaware of the acceptance

criteria.Either because the acceptance criteria has been developed late in the

development cycle or has not been effectively communicated to the

implementers, software may be made that is unacceptable to the software

user.

 The users will not have the skill sets needed to perform acceptance

testing.Performing effective acceptance testing requires knowledge of the

business application, how software is constructed, and how to perform

testing. It also requires software users to develop acceptance criteria. Lack of

experience in any of these areas may result in ineffective acceptance testing.

13 Unedited Version: Software Testing

9.3.3. Workbench

The acceptance testing workbench begins with software that has been system tested

for the system specifications. The tasks performed in this step lead to an

acceptancedecision, which does not necessarily mean that the software works as

desired by the user, or that all problems have been corrected; it means that the

software user iswilling to accept and use the software in its current state.

14 Unedited Version: Software Testing

Fig 2: Workbench for Acceptance Testing.

9.3.3.1. Input

There are three inputs to the Acceptance testing workbench:

 Interim work products: All of the work products produced during the

development process can be acceptance tested. Early acceptance testing done

by the software user will help ensure that entire effort is moving towards

acceptance testing.

 Tested software: When the step 6 (executing the test and recording results)

has been satisfactorily completed, acceptance testing begin. The output of step

6 is the input of this step.

 Unresolved defect list: It may not be prudent to wait until all the corrections

work properly before beginning acceptance testing. In this case, Acceptance

testers receive an unresolved defect list, which will enable them to anticipate

incorrect processing and focus on the main acceptance criteria before

acceptance testing.

9.3.3.2. Do Procedures
Following four task are involved in the acceptance testing work bench:

9.3.3.2.1. Task 1: Define the Acceptance Criteria
The user must assign the criteria the software must meet to be deemed acceptable.In

preparation for developing the acceptance criteria, the user should do the following:

 Acquire full knowledge of the application for which the system is intended.

 Become fully acquainted with the application as it is currently implemented

bythe user’s organization.

 Understand the risks and benefits of the development methodology that is tobe

used in correcting the software system.

 Fully understand the consequences of adding new functions to enhance

thesystem

Acceptance requirements that a system must meet can be divided into these

fourcategories:

15 Unedited Version: Software Testing

 Functionality requirements:which is related to the business rules that the

system must execute.

 Performance requirements: which relate to the operational requirements such

as time or resource constraint.

 Interface quality requirements: which is related to a connection to another

component of processing.

 Overall software quality requirements: are those that specify limits for

factors or attributes such as reliability, testability, correctness and usability.

Assessing the criticality of a system is important in determining quantitative

acceptance criteria. By definition, all safety criteria are critical; and by law, certain

securityrequirements are critical. Some typical factors affecting criticality include the

following:

 Importance of the system to organization or industry

 Consequence of failure

 Complexity of the project

 Technology risk

 Complexity of the user environment

For specific software systems, users must examine their projects’ characteristics and

criticality to develop expanded lists of acceptance criteria for those software systems.

Some of the criteria may change according to the phase of correction for which criteria

are being defined.

The user must also establish acceptance criteria for individual elements of a product.

These criteria should be the acceptable numeric values or ranges of values. Thebuyer

should compare the established acceptable values against the number of problems

presented at acceptance time.

9.3.3.2.2. Task 2: Develop an Acceptance Plan
The first step to achieve software acceptance is the simultaneous development of

asoftware acceptance plan, general project plans, and software requirements to

ensurethat user needs are represented correctly and completely. This simultaneous

development will provide an overview of the acceptance activities, to ensure that

resources forthem are included in the project plans. Note that the initial plan may not

be completeand may contain estimates that will need to be changed as more complete

project information becomes available.After the initial software acceptance plan has

been prepared, reviewed, and approved,the acceptance manager is responsible for

implementing the plan and for ensuring that the plan’s objectives are met. It may have

to be revised before this assurance iswarranted.

16 Unedited Version: Software Testing

Fig 3: Acceptance Plan Contents

The plan must include the techniques and tools that will be utilized in acceptance

testing. Normally, testers will use the organization’s current testing tools, which

should be oriented toward specific testing techniques.

Two categories of testing techniques can be used in acceptance testing: structural and

functional.The functional testing techniques help ensure that the

requirements/specificationsare properly satisfied by the software system.Structural

testing ensures sufficient checking of the implementation of the functionby finding test

data that will force sufficient coverage of the structured presence in theimplemented

software.

9.3.3.2.3. Task 3: Execute the Acceptance Plan
The objective of this step is to determine whether the acceptance criteria have been

metin a delivered product. This can be accomplished through reviews, which involve

looking at interim products and partially developed deliverables at various points

throughout the developmental process. It can also involve testing the executable

softwaresystem. The determination of which (or both) of these techniques to use will

depend onthe criticality of the software, the size of the software program, the resources

involved,and the time period over which the software is being developed.

Software acceptance criteria should be specified in the formal project plan.Acceptance

decisions need a framework in which to operate; items such as contracts,acceptance

criteria, and formal mechanisms are part of this framework. Software acceptance must

state or refer to specific criteria that products must meet to be accepted.A principal

means of reaching acceptance in the development of critical software systems is tohold

a periodic review of interim software documentation and other software products.

A disciplined acceptance program for software of any type may include reviews asa

formal mechanism.Some software acceptance activities may include testing pieces of

the software; formal software acceptance testing occurs at the point in the

development life cycle whenthe user accepts or rejects the software.

Developing Test Cases (Use Cases) Based on How Software Will Be Used:

It is necessary to ensure that all required test cases areidentified so that all system

functionality requirements are tested.

17 Unedited Version: Software Testing

A use case is a description of how a user (or another system) uses the system

beingdesigned to perform a given task. A system is described by the sum of its use

cases.Each instance or scenario of a use case will correspond to one test case.

Incorporatingthe use case technique into the development life cycle will address the

effects of incomplete, incorrect, and missing test cases. Use cases represent an easy-to-

use approachapplicable to both conventional and object-oriented system

developments.

Use cases provide a powerful means of communication between customer, developers,

testers, and other project personnel. Test cases can be developed with systemusers and

designers as the use cases are being developed. Having the test cases thisearly in the

project provides a baseline for the early planning of acceptance testing.Another

advantage to having test cases early on is that if a packaged software solutionis

indicated, the customer can use them to evaluate purchased software earlier in

thedevelopment cycle. Using the use case approach will ensure not only meeting

requirements but also expectations.

 Subtask 1: Building a System Boundary Diagram: A system boundary

diagram depicts the interfaces between the software being testedand the

individuals, systems, and other interfaces. These interfaces or external agentsin

this work practice will be referred to as “actors.” The purpose of the system

boundary diagram is to establish the scope of the system and to identify the

actors (i.e., theinterfaces) that need to be developed.

For the software each system boundary needs to be defined. System boundaries

can include the following:

o Individuals/groups that manually interface with the software.

o Other systems that interface with the software.

o Libraries

o Objects within object-oriented systems.

Each system boundary should be described. For each boundary, an actor must

beidentified.Two aspects of actor definition are required. The first is the actor

description, and thesecond is the name of an individual or group who can play

the role of the actor (i.e., represent that boundary interface)

 Subtask 2: Defining Use Cases:An individual use case consists of the

following:

o Preconditions that set the stage for the series of events that should occur

for theuse case

o Post-conditions that state the expected outcomes of the preceding

process

o Sequential narrative of the execution of the use case

Use cases are used to do the following:

o Manage (and trace) requirements

o Identify classes and objects (OO)

o Design and code (non-OO)

o Develop application documentation

o Develop training

o Develop test cases

The use case definition is done by the actor. The actor represents the system

boundary interface and prepares all the use cases for that system boundary

18 Unedited Version: Software Testing

interface. Notethat this can be done by a single individual or a team of

individuals.

 Subtask 3: Developing Test Cases:A test case is a set of test inputs, execution

conditions, and expected results developedfor a particular test objective. There

should be a one-to-one relationship between usecase definitions and test cases.

There needs to be at least two test cases for each usecase: one for successful

execution of the use case and one for an unsuccessful executionof a test case.

However, there may be numerous test cases for each use case.

Additional test cases are derived from the exceptions and alternative courses of

theuse case. Note that additional detail may need to be added to support the

actual testing of all the possible scenarios of the use case.

9.3.3.2.4. Task 4: Reach an Acceptance Decision
Final acceptance of software based on acceptance testing usually means that the

software project has been completed, with the exception of any caveats or

contingencies.Final acceptance for the software occurs, and the developer has no

further development obligations (except, for maintenance).

Typical acceptance decisions include the following:

 Required changes are accepted before progressing to the next activity.

 Some changes must be made and accepted before further development of

thatsection of the product; other changes may be made and accepted at the

nextmajor review.

 Progress may continue and changes may be accepted at the next review.

 No changes are required and progress may continue.

The goal is to achieve and accept “perfect” software, but usually some criteria willnot

be completely satisfied for each product, in which case the user may choose toaccept

less-than-perfect software.

9.3.3.3. Check Procedures

A quality control checklist can be prepared (also known as work paper) for this

process. The “YES” responses indicate that good test practices are in place. The “NO”

responses indicates that additional investigation is needed. If the responses are “NO”

then the comment should be recorded as the results of investigation. The N/A indicates

that item in the checklist is not applicable to the test situation.

9.3.3.4. Output
Two outputs are produced from this step at various times, as follow:

 Interim product acceptance opinion: An opinion as to whether an interim

products is designed to meet the acceptance criteria.

 Final acceptance decision: Relates to a specific hardware or software

component regarding whether it is acceptable for use in production.

9.4. Summary

 Execute test and record results:

o The process should focus on determining that the software executes as

specified when placed in operational type mode.

19 Unedited Version: Software Testing

o This step concentrates on testing against requirements/specification as

understood by the development team and test team.

 Acceptance Testing:

o Once the user unconditionally accepts the software system the project is

complete.

9.5. References and Bibliography

 “Effective methods of Software Testing”, William Perry, John Wiley

 “Testing Computer Software” , Kaner C., Nguyen H., Falk J., John Wiley

 “Software Testing Techniques”, Boris Beizer, Dreamtech.

 “Introducing Software Testing”, Louise Tamres, Pearson Education

9.6. Review Questions

 What are the concerns of the execute test and record result phase?

 Explain the task involved in the execute test and record result phase?

 What are the concerns of Acceptance Testing?

 Enlist the objective of the Acceptance testing.

 Explain the workbench of Acceptance testing with suitable diagram.

1 Unedited Version: Software Testing

Chapter 10

Chapter Structure:

10.1. Introduction

10.2. Report Test Results

10.2.1. Objective

10.2.2. Concerns

10.2.3. Workbench

10.2.3.1. Input

10.2.3.1.1. Test Plan(s) & Project Plan(s)

10.2.3.1.2. Expected Processing Results

10.2.3.1.3. Data Collected During Testing

Storing Data Collected During Testing

10.2.3.2. Do Procedures

10.2.3.2.1. Report Software Status

10.2.3.2.2. Report Interim Test Results

Individual Project Component Test Results

10.2.3.2.3. Report Final Test Results

10.2.3.3. Check Procedures

10.2.3.4. Output

10.3. Testing Software Installation

10.3.1. Objective

10.3.2. Concerns

10.3.3. Workbench

10.3.3.1. Input

10.3.3.2. Do Procedures

10.3.3.2.1. Task 1a: Test Installation of New Software

10.3.3.2.2. Task 1b: Test Changed Version (of Software)

10.3.3.2.3. Task 2: Monitor Production

10.3.3.2.4. Task 3: Document Problem

10.3.3.3. Check Procedures

10.3.3.4. Output

10.4. Summary

10.5. References and Bibliography

10.6. Review Questions

10.1. Introduction
In this chapter, two major points will be discussed:

 Reporting Test Results

 Testing Software Installation

2 Unedited Version: Software Testing

10.2. Report Test Results
The user of the software system is responsible for deciding whether the software

systemshould be used as presented and, if so, which precautions must be taken to

ensure highquality results. It is the testers who provide the information on which

those decisionswill be based. Thus, the testers are responsible not only for testing,

but to consolidate andpresent data in a format that is conducive to good business

decision making.

The project team is responsible for reporting the project’s status. However,

experience has shown that project teams tend to be overly optimistic about their

ability tocomplete projects on time and within budget. Testers can provide

management with anindependent assessment of the status of the project.

By maintaining a status report of their activities, testers can report regularly to

management what works and what does not work. Not working may mean a variety

of statuses, including not tested, partially working, and not working at all.

10.2.1. Objective
Throughout the project, testing is continually measuring various aspect of the

project. Management wants four questions answered:

 What is the status of the project?

 What has testing determined to work and not to work?

 How will the system perform in operation?

 When should the software systems be placed into production?

Testing can be designed to answer any or all of these questions.

10.2.2. Concerns
Following are the concerns of reporting test result step:

 Test result will not be available when needed: The individuals that need

to make decision will not have appropriate information to make those

decisions at the time they should be made

 Test information is inadequate: Information needed by the decision

makers will not be included in the test report.

 Test status is not delivered to the right people: The individual making

decisions regarding project implementation and/or developmental actions

will not get the information to make those decisions.

10.2.3. Workbench
To report the results of testing, testers need not only the data collected during testing,

but also the plans and the expected processing results. Tasks 1 and 2, which report the

project’s status and interim test results, should be performed on a regular basis. In the

early stages of testing, reports may be prepared only monthly, but during the later

stages of testing the reports should become more frequent.

The type and number of final reports will vary based on the scope of the project and

the number of software systems involved. There may be a final report for each

software system or a single report if all of the software systems are placed into

production concurrently.

3 Unedited Version: Software Testing

Fig 1: Workbench for reporting test results.

10.2.3.1. Input
There are three types of input needed to answer management’s questions

about the status of the software system.

10.2.3.1.1. Test Plan(s) & Project Plan(s)
Testers need both the test plan and the project plan, both of which should be

viewed ascontracts. The project plan is the project’s contract with

management for work to beperformed, and the test plan is a contract

indicating what the testers will do to determine whether the software is

complete and correct. It is against these two plans thattesters will report status.

10.2.3.1.2. Expected Processing Results
Testers report the status of actual results against expected results. To make

thesereports, the testers need to know what results are expected. For software

systems, theexpected results are the business results.

10.2.3.1.3. Data Collected During Testing
This section explains the four categories of data to be collected during testing.

 Test Results Data

The test results data includes but is limited to the following:

o Test factors. The factors incorporated in the plan, the

validation of which becomes the test objective.

o Business objectives. The validation that specific business

objectives have been met.

o Interface objectives. The validation that data/objects can be

correctly passed among software components.

4 Unedited Version: Software Testing

o Functions/subfunctions. Identifiable software components

normally associated with the requirements for the software.

o Units. The smallest identifiable software components.

o Platform. The hardware and software environment in which

the software system will operate.

 Test Transactions, Test Suites, and Test Events

These are the test products produced by the test team to perform

testing. They includebut are not limited to the following:

o Test transactions/events. The type of tests that will be

conducted during theexecution of tests, which will be based on

software requirements.

o Inspections. A verification of process deliverables against their

specifications.

o Reviews. A verification that the process deliverables/phases

are meeting the user’s true needs.

 Defects

This category includes a description of the individual defects

uncovered during testing. This description includes but is not limited

to the following:

o Data the defect uncovered

o The name of the defect

o The location of the defect

o The severity of the defect

o The type of defect

o How the defect was uncovered

The results of later investigations should be added to this information

 Efficiency

Two types of efficiency can be evaluated during testing: software

system and test. Asthe system is being developed, a process

decomposes requirements into lower andlower levels. These levels

normally include high- and low-level requirements, externaland

internal design, and the construction or build phase. While these

phases are inprogress, the testers decompose the requirements through

a series of test phases.

Conducting testing is normally the reverse of the test development

process. Testing begins at the lowest level and the results are rolled up

to the highest level.The final test report determines whether the

requirements were met. Documenting, analyzing, and rolling up test

results depend partially on the process of decomposing testing through

a detailed level. The roll-up is the exact reverse of the test strategy and

tactics.

Storing Data Collected During Testing
A database should be established in which to store the results collected

during testing.The most common test report is a simple spreadsheet

that indicates the project component for which status is requested, the

test that will be performed to determine thestatus of that component,

and the results of testing at any point in time.

5 Unedited Version: Software Testing

10.2.3.2. Do Procedures
Three tasks are involved in reporting test results. They are described here as

individualsteps because each is a standalone effort.

10.2.3.2.1. Report Software Status
This task offers an approach for reporting project status information. These

reportsenable senior IT management to easily determine the status of the

project, and can beissued as needed.

The two levels of project status reports are as follows:

 Summary status report. This report provides a general view of all

project components. It is used to determine which projects need

immediate attention andwhich are on schedule with no apparent

problems.

 Project status report. This report shows detailed information about a

specificproject component, allowing the reader to see up-to-date

information aboutschedules, budgets, and project resources. Each

report should be limited to one page so that only vital statistics are

included.

Both reports are designed to present information clearly and quickly. This

step describes a process that enables management to quickly and easilyassess

the status of all projects. The best way to produce “user-friendly” reports is to

incorporate simple graphics andcolor-coding.

This step describes reporting on three status conditions for each project:

implementation, schedule, and budgets. The number of status conditions

should be kept to asfew as possible; four is still manageable. Some

organizations list quality as the fourth,beginning with system testing in later

development phases.In addition to serving as the input to project status

reports, the data collected can beused for internal benchmarking, in which

case the collective data from all projects is usedto determine the mean level

of performance for all enterprise projects. This benchmark isused for

comparison purposes, to make judgments on the performance of

individualprojects.

Prior to effectively implementing a project reporting process, two inputs

must be in place.

 Measurement units. IT must have established reliable measurement

units thatcan be validated. Management must be willing to use this

quantitative data asan integral part of the decision-making process.

All those involved in IT projects must be trained in collecting and

using this data.

 Process requirements. Process requirements for a project reporting

system must include functional, quality, and constraint attributes.

Functional attributesdescribe the results the process is to produce;

quality attributes define the particular attributes that should be

included in the software requirement; andconstraint attributes include

tester skill levels, budget, and schedule.

The following sections enlists the six subtasks for this task.

6 Unedited Version: Software Testing

 Establishing a Measurement Team

 Creating an Inventory of Existing Project Measurements

 Developing a Consistent Set of Project Metrics

 Defining Process Requirements

 Developing and Implementing the Process

 Monitoring the Process

Project Status Report

The Project Status report provides information related to a specificproject

component. It is divided into the following six sections:

 Vital project information: appears along the top of the report. This

information includes:

o Date the report is issued

o Name of the executive sponsoring the project

o Name of project manager

o Official name of project

o Quick-status box containing a color-coded circle indicating the

overall status of the project

 General Information: This section of the report appears inside a

rectangularbox that contains general information about the project. It

include information like:

o Project start date, determined by official approval, sponsorship,

and projectmanagement

o Original target date for project completion

o Current target date for project completion

o Phase start date of the current phase

o Original target date for completion of the current phase

o Current target date for completion of the current phase

o Original budget allotted for the project

o Current budget allotted for the project

o Expenses to date for the project

 Project/Activities. The Project/Activities chart measures the status

accordingto the phase of the project.This section of the report also

includes a graph that compares projected costs to actual costs.

 Legend information. The report legend, which is located along the

bottom of the page, defines the colors and symbols used in the report,

including category and color codes.

 Project highlights information. The project highlights appear in a

rectangular box located at the bottom of the report. This section may

also contain comments explaining specific project developments.

10.2.3.2.2. Report Interim Test Results
The test process should produce a continuous series of reports that describe

the statusof testing. The frequency of the test reports should be at the

discretion of the team andbased on the extensiveness of the test process.

7 Unedited Version: Software Testing

This section describes ten interim reports. Testers can use all ten or select

specificones to meet their individual needs.

1. Function/Test Matrix

The function/test matrix shows which tests must be performed to

validate the software functions, and in what sequence to perform the

tests. It will also be used to determine the status of testing.

Many organizations use a spreadsheet package to maintain test results.

The intersection of the test and the function can be color-coded or

coded with a number or symbol to indicate the following:

 1 = Test is needed but not performed.

 2 = Test is currently being performed.

 3 = Minor defect noted.

 4 = Major defect noted.

 5 = Test is complete and function is defect-free for the criteria

included in this test.

It suggested to use following guidelines:

 Defect naming. Name defects according to the phase in which

the defect mostlikely occurred, such as a requirements defect,

design defect, documentationdefect, and so forth.

 Defect severity. Use three categories of severity, as follows:

o Critical. The defect(s) would stop the software system

from operating.

o Major. The defect(s) would cause incorrect output to be

produced.

o Minor. The defect(s) would be a problem but would not

cause improperoutput to be produced, such as a system

documentation error.

 Defect type. Use the following three categories:

o Missing. A specification was not included in the

software.

o Wrong. A specification was improperly implemented in

the software.

o Extra. An element in the software was not requested by

a specification.

The report is designed to show the results of performing a specific test

on a function.Therefore, no interpretation can be made about the

results of the entire software system, only about the results of

individual tests. However, if all the tests for a specific function are

successful, testers can assume that function works.

2. Functional Testing Status Report

The purpose of this report is to show the percentage of functions,

including the functions that have been fully tested, the functions that

have been tested but contain errors,and the functions that have not

been tested.The report is designed to show the status of the software

system to the test manager and/or customers.

3. Functions Working Timeline Report

The purpose of this report is to show the status of testing and the

probability that thesoftware will be ready on the projected date.If the

8 Unedited Version: Software Testing

actual performance is better than planned, the probability of meeting

the implementation date is high. On the other hand, if the actual

percent of functionsworking is less than planned, both the test

manager and development team should beconcerned and may want to

extend the implementation date or add resources to testing and/or

development.

4. Expected Versus Actual Defects Uncovered Timeline Report

The purpose of this report is to show whether the number of defects is

higher or lowerthan expected. This assumes that the organization has

sufficient historical data toproject defect rates. It also assumes that the

development process is sufficiently stableso that the defect rates are

relatively consistent.Generally, an actual defect rate varies from the

expected rate because of special circumstances, and investigation is

warranted. The cause may be the result of an inexperienced project

team. Even when the actual defects are significantly less than

expected,testers should be concerned because it may mean that the

tests have not been effectiveand a large number of undetected defects

remain in the software.

5. Defects Uncovered Versus Corrected Gap Timeline Report

The purpose of this report is to list the backlog of detected but

uncorrected defects. Itrequires recording defects as they are detected,

and then again when they have beensuccessfully corrected.The ideal

project would have a very small gap between these two timelines. If

the gap becomes wide, it indicates that the backlog of uncorrected

defects is growing, and that the probability the development team will

be able to correct them prior to implementation date is decreasing. The

development team must manage this gap to ensure that it remains

narrow.

6. Average Age of Uncorrected Defects by Type Report

The purpose of this report is to show the breakdown of the gap

presented by defect type—that is, the actual number of defects by the

three severity categories.Organizations should have guidelines for how

long defects at each level should be maintained before being corrected.

Action should be taken accordingly based on actual age.

7. Defect Distribution Report

The purpose of this report is to explain how defects are distributed

among the modules/units being tested. It lists the total cumulative

defects for each module being tested atany point in time.This report

can help identify modules that have an excessive defect rate.

8. Normalized Defect Distribution Report

The purpose of this report is to normalize the defect distribution. The

normalization can be by function points or lines of code. This will

enable testers tocompare the defect density among the modules/units.

9. Testing Action Report

This is a summary action report prepared by the test team. The

information containedin the report should be listed as necessary to the

test manager and/or the developmentmanager so that they can properly

direct the team toward a successful implementationdate.The test

9 Unedited Version: Software Testing

manager should carefully monitor the status of testing and take action

whentesting falls behind schedule.

10. Interim Test Report

As testers complete an individual project they should issue an Interim

Test report. Thereport should discuss the scope of the test, the results,

what works and does not work,and recommendations. Testing is a

risk-oriented activity in which resources should be expended to

minimize the major risks.Exhaustive testing is not possible, practical,

or economical. Thus, testing is neverdesigned to ensure that there are

no defects remaining in the software, and the scopewill explain what

the testers accomplished.The recommendations section is a critical

part of the report, because the reader isusually removed from the

project being tested and the technical recommendations provided by

the testers can help with the reader’s business decision.

10.2.3.2.3. Report Final Test Results
A final report should be prepared at the conclusion of each test activity. The

reportshould summarize the information from the following reports:

 Individual Project report: This report focuses on individual projects.

When different testers test individual projects, they should prepare a

report on their results.

 Integration Test report: Integration testing tests the interfaces

between individual projects. A good test plan will identify the

interfaces and institute test conditions that will validate interfaces

between software systems.

 System Test report: The System Test report should present the results

of executing that test plan. If test data is maintained electronically, it

need only be referenced, not includedin the report.

 Acceptance Test report: Testing has two primary objectives. The

first is to ensure that the system as implemented meets the software

requirements. The second objective is to ensure that the software

system can operate in the real-world user environment, which includes

people with varying skills, attitudes, time pressures, business

conditions, and so forth.

A final test report is designed to document the results of testing as defined in

the testplan. Without a well-developed test plan, it is difficult to develop a

meaningful testreport. It is designed to accomplish three objectives: to define

the scope of testing (normally a brief recap of the test plan), to present the

results of testing, and to draw conclusions and make recommendations. The

test report may be a combination of electronic and hard copy data.

The test report has one immediate and two long-term purposes. The

immediate purpose is to enable customers to determine whether the system is

ready for productionand if not, to assess the potential consequences and

initiate appropriate actions to minimize those consequences. The second long-

term purpose is to enabletesters to analyze the rework process and make

changes to prevent defects from occurring in the future.

10 Unedited Version: Software Testing

10.2.3.3. Check Procedures
A quality control checklist can be prepared (also known as work paper) for

this process. This checklist can be divided into three parts: QualityControl

over Writing the Status Report, Quality Control for Developing Interim

TestResult Reports, and Control over Writing Final Test Reports. This work

paper will guide tester to write effective reports.

10.2.3.4. Output
This step should produce the following three categories of reports:

 Project status reports.

 Interim test reports.

 Final test reports.

10.3. Testing Software Installation
In installation phase, the system under development is placed into the operational

environment. The installation phase specification need to be determined and the

mechanism developed to install the new system. Because this is onetime process the

attention to detail and control exhibited in the system being developed may not exist

in the development of the installation system. Installation process is short in duration

but complex process to complete. The installation process should be tested to ensure

that the completeness of the installation procedures and the accuracy of changes to

data and files made during the installation phase.

10.3.1. Objective
The objective of this phase is to provide a complete test program for installation

phase of both the original and changed versions of a software system.

10.3.2. Concerns
The installation phase testing is the process that places the application system into

production status and the process is attempting to validate that:

 Proper programs are placed into the production status.

 Needed data is properly prepared and available.

 Operating and user instructions are prepared and used.

The expected results needs to be identified in this phase. The results should be

predetermined and then tests performed to validate that what is expected has

happened.

10.3.3. Workbench
Both new systems and changed systems need to be placed into production. Both types

of systems follow approximately same process. The input to the workbench is either

the new or changed software and associated documentation, plus the pan and

procedures to install the software.

11 Unedited Version: Software Testing

Fig 2: Workbench to test software installation

10.3.3.1. Input

The process may involve any or all of the following areas:

 Changing old data to a new format

 Creating new data

 Installing new and/or change programs

 Updating computer instructions

 Installing new user instructions

The installation process may be difficult to execute within the time constraints.Much of

the test process will be evaluating and working with installation phasedeliverables. The

more common deliverables produced during the installation phaseinclude the following:

 Installation plan

 Installation flowchart

 Installation program listings and documentations (assuming special

installationprograms are required)

 Test results from testing special installation programs

 Documents requesting movement of programs into the production library

andremoval of current programs from that library

 New operator instructions

 New user instructions and procedures

 Results of installation process

10.3.3.2. Do Procedures
The first task will vary depending on whether it is new or changed system. The rest two

tasks has to be followed after that.

10.3.3.2.1. Task 1a: Test Installation of New Software
The installation phase poses two difficulties for the test team.

12 Unedited Version: Software Testing

1. Installation is a process separate from the rest of the application development. Its

function relates not to satisfying user needs, but to placing a completed and

tested application into production.

2. Installation normally occurs in a very short time span. Therefore, tests must be

well planned and executed if they are to be meaningful and helpful to the

installation process.

It is important that the test results be available prior to the completion of the installation.

The objective of testing is to determine whether the installation is successful; therefore,

the results must be available as quickly as possible. In many instances,this means that the

test results must be predetermined before the test starts.

Enlisted are 15 installation concerns:

1. Accuracy and completeness of installation verified (Reliability)

2. Data changes during installation prohibited (Authorization)

3. Integrity of production files verified

4. Installation audit trail recorded

5. Integrity of previous system assured (Continuity of processing)

6. Fail-safe installation plan implemented (Service Level)

7. Access controlled during installation (Security)

8. Installation complies with methodology.

9. Proper programs and dates placed into production.

10. Usability instruction disseminated

11. Documentation complete (Maintainability)

12. Documentation complete (Portability)

13. Interface coordinated (Coupling)

14. Integration performance monitored

15. Operating procedures implemented.

10.3.3.2.2. Task 1b: Test Changed Version (of Software)
IT management establishes both the software maintenance changes for its departmentand

the objectives for making the changes. The establishment of clear-cut objectiveshelps the

software maintenance analyst and operation personnel understand some ofthe procedures

they are asked to follow. This understanding often results in a bettercontrolled operation.

The specific objectives of installing the change are as follows:

 Each changed should be incorporated in the production. The older version should

be moved out of the production with dates and necessary documentation.

 The changes done in the system should be efficiently tested.

 Testing won’t always reveal all the errors. So it is important to notify user of the

system with the changes done in the system and expected behavior of the system.

 Library of the system should be kept up-to-date and the older versions/ unwanted

versions sources/objects should be deleted.

The problem may arise after some period of installation. The concerns during thechange

process deal with properly and promptly installing the change.It is during theinstallation

that the results of these change activities become known. Thus, many of theconcerns

culminate during the installation of the change. Below are the concerns of installing the

changes:

 Will the change be installed on time?

13 Unedited Version: Software Testing

 Is backup data compatible with the changed system?

 Are recovery procedures compatible with the changed system?

 Is the source/object library cluttered with obsolete program versions?

 Will errors in the change be detected?

 Will errors in the change be corrected?

There are three task of installation of changes:

1. Testing the Adequacy of the Restart/Recovery Plan

Restart and recovery are important stages in application systems processing.

Restart means computer operations begin from a point of known integrity.

Recovery occurswhen the integrity of the system has been compromised. In a

recovery process, the systems processing must be backed up to a point of known

integrity; thereafter, transactions are rerun to the point at which the problem was

detected.

Many aspects of system changes affect the recovery process. Among those to

evaluate for their impact on recovery are the following:

 Addition of a new function

 Change of job control

 Additional use of utility programs

 Change in retention periods

 Change in computer programs

 Change in operating documentations

 Introduction of a new or revised form

The testers should assess each change to determine its impact on the recovery

process.If a program is changed, the tester must ensure that those changes are

included inbackup data. Without the latest version of the program, the tester may

not be able to correctly recover computer processing.If the tester determines that

recovery has been affected by the change, that impact onthe recovery plan must be

updated.

2. Verifying the Correct Change Has Been Entered into Production

A positive action must be taken to move a changed program from test status to

production status. This action should be taken by the owner of the software. When

theuser department is satisfied with the change, the new program version can be

movedinto production.

The production environment should be able to control programs according to

production date. Each version of a program in production should be labeled

according towhen it is to go into and be taken out of production. If there is no

known replacement,the date to take that version out of production is the latest date

that can be put into that field. When a new version has been selected, that date can

be changed to the actual date.

A history of changes should be available for each program, to provide a complete

audit trail of everything that has happened to the program since first written.

Thechange history, together with a notification to operations that a change is ready

for production, provides the necessary controls during this step.

To verify that the correct change has been placed into production, the tester should

answer the following two questions:

14 Unedited Version: Software Testing

1. Is a change history available?

The objective ofthis history-of-change form is to show all of the changes

made to a programsince its inception. This serves two purposes: First, if

problems occur, this audittrail indicates whether the changes have been

made; and second, it discouragesunauthorized changes. In most

organizations, changes to programs/systemsare maintained in source code

libraries, test libraries, and production libraries.

2. Is there a formal notification of production changes?

The procedure to movea version from testing to production should be

formalized. The formal process can beenhanced to prevent the loss of

notification forms by using a pre-numberedform. The project leader should

prepare the notification of production changeform, which should then be

sent to the computer operations department, whichinstalls the new version.

The owner of the software decides when a new version of the software will be

placed into production. The testermust verify that the appropriate notification has

been given, pending the owner’sapproval, and that the information is correct.

3. Verifying Unneeded Versions Have Been Deleted

It may or may not be desirable to delete old versions of programs when a new

version isentered. The most obvious argument against doing so is to maintain a

fallback version incase the new version proves defective. Organizations should

establish standards regarding when old versions should be automatically deleted

from the library. Some, while notautomating this function, periodically notify the

project team that older versions will bedeleted unless the project team takes

specific action to have them retained in the library.Other organizations charge the

projects a fee for retaining old versions.

10.3.3.2.3. Task 2: Monitor Production
Application systems are most vulnerable to problems immediately following the

introduction of new versions of a program(s). In organizations that normally monitor

output, extra effort or attention may be applied at thetime a changed program version

is first run.

The following groups may monitor the output of a new program version:

 Application system control group

 User personnel

 Software maintenance personnel

 Computer operations personnel

User and software maintenance personnel must attempt to identify the specific areas

where they believe problems mightoccur.

The types of clues that could be provided to monitoring personnel include the

following:

 Some transactions should be monitor.

 The problem can be located on specific pages of reports by the specific

customers or other identifier.

 Output should be reviewed & also reported.

 Files and the data records that have been changed should be examine by

extracting information if data was properly recorded.

15 Unedited Version: Software Testing

 Anticipated improvements in the effectiveness, efficiency, andeconomy of

operations that they should review

10.3.3.2.4. Task 3: Document Problem
Individuals detecting problems when they monitor changes in application

systemsshould formally document them. The formal documentation process can be

made evenmore effective if the forms are controlled through a numbering sequence.

This enables software maintenance personnel to detect lost problem forms.

The person monitoring the process should be asked both to document the

problemand to assess the risk associated with that problem. The report of a system

problem caused by system change, because of the programchange monitor

notification, enables the individual to associate the problem with aspecific problem

change. This additional piece of information is usually invaluable in the problem.

10.3.3.3. Check Procedures
A quality control checklist can be prepared (also known as work paper) for this

process. The “YES” responses indicate that good test practices are in place. The

“NO” responses indicates that additional investigation is needed. If the responses are

“NO” then the comment should be recorded as the results of investigation. The N/A

indicatesthat item in the checklist is not applicable to the test situation.

10.3.3.4. Output
This step has two output: Interim and final. Various reports that indicate any

problems that arise during installation. The ongoing monitoring process will also

identify problems. These problem may deal with both the software and/or the user of

the software.

10.4. Summary
Report test Results:

 The emphasis of this section has been on summarizing, analyzing, and

reporting test results.

 How the different test reports and project reports can be prepared.

Test Software Installation:

 Installation phase testing is carried for both; the new software that is

development phase as well as the software which is the production stage and

undergoes the changes.

 Monitoring of the software behavior for some period after the installation is

important. This will help to locate the problems in the system which may

have not been detected during the installation of the system.

 Formal Documentation should be in place about the problem located while

monitoring

10.5. References and Bibliography

 “Effective methods of Software Testing”, William Perry, John Wiley

 “Testing Computer Software” , Kaner C., Nguyen H., Falk J., John Wiley

 “Software Testing Techniques”, Boris Beizer, Dreamtech.

 “Introducing Software Testing”, Louise Tamres, Pearson Education

16 Unedited Version: Software Testing

10.6. Review Questions

 What are the concerns of reporting the test results?

 With suitable diagram, explain the workbench of reporting the test result.

 What are the inputs required for reporting the test result.

 Enlist and explain any seven interim reports.

 With suitable diagram, explain the workbench of testing the software

installation

 Enlist the concerns of testing for installing new software.

 Explain the task test change version in detail

1 Unedited Version: Software Testing

Chapter 11

Chapter Structure:

11.1. Introduction

11.2. Test Software Changes

11.2.1. Objective

11.2.2. Concerns

11.2.3. Workbench

11.2.3.1. Input

11.2.3.2. Do Procedures

11.2.3.2.1. Task 1: Develop/update the Test Plan

11.2.3.2.2. Task 2: Develop/update the Test Data

11.2.3.2.3. Task 3: Test the Control Change Process

11.2.3.2.4. Task 4: Conduct Testing

11.2.3.2.5. Task 5: Develop/update the Training Material

11.2.3.3. Check Procedures

11.2.3.4. Output

11.3. Evaluate Test Effectiveness

11.3.1. Objective

11.3.2. Concerns

11.3.3. Workbench

11.3.3.1. Input

11.3.3.2. Do Procedures

11.3.3.2.1. Task 1: Establish Assessment Objectives

11.3.3.2.2. Task 2: Identify What to Measure

11.3.3.2.3. Task 3: Assign Measurement Responsibility

11.3.3.2.4. Task 4: Select Evaluation Approach

11.3.3.2.5. Task 5: Identify Needed Facts

11.3.3.2.6. Task 6: Collect Evaluation Data

11.3.3.2.7. Task 7: Assess the Effectiveness of Testing

11.3.3.3. Check Procedures

11.3.3.4. Output

11.4. Summary

11.5. References and Bibliography

11.6. Review Questions

11.1. Introduction
In this chapter, next two major points will be discussed:

1. Test Software Changes

2. Evaluating Test Effectiveness

2 Unedited Version: Software Testing

11.2. Test Software Changes

11.2.1. Objective
Test software changes step is designed to be used in two ways:

1. If changes occur after software has been placed in the production

2. Testing changes during the development of software.

The main objective of this step is to ensure that the changed application will function

properly in the operating environment. The specific objectives of this aspect of testing

include:

1. Develop tests to detect problems prior to placing the change into

production.

2. Correct problems prior to placing the change in production.

3. Test the completeness of training material.

4. Involve users in the testing of software changes.

11.2.2. Concerns
The major concerns are:

 Will the testing process be planned? Unless the test is planned, there is no assurance

that theresults will meet change specifications.

 Will the training process be planned? People rarely decide on the spur of

themoment to hold a training class or develop training material.

 Will system problems be detected during testing? Even the best training plansrarely

uncover all the potential system problems.

 Will training problems be detected during testing? How people will react

toproduction situations is more difficult to predict than how computerized applications

will perform.

 Will already-detected testing and training problems be corrected prior to

theimplementation of the change? An unforgivable error is to detect a problemand

then fail to correct it before serious problems occur.

11.2.3. Workbench

Fig 1: Workbench to test changed version of software

3 Unedited Version: Software Testing

The software being changed can be new version of developing software, or a new

version of production software. To test the changes in the software is performed

adequately and correctly or not, this workbench act as the guide or map for testing.

11.2.3.1. Input
The testers need the following four inputs to perform testing a changed version of

software:

 Change documentation

 Current test data/test plan

 Changed version of software

 Prior test results

11.2.3.2. Do Procedures
The following five task should be performed to effectively test changed version of

software.

11.2.3.2.1. Task 1: Develop/update the Test Plan

The test plan for software maintenance is a shorter, more directed version of a test plan

used for a new application system. Software maintenance testing often must be done

within a single dayor a few hours. Because of time constraints, many of the steps that

might be performedindividually in a new system are combined or condensed into a

short time span. Thisincreases the need for planning so that all aspects of the test can

be executed within the allotted time. The types of testing will vary based upon the

implemented change.

The preparation of a test plan is a two-part process. The first part is the determination

of what types of tests should be conducted, and the second part is the plan for howto

conduct them. Both parts are important in software maintenance testing.

Elements to be tested (types of testing) are as follows:

 Changed transactions

 Changed programs

 Operating procedures

 Control group procedures

 User procedures

 Intersystem connections

 Job control language

 Interface to systems software

 Execution of interface to software systems

 Security

 Backup/recovery procedures

The test plan should list the testing objective, the method of testing, and the

desiredresult. In addition, regression testing might be used to verify that unchanged

segmentshave not been unintentionally altered. Intersystem connections should be

tested to ensure that all systems are properly modified to handle the change.

11.2.3.2.2. Task 2: Develop/update the Test Data

4 Unedited Version: Software Testing

Data must be prepared for testing all the areas changed during a software

maintenanceprocess. For many applications, the existing test data will be sufficient to

test the newchange. However, in many situations new test data will need to be

prepared.In some cases, the preparation of test data can be significantly different for

softwaremaintenance than for new systems. It is important to test both what should be

accomplished, as well as what can gowrong. Most tests do a good job of verifying that

the specifications have been implemented properly. Where testing frequently is

inadequate is in verifying the unanticipated conditions. Included in this category are the

following:

 Transactions with erroneous data

 Unauthorized transactions

 Transactions entered too early

 Transactions entered too late

 Transactions that do not correspond with master data contained in the

application

 Grossly erroneous transactions, such as transactions that do not belong to the

application being tested

 Transactions with larger values in the fields than anticipated

These types of transactions can be designed by doing a simple risk analysis scenario.

The risk analysis scenario involves brainstorming with key people involved in

theapplication, such as users, maintenance systems analysts, and auditors.

The three methods that can be used to develop/update test data are as follows:

 Update existing test data.

 Create new test data.

 Use production data for testing. Using production data for test purposes

mayresult in the following impediments to effective testing:

o Missing test transactions.

o Multiple tests of the same transaction.

o Unknown test results.

o Lack of ownership.

11.2.3.2.3. Task 3: Test the Control Change Process
The following three tasks are used to control and record changes:

1. Identifying and Controlling Change

An important aspect of changing a system is identifying which parts of the

system willbe affected by that change. The impact may be in any part of the

application system,both manual and computerized, as well as in the supporting

software system. Regardless of whether affected areas will require changes, at a

minimum there should be aninvestigation into the extent of the impact.

The types of analytical action helpful in determining the parts affected include

the following:

 Review system documentation.

 Review program documentation.

 Review undocumented changes.

 Interview user personnel regarding procedures.

 Interview operations personnel regarding procedures.

 Interview job control coordinator regarding changes.

5 Unedited Version: Software Testing

 Interview systems support personnel if the implementation may require

deviationsfrom standards and/or IT departmental procedures.

This is a very important step in the systems change process, as it controls the

changethrough a change identification number and through change

documentation. The timeand effort spent executing this step is usually returned

in the form of more effectiveimplementation procedures and fewer problems

during and after the implementationof the change.

2. Documenting Change Needed on Each Data Element

Whereas changes in processing normally affect only a single program or a

small number of interrelated programs, changes to data may affect many

applications. Thus,changes that affect data may have a more significant effect

on the organization thanthose that affect processing.Changes can affect data in

any of the way like length, value, consistency or reliability.

In addition, changes to a data element may require further documentation.

Organizations in a database environment need to expend additional effort to

ensure that datadocumentation is consistent, reliable, and understandable. Much

of this effort will betranslated into data documentation.

3. Documenting Changes Needed in Each Program

The implementation of most changes will require some programming

alterations. Evena change of data attributes often necessitates program changes.

Some of these will beminor in nature, whereas others may be extremely

difficult and time-consuming toimplement.

The change required for each program should be documented on a separate

form.This serves following purposes:

 providing detailed instructions at the individualprogram level regarding

what is required to change the program

 helpsensure that changes will be made and not lost—it is difficult to

overlook a change that is formally requested

 providing a detailed audit trail ofchanges, in the event problems occur.

11.2.3.2.4. Task 4: Conduct Testing
Software change testing is normally conducted by both the user and software

maintenance test team. The testing is designed to provide the user assurance that the

changehas been properly implemented. Another role of the software maintenance test

team isto aid the user in conducting and evaluating the test.Testing for software

maintenance is normally not extensive.

An effective method for conducting software maintenance testing is to prepare

achecklist providing both the administrative and technical data needed to conduct

thetest. This ensures that everything is ready at the time the test is to be conducted.

11.2.3.2.5. Task 5: Develop/update the Training Material
Updating training material for users, and training users, is not an integral part of

manysoftware change processes. Therefore, this task description describes a process

forupdating training material and performing that training. Where training is not part

ofsoftware maintenance, the testers can give the software maintenance analyst

6 Unedited Version: Software Testing

thesematerials to use in developing training materials. If training is an integral part of

thesoftware maintenance process, the testers can use the material in this task as a guide

for evaluating the completion of updating training materials.

The software maintenance analyst should evaluate each change for its impact on

theprocedures performed by people. If the change affects those procedures, then

trainingmaterial should be prepared. However, changes that increase performance and

haveno impact on users of the system do not require training unless they affect the

operation of the system. In that case, computer operations personnel would need

training. Training cannot be designed by someone who is unfamiliar with existing

trainingmaterial. The software maintenance change is incorporated into the application

system. The training requirements are likewise incorporated into existing training

material. Therefore, it behooves the application project personnel to maintain an

inventory oftraining material.

1. Training Material Inventory Form

Most application systems have limited training materials. The more common

types oftraining materials include the following:

 Orientation to the project narrative

 User manuals

 Illustrations of completed forms and instructions for completing them

 Explanation and action to take on error listings

 Explanation of reports and how to use them

 Explanation of input data and how to enter it

2. Training Plan Work Paper

The training plan work paper is a why, who, what, where, when, and how

approach totraining. The individual developing the plan must answer those

questions about eachchange to determine the scope of training programs. Points

to ponder in developingtraining programs are as follows:

 Why conduct training? Do the changes incorporated into the application

system necessitate training people?

 Who should be trained?

 What training is required?

 Where training should be given?

 When should training be given?

 How should the training material be designed?

 What are the expected training results?

3. Preparing Training Material

The tasks required to perform this step are similar to those used in making a

change toan application system. In most instances, training material will exist,

but will need tobe modified because of the change. Changes in the program

must be accompanied bychanges in the training material. Individuals

responsible for modifying trainingshould consider the following tasks:

 Identifying the impact of the change on people

 Determining what type of training must be “unlearned” (people must

bestopped from doing certain tasks)

 Determining whether “unlearning” is included in the training material

 Making plans to delete outmoded training material

7 Unedited Version: Software Testing

 Determining what new learning is needed

 Determining where in the training material that new learning should

beinserted

 Preparing the training material that will teach people the new skills

 Designing that material

 Determining the best method of training

 Developing procedures so that the new training material will be

incorporatedinto the existing training material on the right date, and that

other supportivetraining will occur at the proper time

An inventory should be maintained of the new/modified training modules. This

isin addition to the training material inventory, which is in hardcopy. The

training modules are designed to be supportive of that training material. This

helps determine whatmodules need to be altered to achieve the behavior

changes/new skills required becauseof the change.

4. Conducting Training

The training task is primarily one of coordination in that it must ensure that

everythingneeded for training has been prepared. The coordination normally

involves these steps:

 Schedule training dates.

 Notify the people who should attend.

 Obtain training facilities.

 Obtain instructors.

 Reproduce the material in sufficient quantity for all those requiring the

material.

 Train instructors.

 Set up the classroom or meeting room.

Many times, training will be provided through manuals or special material

delivered to the involved parties. The type of training should be determined

when the training plan is developed and the material is prepared.

11.2.3.3. Check Procedures

A quality control checklist can be prepared (also known as work paper) for this

process. The “YES” responses indicate that good test practices are in place. The

“NO” responses indicates that additional investigation is needed. If the responses

are “NO” then the comment should be recorded as the results of investigation. The

N/A indicates that item in the checklist is not applicable to the test situation.

11.2.3.4. Output
The output will answer these questions and/or provide the following information:

Is the Automated Application Acceptable?

The automated segment of an application is acceptable if it meets the change

specification requirements. If it fails to meet those measurable objectives, the

system is unacceptable and should be returned for additional modification. This

requires settingmeasurable objectives, preparing test data, and then evaluating the

results of those tests.The responsibility for determining whether the application is

acceptable belongs to the user. In applications with multiple users, one user may be

8 Unedited Version: Software Testing

appointed responsible; or all users may test their segments or they may act like

committee to verify whether the system is acceptable.Test results can be verified

through manual or automated means. The tediousnessand effort required for manual

verification have caused many information technology professionals to shortcut the

testing process. When automated verification is used, theprocess is not nearly as

time-consuming, and tends to be performed more accurately.

A difficult question to answer in terms of acceptability is whether 100 percent

correctness is required on the change.

Users should expect that their systems will operate as specified. However, this

maymean that the user may decide to install the application and then correct the

error afterimplementation. The user has two options when installing a change

known to have anerror. The first is to ignore the problem and live with the results.

The second option is to makethe adjustments manually.

Automated Application Segment Failure Notification

Each failure noted during testing of the automated segment of the application

systemshould be documented. If it is known that the change will not be corrected

until afterthe application is placed into production, a problem identification form

should be completed to document the problem. However, if the change is to be

corrected during thetesting process, then a special form should be used for that

purpose.

Is the Manual Segment Acceptable?

Users must make the same acceptability decisions on the manual segments of the

application system as they make on the automated segments. Many of the manual

segments do not come under the control of the maintenance systems analyst.

However,this does not mean that the correct processing of the total system is not of

concern tothe maintenance systems analyst.

The same procedures followed in verifying the automated segment should be

followed in verifying the manual segment. The one difference is that there are rarely

automated means for verifying manual processing. Verifying manual segments can

take asmuch—if not more—time than verifying the automated segment. The more

commontechniques to verify the correctness of the manual segment include the

following:

 Observation. The person responsible for verification observes people

performing the tasks. That person usually develops a checklist from the

procedures andthen determines whether the individual performs all of the

required steps.

 Application examination. The people performing the task need to

evaluatewhether they can correctly perform the task.

 Verification. The person responsible for determining that the training is

correctexamines the results of processing from the trained people to

determinewhether they comply with the expected processing.

If the training is not acceptable, the user must decide again whether to delay

thechange. In most instances, the user will not delay the implementation of change

if thereare only minor problems in training, but instead will attempt to compensate

for thoseproblems during processing.

9 Unedited Version: Software Testing

The methods that users can incorporate to overcome minor training deficiencies

include the following:

 Restrict personnel. The new types of processing are performed only by

peoplewho have successfully completed the training. Thus, those who need

moreskills have time to obtain them before they begin using the new

procedures or data.

 Supervisory review. Supervisors can spend extra time reviewing the work

ofpeople to ensure that the tasks are performed correctly.

 Information technology assistance. The software maintenance

analysts/programmers can work with user personnel during an interim

period to helpthem process the information correctly.

 Overtime. Crash training sessions can be held in the evening or on

weekendsto bring the people up to the necessary skill level.

Training Failure Notification Form

Training failures should be documented at the same level of detail as are failures of

thecomputerized segment. However, procedural errors can cause as many serious

problems as can incorrect computer code. Unless these failures are documented,

people caneasily overlook the problem and assume someone else will correct it.

Each failure uncovered in training should be documented on a training failure

notification form. This form should be completed by the individual who uncovers

theproblem, and then presented to the individual responsible for training for

necessaryaction.

11.3. Evaluate Test Effectiveness

11.3.1. Objective
The section explains who should evaluate performance, identifies the common

approaches, and then recommends testing metrics for the assessment process.

Measuring a test’s effectiveness serves two purposes:

 It evaluates the performance of thetesters

 Enables an IT organization to modify its testingprocess

These major evaluation objectives are achieved through the collectionof data about

more detailed evaluation objectives. The objective of assessment is to identify

problems so that corrective action can be taken. Therefore, the evaluation will

belooking for the negative aspects of testing. The absence of a negative factor

represents apositive evaluation.

11.3.2. Concerns
The major concern that testers should have is that their testing processes will

notimprove. Without improvement, testers will continue to make the same errors

and perform testing inefficiently time after time.

To improve the test process, the results of testing must be evaluated continually.

Unless the results are recorded and retained, the evaluation will not occur.

Without a formal process, and management’s support for the process, testers need to

be concernedthat their processes will remain stagnant and not subject to continuous

improvement.

11.3.3. Workbench

10 Unedited Version: Software Testing

The objectives for the assessment should be clearly established; without defined

objectives, themeasurement process may not be properly directed.

Fig 2: Workbench to evaluate the effectiveness of testing

11.3.3.1. Input
The input to this step should be the results of conducting software tests. The type of

information required includes but is not limited to:

 Number of tests conducted

 Resources expended in testing

 Test tools used

 Defects uncovered

 Size of software tested

 Days to correct defects

 Defects not corrected

 Defects uncovered during operation that were not uncovered during testing

 Developmental phase in which defects were uncovered

 Names of defects uncovered

11.3.3.2. Do Procedures
The assessment process can be performed by software test, qualityassurance or a

team organization to do this step. This assessment process involves theseven tasks.

11 Unedited Version: Software Testing

11.3.3.2.1. Task 1: Establish Assessment Objectives

Objectives must be defined and establish to perform the assessment. These

objectives include:

 Identify test weaknesses in the testing methodology

 Identify the need for new test tools if the current tools are inefficient or

ineffective

 Assess project testing by evaluating the testing performed by project team to

reduce defects at an economical cost.

 Identify good test practices that can be used by all projects for effective

testing.

 Identify poor test practices used by the project team.

 Identify economical test practices so that the cost-effectiveness can be

improved.

11.3.3.2.2. Task 2: Identify What to Measure
Identify the categories of information needed to accomplish the measurement

objectives. The list that follows offers the five characteristics of application system

testing that can be measured:

 Involvement of stakeholder holders in testing and to what extent.

 Areas covered by the testing and the volume of the testing performed on

those areas.

 Resources consumed by the people and computer in the test process.

 Testing achieved per unit of resource (Effective).

 The value of results received from the test process (Assessment).

11.3.3.2.3. Task 3: Assign Measurement Responsibility
Make one group responsible for collecting and assessing testing performance

information. IT management is responsible for using information service resources.

They may delegate the responsibility to assess the effectiveness of the test process

to a functionwithin the department. If the information services departments have a

quality assurance function, that delegation should be made to the quality assurance

group. Lackingthat function, other candidates for assigning the responsibility

include an information services comptroller, manager of standards, manager of

software support, or the planning manager.

11.3.3.2.4. Task 4: Select Evaluation Approach
The one that best matches the managerial style approach should be selected to

perform the assessment process. Enlisted is the common approaches of evaluation

of the effectiveness of testing.

 Judgment. The individual responsible for the assessment evaluates the

test.This is normally an arbitrary assessment and one that is difficult to

justify.However, if the individual is well respected and the judgments

correlate toactual results, the process may work effectively.

 Compliance with methodology. Testing can be considered a success when

itcomplies with well-established guidelines and standards, and a process

defectwhen it does not.

12 Unedited Version: Software Testing

 Problems after test. The effectiveness of the test process can be measured

bythe number of problems it causes. If few problems occur, testing can be

considered to be good; if many problems occur, testing can be considered

poor.

 User reaction. If the user is satisfied with the application system, it can

beassumed testing is good; if the user is unhappy with the performance of

theapplication system, testing can be judged poor.

 Testing metrics. Criteria are identified that show a high positive correlation

togood or bad testing. This correlation or relationship between factors is

called ametric. This process is a scientific mathematical approach to the

measurementof testing.

The metrics approach is recommended because once established it is easy to use and

can be proven to show a high correlation to effective and ineffective practices.

11.3.3.2.5. Task 5: Identify Needed Facts
Identify the facts necessary to support the approach selected. The metrics

approachclearly identifies the type of data needed for the assessment process. The

needed information includes:

 Change characteristic

 Magnitude of system

 Cost of process being tested

 Cost of test

 Defects uncovered by testing

 Defects detected by phase

 Defects uncovered after test.

 Cost of testing by phase

 System complaints.

 Quantification of defects

 Who conducted the test

 Quantification of correctness of defect

11.3.3.2.6. Task 6: Collect Evaluation Data

Establish a system to collect and store the needed data in a form suitable for

assessment.Wherever possible, utility programs should be used for this purpose.

11.3.3.2.7. Task 7: Assess the Effectiveness of Testing
Analyze the raw information to draw conclusions about the effectiveness ofsystems

testing. Using this analysis, the appropriate action can be taken. The summarized

results must be output into a form for presentation that provides an assessment of

testing.

Using Testing Metrics

Testing metrics are relationships that show a high positive correlation to that which

is being measured. Metrics are used in almost all disciplines as a basis of

performing anassessment of the effectiveness of some process.

Below is the list of metrics that can be used for evaluating the application system

testing:

13 Unedited Version: Software Testing

1. User participation (user participation test time divided by total test time)

2. Instructions coverage (number of instructions exercised versus total number

of instructions).

3. Number of tests (number of tests versus size of system tested)

4. Paths coverage (number of paths tested versus total number of paths).

5. Acceptance criteria tested (acceptance criteria verified versus total

acceptance

criteria).

6. Test cost (test cost versus total system cost)

7. Cost to locate defect (cost of testing versus the number of defects located in

testing).

8. Achieving budget (anticipated cost of testing versus the actual cost of

testing).

9. Detected production errors (number of errors detected in production versus

application system size).

10. Defects uncovered in testing (defects located by testing versus total

systemdefects).

11. Effectiveness of test to business (loss due to problems versus total

resourcesprocessed by the system)

12. Asset value of test (test cost versus assets controlled by system).

13. Rerun analysis (rerun hours versus production hours).

14. Abnormal termination analysis (installed changes versus number of

application system abnormal terminations).

15. Source code analysis (number of source code statements changed versus

thenumber of tests).

16. Test efficiency (number of tests required versus the number of

systemerrors).

17. Startup failure (number of program changes versus the number of failuresthe

first time the changed program is run in production).

18. System complaints (system complaints versus number of

transactionsprocessed).

19. Test automation (cost of manual test effort versus total test cost).

20. Requirements phase testing effectiveness (requirements test cost

versusnumber of errors detected during requirements phase).

21. Design phase testing effectiveness (design test cost versus number of

errorsdetected during design phase).

22. Program phase testing effectiveness (program test cost versus number

oferrors detected during program phase)

23. Test phase testing effectiveness (test cost versus number of errors

detectedduring test phase).

24. Installation phase testing effectiveness (installation test cost versus

numberof errors detected during installation phase).

25. Maintenance phase testing effectiveness (maintenance test cost versus

number of errors detected during maintenance phase).

26. Defects uncovered in test (defects uncovered versus size of systems).

27. Untested change problems (number of tested changes versus problems

attributable to those changes).

14 Unedited Version: Software Testing

28. Tested change problems (number of tested changes versus problems

attributable to those changes).

29. Loss value of test (loss due to problems versus total resources processed

bysystem).

30. Scale of ten (assessment of testing rated on a scale of ten).

31. Defect removal efficiency (assessment of identifying defects in the phase

inwhich they occurred).

32. Defects made by testers (assesses the ability of testers to perform

testprocesses in a defect-free manner).

33. Achieving schedule (anticipated completion date for testing versus

actualcompletion date of testing).

34. Requirements traceability (monitor requirements throughout the

testprocess).

11.3.3.3. Check Procedures

A quality control checklist can be prepared (also known as work paper) for this

process. The “YES” responses indicate that good test practices are in place. The

“NO” responses indicates that additional investigation is needed. If the responses

are “NO” then the comment should be recorded as the results of investigation. The

N/A indicates that item in the checklist is not applicable to the test situation.

11.3.3.4. Output
The bottom line of assessment is making application system testing more

effective.This is performed by a careful analysis of the results of testing, and then

taking actionto correct identified weaknesses. Facts precede action and testing in

many organizations has suffered from the lack of facts. Once those facts have been

determined, actionshould be taken.

The measurement first, action second concept is effective when the measurement

processis specific. The measurement must be able to determine the effect of action.

Using the measurement/action approach, the tester can manipulate the variablesuntil

the desired result is achieved. Without the measurement, management can neverbe

sure that intuitive or judgmental actions are effective. The

measurement/actionapproach works and should be followed to improve the test

process

11.4. Summary

Test Software Changes:

There are changes in the software which can either be the development phase or

production phase. In this step, test are prepare and executed in order toassess

whether the changes are adequately done and errors are handled. If required training

to the staff is provided and for the same training material is prepared and up-to-date.

Changes are documented and also training material are updated in this step.

Evaluating TestEffectiveness:

The result of this step will be recommendations to improve the eleven steps within

the testing process. The improvement process begins by first adopting the eleven

steps process and continues by customizing the process to your IT organization’s

specific need.

15 Unedited Version: Software Testing

11.5. References and Bibliography

 “Effective methods of Software Testing”, William Perry, John Wiley

 “Testing Computer Software” , Kaner C., Nguyen H., Falk J., John Wiley

 “Software Testing Techniques”, Boris Beizer, Dreamtech.

 “Introducing Software Testing”, Louise Tamres, Pearson Education

11.6. Review Questions

 What are the concerns of the testing software changes?

 Enlist and explain the concerns of evaluation of testing process

 Explain the workbench of the testing software changes with diagram.

 Explain the workbench of the evaluating test effectiveness.

 Enlist 15 test metrics that can be used for evaluating the application system testing.

1 Unedited Version: Software Testing

Chapter 12

Chapter Structure:

12.1. Introduction

12.2. Testing Client/Server Systems

12.2.1. Objective

12.2.2. Concerns

12.2.3. Workbench

12.2.3.1. Input

12.2.3.2. Do Procedures

12.2.3.2.1. Task 1: Assess Readiness

12.2.3.2.2. Task 2: Assess Key Components

12.2.3.2.3. Task 3:Test the System

12.2.3.3. Check Procedure

12.2.3.4. Output

12.3. Testing Rapid Application Development

12.3.1. Objective

12.3.2. Concerns

12.3.3. Workbench

12.3.3.1. Input

12.3.3.2. Do Procedures

12.3.3.2.1. Task 1: Test Planning Iterations

12.3.3.2.2. Test Subsequent Planning Iterations

12.3.3.2.3. Test Final Iteration

12.3.3.3. Check Procedure

12.3.3.4. Output

12.4. Summary

12.5. References and Bibliography

12.6. Review Questions

12.1. Introduction

In this chapter, two major points to be discussed

 Testing Client/Server Systems

 Testing on Rapid Development

For successful implementation of Client/Server system in the organization, following

are important points

 Readiness of the organization to effectively use the technology

 Ability to provide clients information and capabilities that meet their need

The Client/Server system is the distributed systems that divide the tasks or workload

between services/resources providers known as servers and services/ resources

requestors known as clients. Client and server may reside in the same system or may

2 Unedited Version: Software Testing

reside on different systems and communicate with each other through the network. One

or more programs run on the server and the server shares its resources with one or more

clients connected to it. Client requests server for content or services but client doesn’t

share any of its resources. Communication is initiated by the client requesting for

services/ resources/ content.

Rapid application development (RAD) is an effective software development model that

provides a systematic and automatable means of developing a software system where

initial requirements are not well known or where requirements change frequently

during development. To provide high software quality sufficient software testing is

required.

12.2. Testing Client/Server Systems

(Fig 1: Client/Server Architecture)

Above figure is small illustration of Client/Server Architecture. There can be different

variations of Client/Server Architecture. In the above architecture, application software

resides on the client machine/workstation. Request processing is handled by the

application server. Typically mainframe or supercomputer handles back-end processing

such as batch transaction on a regular basis.

In the Client/Server system, the major processing takes a server-side and so it is

important to first evaluate the readiness of the organization to make changes in this

control and also to evaluate the key components of Client/Server system prior to

conducting tests.

12.2.1. Objective
The main objective of this testing process is to enhance the 11 step process with the

specific guidance on testing Client/Server systems

12.2.2 Concerns
Area of control is the main concern of the Client/Server systems. It is important to

determine whether adequate controls are in place to ensure accurate, complete, timely,

and secure processing of Client/Server systems.

3 Unedited Version: Software Testing

Following are the concerns that tester must address:

1. Organizational readiness: The culture is adequately prepared to process

datausing client/server technology. Management, client installation and server

support are the areas where the readiness must be evaluated.

2. Client installation: Appropriate hardware and software that enables processing

too meet client requirements and needs.

3. Security: Hardware, software and data needs protection. Threats from

employees, outsiders and act of nature must be address by security.

4. Client data: Controls must be in place to ensure that processing is done

correctly and everything is not lost in case of failure.

5. Client/Server standards: Standards must be defined and all the client

workstation should operate under define standards.

12.2.3 Workbench

(Fig 2: Workbench for Client/Server system)

The workbench of Client/Server system (fig 2) can be used in steps as Client/Server

system is developed or concurrently after the Client/Server system has been developed.

Three steps and the quality controls procedures are shown in the Client/Server

workbench. Any identified weakness found during testing will be the output.

12.2.3.1 Input
Client/Server system is the input of the test process which includes server technologies

and capabilities, the client workstations and the communication network. Both client

and server component includes software capabilities. Descriptions and/or test results of

the client software and should be provided as the input for testing. \

12.2.3.2 Do Procedures
Client/Server system testing involves following three tasks:

 Assess readiness

 Assess key components

 Test the System

4 Unedited Version: Software Testing

12.2.3.2.1 Task 1: Assess Readiness
The directors of information technology and the impacted user management are the

sponsors of the Client/Server systems. Sponsors have to ensure that the organization is

ready for client/server technology.The sponsors should be provided with the readiness

assessment by the team who is installing the new technology.

There are eight dimensions to the readiness assessment pioneered by Dr. Howard Rubin

of Rubin and Associates.

1. Motivation:The organization’s level of commitment using the client/server

technology is important. Level of commitment helps to drive improvement in

quality, productivity and customer satisfaction.

2. Investment: The client/server programs requires the amount of monies

approved/budgeted for expenditures.

3. Client/server skills: Skill for installing the client/server technology concept by

the installation teams and principles into the user’s program is also important.

4. User Education: Users involved in any aspect of the client/server program in

principles and concept should be aware about how technology is used in the

affected business processes.

5. Culture: The willingness of the organization to try new concepts and new

approaches. Is the organization comfortable using the existing approaches and

technology?

6. Client/server support staff: Adequate resources should be provided to support

client/server program.

7. Client/Server Aids/Tools: To perform client/server program, client/server tools

and aids should be made available.

8. Software development process maturity:The ability of a software

developmentprocess to produce high-quality (defect-free) software on a

consistent basis

Software Development Process Maturity Levels

There are five software development process maturity level with the following general

characteristics:

1. Ad hoc: The software development process is loosely defined. The process can

be deviated whenever the project leader chooses.

2. Repeatable: A stable process is achieved by the organization with a repeatable

level of quality. This quality can be achieved by initiating rigorous

requirements, effective project management, cost, schedules, and change

control.

3. Consistent:The organization has defined the process as a basis for

consistentimplementation. Developers can depend on the deliverables quality.

4. Measured: Comprehensive process measurements and analysis is initiated by

the organization. The most significant quality improvements begins now.

5. Optimized: Now the organization has a foundation for continuing improvement

and optimization of process.

5 Unedited Version: Software Testing

(Fig 3: Software Development Process Maturity Levels)

These levels have been selected because they:

1. It represents the actual historical phases of evolutionary improvementof real

software organizations.

2. Improvement can be measured by comparing the previous level.

3. Interim goals and progress measurements can be suggested

4. Once the organization status in this framework is known, a set of immediate

improvement priorities can be made.

The software development process maturity structure is intended for use with an

assessment methodology and a management system. Maturity status can be identified

with the help of assessment. The priority improvement actions can be established by the

management system. With the help of assessment, the maturity position of process is

defined. Now the organization can concentrate on those items thatwillhelp it advance to

the next level.

The Ad Hoc Process (Level 1)

This level is unpredictable and often very chaotic. There is no formal procedures, cost

estimation and project plan in the organization. Tools are not integrated with the

process nor uniformly applied. Senior management have little exposure or

understanding of the problems and issues. Software installation and maintenance is

often serious problem. It is important to observe how organization behaves in a crisis.

The organization may behave in this fashion because they may have not experienced

the benefit of a mature process nor they understand the consequences of their chaotic

behavior.

At this level the organization can improve their performance by instituting basic project

controls. The project management system has to ensure effective control of

commitments which requires adequate preparation, clear responsibility, a public

declaration and dedication to performance. The project management for software starts

with an understanding of the job’s magnitude.

A plan must be developed to determine the schedule and resource requirement of the

project. Senior management should involve in the review and approval of all major

development plans prior to their official commitment. A quarterly review should be

6 Unedited Version: Software Testing

conducted of facility-wide process compliance, installed quality performance, schedule

tracking,cost trends, computing service, and quality and productivity goals by project.

Lack of review results in uneven, and generally inadequate implementationof the

process as well as frequent over-commitments and cost surprises.

Management is assured that software work is done the way it is supposed to be done by

the quality assurance group. They must have an independent reporting line to senior

management and sufficientresources to monitor performance of all key planning,

implementation, and verification activities.

Change control for software is fundamental to technical stability, business and financial

control. If the requirements are established and maintained with reasonable stability

throughout thedevelopment cycle, quality software can be developed on predictable

schedule. As the requirement changes, changes has to incorporated in design and code

to correct the problems found in development and testing, but these must be carefully

introduced. Design, implementation and testing will become impossible if the changes

are not controlled. And also no quality plan can be effective.

The Repeatable Process (Level 2)

The repeatable process provides control over the way the organization establishes its

plans and commitments. The people in the organization tend to believe they have

mastered the software problem. They have achieved a degree of statistical control

through learning to make and meet their estimates and plans. The strength comes from

using work processes that, when followed, produce consistent results.

At this level the organizations may face major risks when they are presented with new

challenges. Below are the examples of some risk:

• New tools and methods not been introduced properly. This can affect the testing

process negatively.

• The organization enters a new territory when it is developing new kind of

product. For example: a group that has developed small, self-contained

programs will not understand the interface and integration issues involved in

large-scale projects.

• Major organizational changes can also be highly disruptive. A new manager at

this level wouldn’t have orderly basis for understanding the organization’s

operation. Thus the new team member would be learning through word of

mouth.

A consistent process is required to move from repeatable process to next level. The

consistent process can be achieved by establishing process group, development process

architecture and by introducing a family of software engineering methods and methods

and technologies. Software development process architecture or a development life

cycle procedure describes the technical and management activities required for proper

execution of development process. This should be as per the organization needs. This

procedure depends on the size, importance of the project and technical nature of the

work itself. If the architecture procedure is not in place, introduce a family of software

engineering methods and technologies. It includes include design and code inspections,

formal design methods, library control systems, and comprehensive testing methods.

7 Unedited Version: Software Testing

Prototyping should also be considered, together with the adoption of modern

implementation languages.

The Consistent Process (Level 3)

The organization has achieved the foundation for major and continuing process with the

consistent process. It has been established for examining the process and deciding how

to improve it. It is qualitative measurement as little data is available to indicate how

much was accomplished or how effective the process is. There is considerable debate

about the value of software process measurements and the best ones to use. This

uncertainty generally stems from a lack of process definition and the consequent

confusion about the specific items to be measured.

Specific tasks can be measured with the consistent process. For effective measurement,

the process architecture is prerequisite. To advance from consistent process to next

level following steps is required:

1. A minimum set of process measurements needs to be established. This helps to

identify the quality, benefits of each major process activity and quantify the

relative costs.

2. It is important to establish the process database and the resources to manage and

maintain it. It should store cost and productivity data and also be available for

all projects. This will help to facilitate process quality and productivity analysis.

3. Sufficient process resources should be provided to gather and maintain the

process data and to advise project member on its use. Skilled professional

should be assigned to monitor the quality of data before entry in the database

and to provide guidance on analysis methods and interpretation.

4. The relative quality of each product should be assessed and reported to the

management about the quality targets are being achieved or not. This can be

done by the quality assurance group. An informed assessment can generally be

made, when this progress is compared with the historical experience on similar

project.

The Measured Process (Level 4)

At this level, software organizations should expect to make substantial quality

improvements. Cost of gathering the data is potential problem as there are an enormous

number of valuable measures of the software process. It is expensive to gather and

maintain this data. Data gathering should be done with care. It is important to define

each piece of data in advance. Explicitly defining the productivity data is essential. Do

not use identical definitions and do not compare results, when different groups gather

the data. Process data must not be used to compare projects or individuals. The purpose

of the process data is to illuminate the product being developed and to provide an

informed basis for improving the process. The reliability of the data itself will

deteriorate, when management uses this data to evaluate individuals or teams

To advance from the measured process to the next level, following two fundamental are

required:

1. Automatic data gathering process should be supported, since the accuracy of

manually gathered data is often poor.

8 Unedited Version: Software Testing

2. To prevent problems and improve efficiency, use process data. Process data

helps in analyzing and to modifying the process.

The Optimized Process (Level 5)

Process optimization happens at all levels of process maturity in varying degrees. Till

this point software development manager have focused on their products and will

typically gather and analyze only data that directly relates to product improvement. In

this level data is available to tune the process itself. The management will soon observe

that process optimization can produce major quality and productivity benefits. A new

perspective on testing is provided by the data that is available with the optimized

process. Two distinct activities are in involved in any project: removing defects and

assessing program quality. The cost of removing defects can be reduced by using testing

techniques like inspections, desk debugging, and code analyzers. The role of functional

and system testing should then be changed to one of gathering quality data on the

programs. Each bug should be studied to see if it is an isolated problem or if it indicates

design problems that require more comprehensive analysis.

The weakest elements of the process are identified and fix with the optimization process.

At this level, data is available to justify the application of technology to various critical

tasks, and numerical evidence is available on the effectiveness with which the process

has been applied to any given product. An organization should then no longer need

reams of paper to describe what is happening as simple yields curves and statistical plots

can provide clear and concise indicators. It would be possible to ensure the process and

have confidence in the quality of the resulting products.

Conducting the Client/Server Readiness Assessment

Organizations should be evaluated in eight readiness dimension for performing

client/server readiness assessment. A representative group of individuals from the

organization can help to develop the assessment. A work-paper can be used for the

assistance. Each readiness should be rated in one of the four categories by the readiness

assessment team:

1. High: If the readiness in this dimension will not inhibit the successful

implementation of client/server technology.

2. Medium: If the readiness in this dimension will not be a significant factor in

causing the client/server technology to fail. Additional readiness would be

desirable.

3. Low: If there are serious reservations that the readiness in this dimension will

have a negative impact on the implementation of client/server technology.

4. None: There is no readiness at all in this area. The probability of client/server

technology is extremely low, if all the eight dimensions are in this category.

Preparing a Client/Server Readiness Kiviat Chart

A Kiviat chart is a means of graphically representing the readiness. The degree of

readiness is indicated by the Kiviat. The following two steps are performed to complete

the chart:

1. Record the point on the dimension line that corresponds to the readiness rating

provided on Work Paper.

9 Unedited Version: Software Testing

2. Connect all of the points and color the inside of the readiness lines connecting

the eight readiness points.

The shaded area of theKiviat chart is the client/server readiness footprint. It will

graphically show whether your organization is ready for client/server technology.

(Fig4: Client/Server readiness Kiviat chart)

12.2.3.2.2 Task 2: Assess Key Components
The following are key component identified for the Client/Server technology:

1. Client installations are done correctly.

2. Provide adequate security

3. Adequately protecting client’s data

4. Client/server standards are in place and working.

If above key components are not in place and working, the correctness and accuracy of

ongoing processing may be degraded even if the software is working effectively.

Testers are provided with a detailed checklist to evaluate these four components. If the

checklists are answered after the assessment of the four areas is completed. The

questions are designed to be answered by the testers.

12.2.3.2.3 Task 3: Test the System
11-steps procedure should be used for testing client/Server system. Client/Server

technology, communication network and client processing should be considered while

performing 11-steps testing procedure. According to the four components of

client/server technology,testing should be adjusted.

12.2.3.3 Check procedure
A quality control checklist can be prepared (also known as work paper) for the

Client/Server test process. The “YES” responses indicate that good test practices are in

place. The “NO” responses indicates that additional investigation is needed. If the

responses are “NO” then the comment should be recorded as the results of

investigation. The N/A indicates that item in the checklist is not applicable to the test

situation.

12.2.3.4 Output

10 Unedited Version: Software Testing

A test report can be prepared that indicates what is working and what doesn’t works in

the system. Also recommendations given by the test team for improvement of the

system should be the part of the report.

12.3. Testing Rapid Application Development
A testing strategy for RAD: Spiral testing will be discussed in this chapter. In this

testing strategy assumes the RAD system:

 Is iterative and evolutionary

 Contains RAD language with a defined grammar

 Provides reusable components capability.

 Uses implementation code from reusable components written in a high-level

language.

 Contains a sophisticated support environment.

The above characteristics will keep RAD model sufficiently general to discuss testing

concerns.

12.3.1. Objective
The RAD testing methodology is designed to take maximum advantage of iterative

nature of RAD. It focuses on the requirements that is needed to capture for developing

system. The testing starts by capturing the testing information resident in the RAD

process. This information should be suitable for thoroughly testing the RAD system.

Testers must know both the assumptions and requirements the designers are trying to

meet. This will help testers to build a test series for verifying the system. It provides

tools and methods to analyze system requirements and capture requirement changes.

12.3.2. Concerns
The testers should have the following four concerns about RAD-based testing:

1. Testing Iterations:

RAD is iterative nature of software development. The RAD-based testing

should track revision histories and maintain the version control of alternative

RAD version. The user’s feedback may require to go the previous iteration for

change, or developer may wish to demonstrate several iteration for user

comment. Requirements may be added, changed, or deleted. Test goals must

easily change to fit modified requirements. The developing environment

captures this modifications explicitly and its purpose. The testing tools should

be developed to captures the modifications explicitly. This could help testers to

construct the testing series according to the modifications and test the version

developed. The tool should also exploit change as a likely source of errors. The

results of the one iterations should be compared with next iterations by the tool,

along with system dependencies potentially affected by changes.

2. Testing Components:

Reliability concerns is raised when we use reusable component. It is important

to determine how the component testing was conducted and the information

about the testing was recorded. Also need to determine what unit testing is

needed. Testers also needs to check on the integration testing strategies that

might best suited in their instantiated context.

11 Unedited Version: Software Testing

3. Testing Performance:

A set of test condition is one of the important part of testing. Test conditions are

based on the requirements, on some stated form of behavior or required

performance standard. An objective standard of the intended behavior of the

RAD under consideration must be developed by the testing methodology. Every

program must have an objective performance standard. Tester should be

provided tools with access to system functionality description and system

requirements by the developing system. This allows rapid, complete, and

consistent derivation from the RAD and also helps in developing scripts for

demonstrations so that particular iteration changes and enhancements will be

highlighted for the user’s comments.

4. Recording the test information:

Requirements, assumptions, and design decisions should be mapped into the

RAD for development and testing. It will provide trace, documenting the RAD’s

development. It would be easy to find why, when and what changes were done

in a particular design decision. It should capture mappings from design or

development decisions to the implementation. These mappings need to be

rapidly revisable to quickly make the next RAD iteration.

12.3.3. Workbench

(Fig5: Workbench for testing RAD systems)

The workbench for testing RAD systems has only requirements as the input. As the

rapid application development goes through a series of iterations, the tasks in the

workbench are parallel to those iterations. Task 3 may perform all the iterations

between the planning iteration and the final iterations multiple times.

12 Unedited Version: Software Testing

12.3.3.1. Input
Requirements are the only input for the workbench. The requirements are normally

incomplete when development begins and will be continually developed throughout

various iterations. The RAD process will have different input for each of the three

steps.

12.3.3.2. Do Procedures
Let us understand the following two topics and then integrate those topics into a three-

task strategy.

Testing Within Iterative RAD

The iterative RAD testing treats each development iteration as one software life cycle.

This keeps intact the methodology of testing familiar to most testers. It removes the

information basis for test planning as in the conventional methodology. A

specification would be generated under the current descriptions of the developing

process.

Conducting a full life cycle of testing for each iteration is complexity of the process.

Early iterations may not have detailed or unchanged requirements. This would be

inefficient and impractical testing.

An alternative test approach is to iterate test planning in parallel with the developing

iterations. This will simplify testing and reduce overall testing costs. The basic system

description of the initial RAD iteration will be the initial test plan. The test plan would

expand to incorporate the latest iteration modification as the RAD iterations proceed.

The disadvantage of this approach causes the test plan to follow the RAD process

closely resulting in some of the important test condition not been explored. The unit

and integration testing might be done iteratively, with acceptance testing occurring

entirely on the final iteration of the development cycle is also the disadvantage.

Considering the developing process closely follows the spiral process model leads to a

spiral iterative test planning process.

13 Unedited Version: Software Testing

(Fig6: Spiral test planning process)

Spiral Testing

Spiral testing is the proposed RAD testing strategy. It is iterative and parallels the

RAD process. It characterizes the varying types of RAD iterations by tailoring the

testing process to account for these differences. It distinguishes between the initial few

RAD testing iterations, subsequent iterations, and the final few iterations. First few

iterations will have only test planning and structuring activities that establish priorities

and areas of test emphasis.

The framework for intermediate testing activity and final acceptance testing, to include

test derivation, is laid in the initial iterations. Unit and integration testing will likely be

confined to subsequent and final testing iterations. Subsequent iterations will have

more acceptance test oracle derivation activity and less framework related activity. In

final iterations are where developer’s returns to their RAD to fix identified errors and

testers conduct final integration and acceptance and regression testing.

(Fig7: A “targeted” spiral)

12.3.3.2.1. Task 1: Test Planning Iterations
Depending on the software under design, the first few iterations of RAD serve varying

purpose. The first development iterations establish the product’s design framework as

a base upon which to RAD the remainder of the system. The first several development

iterations seek to construct abstract RADs to see if an acceptable system can be

designed when feasibility must be investigated and/or when requirements are

unknown. Developers establish the major software requirements and design a

development plan if the RAD is feasible.

14 Unedited Version: Software Testing

For test planning, the initial planning iterations consider the developing results and

frame the testing process for the remainder of the project. Testers should determine the

major critical portions of RAD and establish test priorities. The test teams should

break the major requirements into goals and also determine derived goals. Testers

should make the necessary adjustment in the test plan and record test justifications as

the development continues.

The test team reviews the user input and generate goals independently throughout the

development process. This helps in identifying the missing or incorrect requirement.

Hence resulting into increase in quality of RAD version and decreasing the number of

iterations needed.

In the initial iterations, test team will forecast the system to test. The testers establish

test sections for path and integration testing as the RAD system develops. The main

purpose of the tester is to build the framework for constructing the final acceptance-

test oracle and to fit the intermediate testing activities into the overall development

plan. Manual process would be in the initializing testing tools and their

databases/instrumentation. The top-level requirements specifications is established at

the end of the initial iteration phase. The documentation for each iterations of the RAD

process is recommended.A work-paper can be used for the assistance for each

iterations.

12.3.3.2.2. Task 2: Test Subsequent Planning Iterations
The basic RAD framework is established and in the subsequent iterations developers

enhance the RAD’s functionality and demonstrate it for user/designer review.

Additional requirements are identified. Designs matures in parallel over multiple

iterations. In the review process, both are validated. The overall system design can be

establish when sufficient requirements are identified.

In the subsequent testing iterations unit testing, integration testing and continued

requirements review will be conducted. The test team concurrently develops

integration test plans as designer’s complete subsections of the system design in the

design process. The teat team should conduct the unit test on the reusable components

by consulting the test history of the instantiated module and additional unit testing for

identifying whether the component is appropriate to the developing system.

The additional testing updates should be reflected in the test history with the results.

This updates could be simple as appending a test script or complex as revising the test

history to incorporate new test sets, assumptions tested, test case justifications, and

additional test history details. If the performance aberrations are found during given

iteration’s tests, they are readdressed to design team for correction prior to the next

iteration demonstration.

The test team can commence integration test planning for the system components. The

integration testing process is the same at any hierarchical system level for integration

testing. To maximize test efficiency, the test tem needs to keep integration testing at

various level. It would be possible to develop tools to manipulate structure for

integration testing to increase level of integration testing as more components and

15 Unedited Version: Software Testing

system subsections are implemented. Final integration can be commenced after the

RAD implementation is complete.

Tester throughout the testing consults the RAD specification and all requirements to

determine the correct responses to test data. In the RAD specification language,

considerable information is required for data selection. Automated support would help

in extracting the information but it will depend on the developing language in the

question and on possessing the capability automatically to relate the criteria to selected

test data and execute the test.

The testing methodology remains responsive throughout the iterations. Depending on

user/ developer/ testers input the existing components and specifications may change

or disappear between iterations. Each new iterations may add new functionality or

complete the existing incomplete components. All effects of the change should be

captured by the test development process for performing additional testing or retesting

of previously tested code. The retesting raises the issue of “phase agreement” between

the RAD spiral and the test-planning spiral.

The formal iteration testing proceeds at the completion of a development iteration and

prior to iteration demonstration to the user is known as in-phase agreement. The test

teams tests the system to discover the bugs. Prior to the user review, the encountered

bugs/ problems are corrected. The requirements that are not validated may be

demonstrated in many of the iterations. It is wasteful to test requirements that have not

been validated.

When the designers test their RAD iteration sufficiently prior to the demonstration

which is not formal testing is known as out-of-phase agreement. The test team

conducts formal testing for an iteration at the conclusion of the user demonstration.

The formal test plan developed during the development iteration is modified by the

testers as per the changes in the requirements and testing of corrections and

modifications resulting from the user’s review. With the iterations development, test

planning is done but actual testing waits for the results of the user’s review. After

obtaining the user comments, testers may assume that the stated requirements at that

point represent solid requirements for the purpose of testing. This assumption

continues until a requirement is explicitly or implicitly changed or eliminated. The

testing of the reviewed requirements and increased test responsiveness to user review

are the advantage of this agreement. There is probability that there are bugs in the

demonstrated systems and some requirements are missing.A work-paper can be used

for the assistance for each iterations.

12.3.3.2.3. Task 3: Test Final Iteration
The final few iterations of development are devoted to implementing the remaining

functionality, followed by error correction. All requirements are established by the

developers. So the testers can devote their work to completing the test for acceptance

testing, and to remaining unit testing and subsection integration testing.

The final test planning iterations commence with the completion of the operational

RAD and prior to final user acceptance. Test are developed and conducted to cover all

changes in the final requirements. Test team completes the acceptance test plan. The

acceptance test is conducted when the system is completely implemented and

acceptance design is complete. The test team checks differences in actual results from

16 Unedited Version: Software Testing

expected results and corrects the tests as appropriate while the design team corrects

system faults. The cycle continues till the system successfully completes testing. The

results should be a sufficiently tested software system. A work-paper can be used for

the assistance for the final iterations.

12.3.3.3. Check Procedure
A quality control checklist can be prepared (also known as work paper) for the

Client/Server test process. The “YES” responses indicate that good test practices are in

place. The “NO” responses indicates that additional investigation is needed. If the

responses are “NO” then the comment should be recorded as the results of

investigation. The N/A indicates that item in the checklist is not applicable to the test

situation.

12.3.3.4. Output
The testing process will have multiple outputs of approximately the same composition.

The output of the process is the test reports. These reports contain the findings at the

end of the testing of each iteration of the RAD development. These reports should

indicate what is working and what doesn’t works in the system. Also recommendations

given by the test team for improvement of the system should be the part of the report.

12.4. Summary

 Client/Server System Testing:

o Test process for client/server testing system has input as the client/server

system and also client software and other details like client’s software

descriptions.

o The systems under goes through three major tasks that complements 11-steps

procedures for testing of the software.

o To track the assessment and evaluate the testing process, a quality control

checklist (Work paper) should be used.

o Any identified weakness found during testing will be the output.

 Rapid Application Development.

o Testing process for systems developed using rapid application development

methodology.

o Testers need to be familiar with the RAD methodology their organization

uses.

o The systems under goes through three major tasks that complements 11-steps

procedures for testing of the software.

o To track the assessment and evaluate the testing process, a quality control

checklist (Work paper) should be used.

o Findings at the end of each iteration will be the output.

12.5. References and Bibliography

 “Effective methods of Software Testing”, William Perry, John Wiley

 “Testing Computer Software” , Kaner C., Nguyen H., Falk J., John Wiley

 “Software Testing Techniques”, Boris Beizer, Dreamtech.

 “Introducing Software Testing”, Louise Tamres, Pearson Education

 https://en.wikipedia.org/wiki/Client%E2%80%93server_model

https://en.wikipedia.org/wiki/Client%E2%80%93server_model

17 Unedited Version: Software Testing

12.6. Review Questions

 What are the concerns of client/server system testing?

 Explain the task involved in client/server system testing.

 What are the concerns of RAD based testing?

 With the help of the workbench explain the RAD based testing.

 What is RAD? List and explain its characteristics.

 Write a short note on software development process maturity model.

1 Unedited Version: Software Testing

Chapter 13

Chapter Structure:

13.1. Introduction to System Documentation

13.2. Objective

13.3. Concerns

13.4. Workbench

13.4.1. Input

13.4.2. Do Procedures

13.4.2.1. Task 1: Measure Project Documentation Needs

13.4.2.2. Task 2: Determine What Documents Must Be

Produced

13.4.2.3. Task 3:Determine The Completeness Of The

Individual Documents

13.4.2.4. Task 4: Determine the Currentness of the

Project Documents

13.4.3. Check Procedures

13.4.4. Output

13.5. Guidelines

13.6. Summary

13.7. Review Questions

13.8. References and Bibliography

13.1. Introduction to System Documentation

It is important to prepare the System Documents which should right, complete and

current. It should reflect the criticality of the system, and should contain all the

necessary elements. Generally 10 to 25 percent of the effort is put toward developing

and maintaining documentation of the total efforts system’s development and

maintenance effort. Extra expenses is included in preparation of the documentation,

which results in lack of documentation.

13.2. Objective

The testing of documentation should conform to the other aspects of systems and

program testing. Defective documentation can cause systems to be improperly changed

or system output to be improperly used. Both these errors can lead to incorrect system

results.

Generalized testing methodology for documentation is proposed. Organization must

customize the test method of documentation. Customization involves following tasks:

2 Unedited Version: Software Testing

 Customizing Vocabulary: The terms used in the organization for describing

various system components and documents should be used in the test

methodology.

 Expanding or contracting the approach to be consistent with the

organization’s documentation standards: The test methodology identifies 14

documents needed for system development, maintenance, & operations. An

organization’s standard may have more or fewer documents or may combine

two or three documents. The test team should identify or change the documents

used in this approach so that they relate to the specific documents used in the

organization.

 Continually modifying the documentation test approach to make it more

effective: The documentation test method can be refined with the experience

gained in testing documentation.

13.3. Concerns

Following are the concerns related to the computer system documentation:

• Bring discipline to the performance of an IT function.

• Assist in planning and managing resources.

• Help and planning and implementing security procedures.

• Assist auditors in evaluating applications systems.

• Help transfer knowledge of software development throughout the lifecycle.

• Within the organization, promote common understanding and expectation about

the system. If the software is purchased that common understanding and

expectation should be established between the buyer and the seller.

• Define what is expected. Verify that what is expected is delivered.

• Flexibility to be provided to the personnel by enabling them to move from one

job to another within the organization.

• Provide the basis for training individuals for maintaining the software.

• Provide managers with technical documents to review at the significant

development milestones, to determine that requirements have been met and that

resources should continue to be expended.

13.4. Workbench

The workbench consist of the following four tasks:

 Task 1: Measure project documentation needs: This task helps to understand

the importance of documentation to the success of the system.

 Task 2: Determine what documents must be produced: The list of the

documents that should be produced in the project will be determined on the

basis of task 1.

 Task 3: Determine the completeness of the individual documents: Elements

defined in Task 2 have been prepared is to be determined in this task.

 Task 4: Determine how current project documents are: This task determines

whether the information contained within the documents is still relevant to the

system as it is being run.

3 Unedited Version: Software Testing

4 Unedited Version: Software Testing

(Fig 1: Workbench for testing the adequacy of system documentation)

13.4.1. Input

The input phase includes the following phases:

 Initiation:During the initiation phase, the objectives and general definition of

the software requirements are established. Feasibilities studies, cost/benefit

analysis, and the documentations prepared in this phase are determined by the

organization’s procedures and practices.

 Development: The requirements for the software are determined during this

phase. The software is then defined, specified, programmed and tested in this

phase. The following documentation is prepared during the four stages of this

phase:

o Definition: Software requirements and documentation are determined.

The functional requirements document and the data requirements

document may be prepared in this stage.

o Design: In this stage, the design alternatives, specific requirements and

functions to be performed are analyzed and a design is specified. The

system/subsystem specification, program specification, database

specification and test plan documents may be prepared in this stage.

o Programming: In this stage, software is coded and debugged. User

manual, operation manual, program maintenance manuals and test plan

are the documents that may be prepared in this stage

o Testing: In this stage, software is tested and related documentation

reviewed, and both are evaluated in terms of readiness for

implementation. The test analysis report may be prepared.

 Operation: The software is maintained, evaluated and changed additional as

additional requirements are identified during this phase

5 Unedited Version: Software Testing

There are 14 documents needed for system development, maintenance and operation.

Fig 2 describes the list of the documents as per phases.

Fig 2: Documentation within the software life cycle

Below is the list and description of 14 documents:

1. Project request documentation: This document provide a means for users to

request the development, purchase or modification of software or other IT-

related services. It serves as initiating document in the software life cycle. It

also provides a basis for communication with the requesting organization to

further analyze system requirements and assess the possible effects of the

system.

2. Feasibility study document: This document helps in analyze system

objectives, requirements and concepts, evaluate alternative approach for

achieving objectives; and identify proposed approaches. The feasibility study

document in conjunction with a cost/benefit analysis, should help

management make decisions to initiate or continue IT project or service.

3. Cost/benefit analysis document:This document can help managers, users,

designers and auditors evaluate alternatives approaches.

4. Software summary document:This document is used for a very small

projects to substitute for other development-phase documentation when only a

minimal level of documentation is needed.

5. Functional requirements document:This document provide a basis for users

and designers to mutually develop an initial definition of the software,

including the requirements, operating environment and development plan.

6. Data requirements document:This document provides data descriptions and

technical information about the data collection requirements.

6 Unedited Version: Software Testing

7. System/Subsystem Specification:This document is designed for analysts and

programmers. It specifies requirements, operating environment, design

characteristics, and program specifications.

8. Program Specification:It specifies program requirements, operating

environment, and designs characteristics.

9. Database Specification:This document specifies the logical and physical

characteristics of a particular database.

10. User Manual:This documents is written in nontechnical terminology. This

manual describes system functions so that user organization can determine

their applicability and when and how to use them. It should serve as a reference

document for preparation of input data and parameters and for interpretation of

results.

11. Operation Manual:This documents provide computer operation personnel

with a description of the software and its required operational environment.

12. Program Maintenance Manual:It provides the information necessary to

understand the programs, their operating environment, and their maintenance

procedures.

13. Test Plan: This document provides detailed specifications, descriptions and

procedures for all tests and test data reduction and evaluation criteria.

14. Test Analysis Report:Test results and finding, present the proven capabilities

and deficiencies for reviews are documented in this report. It also provide a

basis for preparing a statement of software readiness for implementation.

13.4.2. Do Procedures

Following are the four tasks described in detail for testing the adequacy of systems

documentation:

13.4.2.1. Task 1: Measure Project Documentation Needs

In this task documentation is to be test for sufficiency or adequacy of the

documentation produced. The formality, extent and level of detail of the

documentation to be prepared depends on the organization’s IT management practices

and the project’s size, complexity and risks. In this tasks it is important to determine

the right documentation is prepared. This task attempts to quantitatively measure the

need for documentation by evaluating the criteria that establish such a need and

determining the extent and level of documentation required.

To establish the need for required documentation, following 12 criteria are used:

1. Originality required: The uniqueness of the application within the

organization

2. Degree of generality: The amount of rigidity associated with the application

and the need to handle a variety of situations during processing.

3. Span of operation: The percentage of total corporate activities affected by the

system.

4. Change in scope and objective: The frequency of expected change in

requirements during the life cycle of the system

5. Equipment Complexity: The sophistications of hardware and

communications lines needed to support the application.

7 Unedited Version: Software Testing

6. Personnel Assigned: The number of people involved in development and

maintenance of the application system.

7. Developmental Cost: The total cost required to develop the application.

8. Criticality:The importance of the application systems to the organization.

9. Average response time to program change: The average amount of time

available to install a change to the application system.

10. Average response time to data input: The average amount of time available

to process an application transaction.

11. Programming language: The average amount of time available to process an

application transaction.

12. Concurrent software development: Other applications and support systems

that need to be developed concurrently with this project to fulfill the total

mission.

A five-point weighting system is used for each of the 12 criteria. Work Paper should

be used in developing the total weighted documentation score as follow:

 Determine the weight for each of the 12 criteria

 Enter the weight number on the work paper for each of the 12 criteria.

 Total the weight for the 12 criteria. The minimum score 12 and maximum is

60

13.4.2.2. Task 2: Determine What Documents Must Be Produced

The specific documents that are needed can be determined through the use of the total

weighted criteria score calculated in task 1. The documents with the high score would

be highly critical for project.If the project did not generate these documents, the test

team should question the documentation. If unneeded documents were prepared, the

test team should challenge the need for maintaining them.

The alternative method for determining the need of the documentation is by

determining the level of the documentation. There four levels of documentation:

1. Minimal: Level 1 (minimal) documentation guidelines are applicable to single-

use programs of minimal complexity. This documentation include the type of

work being produced and a description of what program really does.

2. Internal: Level 2 (internal) documentation applies to special purpose programs

that, after careful consideration, appear to have no sharing potential and to be

designed for use only by the requesting department. Large programs with short

life expectancy also fall in this category.

3. Working Document: Level 3 (working document) documentation applies to

programs that are expected to be used by several people in the same

organization or that may be transmitted to the other organizations, contractors,

or grantees. This level includes all documentation types.

4. Formal Publication: Level 4 (formal publication) documentation applies to

programs that are of sufficient general interest and value to be announced

outside the originating installation. This level of documentation is also

desirable if the program to be referenced by a technical publication or paper.

8 Unedited Version: Software Testing

13.4.2.3. Task 3:Determine The Completeness Of The Individual

Documents

The following 13 criteria are used to evaluate the completeness of a document:

1. Documentation Content: These document content guidelines should be used to

determine whether the document contains all the needed information.

2. Document Audience:Each document type is written for a particular audience,

which may be an individual or a group expected to use the document to

perform a function.

3. Redundancy: There would some amount of redundancy in the 14 documents.

Information that should be included in each document types differs in context

and sometimes in terminology and level of details because it is intended to be

read by different audience at different points in software life cycle.

4. Flexibility: Flexibility in use of the document results from organization of its

content.

5. “Sizing” document types: Each document-type outline can be used to prepare

documents that range in size from a few to several hundred pages. Length

depends on the size and complexity of the project.

6. Combining and expanding document types: It is occasionally necessary to

combine several document types under one cover or to produce several

volumes of the same document type. Document types that can be combined

are manuals for users, operations and program maintenance.

7. Format: The content guidelines have been prepared in a generally consistent

format. This particular format has been tested, and its use is encouraged.

8. Sequencing of Contents: The order of the sections and paragraphs in a

particular document type should be same as shown in the content guidelines.

9. Documenting multiple programs or multiple files:Many of the document

content outlines anticipate and are adaptable to documenting a system and its

subsystems, multiple programs or multiple files.

10. Section/Paragraph Title: These titles are generally the same as those shown in

the content guidelines. Sections or paragraph may be added or deleted as

local requirements dictate.

11. Expansion of paragraphs: Many of the document types have paragraphs with

general title and a list of factors that might be discussed within that

paragraph. The intent of the content guidelines is not prescribe a discussion

of each these items but to suggest that these items be considered during

writing of that paragraphs. These and all other paragraphs may be expanded

and further subdivided to enhance the presentation.

12. Flowcharts & decision tables: The graphic representation of some problem

solutions in the form of flowcharts or decision tables may be included in or

appended to the document produced.

13. Forms: The use of specific forms depends on organizational practices. Some of

the information specified in a paragraph in the content guidelines may be

recorded on such form. If so, the form can be referenced from the appropriate

paragraph. The use of standard forms is encouraged.

This test reveals whether:

9 Unedited Version: Software Testing

 The documentation is understandable to an independent person.

 An independent person can use the documentation to currently make a change,

and can do so in an efficient, effective manner.

13.4.2.4. Task 4: Determine the Currentness of the Project Documents

Documentation that is not current is worthless. The documentation test team can use

the any or all of the following four tests to validate the currentness of documentation:

 Test 1: Use the Documentation to change the application: The currentness

test enables the tester to search for and confirm consistency between the

various documents and to determine whether the documentation supports the

operational system.

 Test 2:Compare the Code with the Documentation: This test uses the

current version of the programs as the correct basis for documentation. The

objective is to determine whether the code is properly represented in the

documentation.

 Test 3:Confirm Documentation Currentness with Documentation

Preparers: The individuals who prepare the documentation should be asked

whether it is current. Specific questions should be asked, including

o Is this documentation 100% representative of the application in

operation?

o Is the documentation changed every time that a system change is made?

o Do the individuals who change the system rely on the documentation as

correct?

 Test 4:Confirm the Currentness of Documentation with the end users:

End users should be asked whether the documentation for the system is current.

Selected documentation should be familiar to the end users so that they can be

given several representative pieces of documentation and asked to validate that

they are current & correct.

13.4.3. Check Procedures

A quality control checklist can be prepared (also known as work paper) for the testing

the adequacy of the system documentation. The “YES” responses indicate that good

test practices are in place. The “NO” responses indicates that additional investigation

is needed. If the responses are “NO” then the comment should be recorded as the

results of investigation. The N/A indicates that item in the checklist is not applicable to

the test situation.

13.4.4. Output

The only output from this system is the report outlining deficiencies within the system

documentation. The deficiencies should be based first on variance from standards, &

second on failure to meet the intent of the standards. The report should be documented

and delivered to the individual responsible for documentation. The testers should

determine that the items in the report are acted upon.

13.5. Guidelines

10 Unedited Version: Software Testing

There are only two courses of action to take when documentation is insufficient,

incomplete or not current:

 Bring the documentation up to the current standards.

 Dispose the documentation if it is obsolete or extremely incomplete.

13.6. Summary

 Testing the adequacy of system documentation comprises of four task.

 It is included as the different test process because documentation is prepared

through the development and test cycles.

 This process will be used periodically during the 11-step test process.

13.7. References and Bibliography

• “Effective methods of Software Testing”, William Perry, John Wiley

• “Testing Computer Software” , Kaner C., Nguyen H., Falk J., John Wiley

• “Software Testing Techniques”, Boris Beizer, Dreamtech.

• “Introducing Software Testing”, Louise Tamres, Pearson Education

13.8. Review Questions

 What are the objectives & concerns of system documentation testing?

 Enlist and explain the documents that are needed for system development,

maintenance and operations?

 With the help of workbench explain the process of testing the adequacy of system

documentation.

 What are the criteria to evaluate the completeness of a document?

1 Unedited Version: Software Testing

Chapter 14: Testing Web-based Systems and Testing off-the-Shelf Software

Learning objectives

14.1 Introduction

14.2 Concerns

14.3 Workbench

14.4 Input

14.5 Do Procedures

14.6 Guidelines

14.7 Summary

14.8 Testing off-the-Shelf Software

14.9 Workbench

14.10 Check Procedures

14.11 Output

14.12 Roadmap

14.13 Summary

14.14 References

14.15 Review questions

14.1 Introduction

Web-based systems are those systems using Internet, intranets, and extranets. The Internet is a
worldwide collection of interconnected networks. An intranet is a private network inside a company
using web-based applications, but for use only within an organization. An extranet is a private
network that allows external access to customers and suppliers using web-based applications. Web-
based architecture is an extension of client/server architecture.

Client/Server Architecture

The application server handles processing requests. The back-end processing (typically a mainframe

or super-minicomputer) handles processing such as batch transactions that are accumulated and

processed together at one time on a regular basis. The important distinction to note is that application

software resides on the client workstation.

Web-based Architecture

 Considering this instance, browsers reside on client workstations. These client workstations

are networked to a web server, either through a remote dial – in connection or through a

network such as a local area network (LAN) or wide area network (WAN)

 As the web server receives and processes requests from the client workstation, requests may

be sent to the application server to perform actions such as data queries, electronic

commerce transactions, and so forth.

 The back-end processing works in the background to perform batch processing and handle

high value transactions. The back-end processing can be also interface with transactions to

other systems in the organization. For example, when an on-line banking transaction is

2 Unedited Version: Software Testing

processed over the internet, the transaction will eventually be updated to the customer’s

accounts and shown on a statement in a back-end process.

 The objective of this test program is to assess the adequacy of the web components of

software application. Web –based testing generally only needs to be done once for any

applications using the web.

14.2 Concerns

The concerns that the tester should have when conducting web-based testing are as follows:

 Browser compatibility. These tests validate consistent application performance on a

variety of browser types and configurations.

 Functional correctness. These tests validate that the application functions correctly this

includes validating links, calculations, displays of information, and navigation.

 Integration. This tests the integration between browsers and services, application and data,

hardware and software

 Usability. This tests the overall usability of a web page or a web application, including

appearance, clarity and navigation.

 Security. This tests the adequacy and correctness of security controls including access

control and authorizations.

 Performance. This tests the performance of the web application under load.

 Verification of code. This Validates that the code used in building the web application

(HTML, Java, etc.) has been used in a correct manner.

14.3 Workbench

The input to the workbench is the hardware and software that will be incorporated in the web-based

system to be tested. The first three tasks of the workbench are primarily involved in web-based test

planning. The main difference between web-based testing and other types of testing is addressing

the unique concerns and risks associated with web-based technology. The fourth task is traditional

software testing. The output from the workbench is to report what works and what does not work,

as well as any concerns over the use of web technology.

14.4 Input

Uncontrolled user interfaces (Browsers): Because of the variety of web browsers that are

available, a web page must be functional on those browsers that you expect to be used in accessing

your web applications. Furthermore, as new releases of browsers emerge, your web applications will

need to keep up with compatibility issues.

3 Unedited Version: Software Testing

Complex distributed systems: In addition to being complex and distributed, web based

applications are also remotely accessed, which adds even more concerns to the testing effort. While

some applications may be less complex than others, it is safe to say that the trend in web

applications is to become more complex rather than less.

Security issues: Protection is needed from unauthorized access that can corrupt applications

and/or data. Another security risk is that of access to confidential information.

Multiple layers in architecture: These layers of architecture include application servers, web

servers, back-end processing, data warehouses, and secure servers for electronic commerce.

New terminology and skill sets: Just in making the transition to client/server, new skills are

needed to develop, test, and use web-based technology effectively.

Object-Oriented: Object-Oriented languages such as Java are becoming the main stay of web

development.

No standardized: Because Internet technology is still maturing, there are few, if any, standards.

Some standards, such as Java language standards, are competing for position.

14.5 Do Procedures

Testing of a web-based system involves performing the following four tasks.

Task 1: Select Web-Based Risks to Include in the Test Plan

The risks are briefly listed below followed by a more detailed description of the concerns associated

with each risk.

Security: As we have already seen, one of the major risks of Internet applications is security. It is

very important to validate that the application and data are protected from outside intrusion or

unauthorized access.

Performance: An Internet application with poor performance will be judged hard to use. Web sites

that are slow in response will not the visitors they attract and will be frustrating to the people who

try to use them.

Correctness: Obviously correctness is a very important area of risk. It is essential that the

functionality and information obtained from web-based applications is that the functionality

and information obtained from web-based applications is correct.

Compatibility (configuration): A web –based application must be able to work correctly on a

wide variety of system configurations including browsers operating system, hardware

systems. All of these are out of the control of the developer of the application.

4 Unedited Version: Software Testing

Reliability: An internet application must have a high level of availability and the information

provided from the application must be consistent and reliable to the user

Data integrity: The data entered into an Internet application must be validated to ensure its

correctness. In addition, measures must be taken to insure the data stays correct after it is

entered into the application.

Usability: The application must be easy to use. This includes things like navigation, clarity,

and understands ability of the information provided by the application.

Recoverability: In the event of an outage, the system must be recoverable. This includes

recovering lost transactions, recovering from loss of communications, and ensuring that

proper backups are made as part of regular systems maintenance.

Key Areas of concern:

Security risk: In this area of concern, we will explore some of the detailed security risks that

need to be addressed in an Internet application test plan.

External intrusion: Perhaps the most obvious security concern is that of protecting the

system from the external intrusion. This can include instruction from people, who are trying

to gain access to sensitive information, and people who are trying to internationally sabotage

information, and people who are trying to intentionally sabotage applications.

Protection of secured transactions: Another major area of concern is that of protecting

transactions over the Internet. This is especially true in dealing with electronic commerce

transactions. Many consumers are reluctant to give credit card information over the Internet

for fear that information will be intercepted and used for fraudulent purposes.

Viruses: The Internet has become a vehicle for propagating tens of thousands of new

viruses. These viruses are contained in downloaded files that can be distributed from web

sites and e-mail.

Access control: Access control means that only authorized users have security access to a

particular application or portion of an application. This access is typically granted with a user

ID and password.

Authorization Levels: Authorization levels refer to the ability of the application

To restrict certain transactions only to those users who have a certain level of authorization.

5 Unedited Version: Software Testing

Key Areas of Concern: Performance

System performance can make or break an Internet application. There are several types of

performance testing that can be done to validate the performance levels of an application. The

following are the key area of concern pertaining to performance.

Concurrency: Concurrency seeks to validate the performance of an application with a given

number concurrent interactive user

Stress: Stress testing seeks to validate the performance of an application when certain aspects

of the application are stretched to their maximum limits. This can Include maximum number of

users, and also include maximum table values data values.

Throughput: Throughput testing seeks to validate the number of transactions to be processed

by an application during a given period of time.

Key Areas of concern: Correctness of course, one of the most important areas of concern is that

the application functions correctly. This can include not only the functionality of buttons and

“behind the scenes” instruction, but also calculations and navigation of the application.

Functionality: Functional correctness means that the application performance its Intended tasks as

defined by a stated set of specifications. The specifications of an application are the benchmark of

what the application should do. Functional correctness is determined by performing a functional

test. A functional test is performed in a cause-effect manner. In other words, if a particular action is

taken, a particular result should be seen.

Calculations: Many Web-based applications include calculations. These calculations must be tested

to insure correctness and to find defects.

Navigation: Navigation Correctness can include testing links, buttons, and general navigation

through a web site or web-based application.

Key area of concern: Compatibility
Compatibility is the ability of the application to perform correctly in a variety of expected
environments. Two of the major variables that affect web- based applications are the operating
systems and browsers. Specifically, the following concerns address the compatibility issues of

a web-based application. Find more at www.browsers.com

Common operating systems include:

 Dos /window

 Mac OS

 UNIX

 VMS

 Sun and SGI (silicon Graphics Inc.)

 Linux

6 Unedited Version: Software Testing

Popular browsers include:

 Microsoft Internet Explorer

 Netscape Communicator

 Mosaic

Key Areas of Concern: Reliability

Because of the continuous uptime requirements for most Internet applications, reliability is a key

concern. However, reliability can be considered in more than system availability; it can also be

expressed in terms of the reliability of the information obtained from the application:

 Consistently correct results

 Server and system availability

Key Areas of Concern: Data integrity

Not only must the data be validated when it is entered into the web application, but it must
also be safeguarded to ensure the data stays correct.

Ensuring only correct data is accepted: This can be achieved by validating the data at
the page level when it is entered by a user.

Ensuring data stays in a correct state: This can be achieved by procedures to back up data and
ensure that controlled methods are used to update data.

Key Areas of Concern: Usability

If users or customers find an Internet application hard to use, they will likely go to a competitor’s

site. Usability can be validated and usually involves the following:

 Ensuring the application hard to use and understand

 Ensuring that users know how to interpret and use the information delivered from the

application

 Ensuring that navigation is clear and correct

Key Areas of Concern: Recoverability

Internet applications are more prone to outages than systems than systems that are more

centralized or located on reliable, controlled networks. The remote accessibility of Internet

applications makes the following recoverability important:

 Lost connections

 Timeouts

 Dropped lines

 Client system crashes

 Server system crashes or other application problems

7 Unedited Version: Software Testing

Task 2: Select Web-based Tests

Unit or Component
This includes testing at the object, component, page, or applet level. Unit testing is the lowest level

of testing in terms of detail. During unit testing, the structure of languages, such as HTML, and Java,

can be verified. Edits and calculations can also be tested at the unit level.

Integration

Integration is the passing of data and/or control between units or components, which includes

testing navigation (i.e., the paths the test data will follow). In web-based applications, this includes

testing links, data exchanges, and flow of control in an application.

System

System testing examines the web application as a whole and with other systems. The classic

definition of system testing is to validate that a computing system functions according to written

requirements and specifications. This is also true in web-based applications. The differences apply in

how the system is defined. System testing typically includes hardware, software, data, procedures,

and people.

User Acceptance (Business Process Validation)

This includes testing that the web application supports business needs and processes. The main in

user acceptance testing (or business process validation) is to ensure that the end product will

support the user’s needs. For business application, this means testing that the system will allow the

user will be able to get the information or service they need efficiently from web site.

Performance

This includes testing that the system will perform as specified at predetermined levels, including

wait times, static processes, dynamic processes, transaction processes. Performance is also tested at

the client/browser and server levels.

Load/Stress

This type of testing checks to see that the server will perform as specified at peak concurrent loads

or transaction throughput. It includes stressing servers, networks, and databases.

Regression

Regression testing checks that unchanged parts of the applications work correctly after a change has
been made. The main idea is to test a set of specified critical test cases each time you perform the
test. Regression testing is an ideal candidate for test automation, due to its repetitive nature

8 Unedited Version: Software Testing

Usability

This type of testing assesses the ease of use of an application. Usability testing may be accomplished

in a variety of ways, including direct observation of people using web applications, usability surveys,

and beta tests. The main objective of usability testing is to assure that an application is easy to

understand that an application is easy to understand and navigate.

Compatibility

Compatibility testing insures that the application functions correctly on multiple browsers and

system configurations. Compatibility testing may be performed in a test lab that contains a variety of

platforms, or may be performed by beta testers. The downside with beta testing is the increased risk

of bad publicity, the lack of control, and the lack of good data coming back from the beta testers.

Task 3: Select Web-based Test Tools

A brief description of the more common web-based test tools are as follows.

HTML Test Tools

Site Validation

Site validation tools check your web applications to identify inconsistencies and errors such as:

 Moved pages

 Orphaned pages

 Broken lines

Java Test Tools

Java test tools are specially designed for testing Java applications. Example includes:

NuMega True Time Java Edition: A performance analysis tools for Java. Automatically locates
performance problem in Java application and components.

Sun Test Suited by Sun Microsystems. Java star for testing GUIs, Java space, and API test tools, and
Java scope to measure coverage.

Silk Test by Segue Software: Capture/playback geared specially for web-based applications.

Silk Scope by Segue Software: Code coverage for Java applications.

Silk space by Segue Software: Tests the non-GUI code for application and applets.

Load/Stress Testing Tools

9 Unedited Version: Software Testing

Load/Stress tools evaluate web-based system when subjected to large volume of data or
transactions. Examples of tools that can simulate numerous virtual users and vary transactions rates
include:

 Astra Site Test by Mercury Interactive

 Silk Performer by segue Software

Test Case Generators

Test case generators create transactions for use in testing. This tool can tell you what to test, as well

as create test cases that can be used in other test tools. An example of a test case generator is the

Astra Quick Test by Mercury Interactive. This tool capture business processes into a visual map to

generate data-driven tests automatically. Test scripts can be imported to Mercury’s Load Runner and

managed by test Director.

Task 4: Test web-based System

Check Procedures

At the conclusion of web-based testing, after Task 1 through 3 has been performed, the web-based

test team should verify that the web-based test planning has been conducted effectively.

Output

The only output from this test process is a report on the web-based system. A minimum this report

should contain:

 Brief description of the web-based system

 Risks addressed and not addressed by the web-based test team

 Types of testing performed, and type of testing not performed

 Test tools used

 Web-based functionality and structure tested that performed correctly

 Web-based structure and functionality tested that did not perform correctly

 Web-based test team’s opinion regarding the adequacy of the web-based system to be

paced into a production status.

14.6 Guidelines

Successful web-based testing necessitates a portfolio of web-based testing tools. It is important that

these test tools are used effectively. These are some common critical success factors for buying

integrating, and using test tools:

 Get senior management support for buying and integrating test tools: Top-down

support is critical. Management must understand the need for test tools and the risks of not

using test tools.

 Know your requirements: This will help you avoid costly mistakes. You may not be

able to meet all your requirements, but you should be able to find best fit.

10 Unedited Version: Software Testing

 Be reasonable in your expectation-start small and grow: Your first project using any

kind of tool is your learning project. Expect to make some mistakes. You can hedge your risk

by applying the test tool (s) to simple tasks with high payback.

 Have a strong testing process that includes tools: Until this is in place, test tool usage

will be seen as optional and the tool may die due to lack of interest. In addition, people need

to know how to define what to test.

 Don’t cut the training corner: People must understand how to use the test tool. Most

people will naturally use about 20 to 25 percent of the tool’s functionality. If training is not

obtained and the tool effective, don’t blame the tool.

14.7 Summary

This chapter provides guidelines on how to properly plan for web-based testing. Like other aspects

of testing , web-based testing should be risk oriented The chapter describes the risks , presents the

types of testing that can be used to address those risks in testing , and provides guidance in using

web-based test tools . The approach for testing web-based systems should be incorporated into a

test plan and that plan should be followed during test execution. This chapter does not address the

test execution part of web-based testing. Testers should follow the execution components of the 11-

step testing process described in the respective chapters.

14.8 Testing off-the-Shelf Software

Overview

Off-the-shelf software must be made to look attractive if it is to be sold. Thus, the development of

off-the-shelf software (OTSS) will emphasize the benefits of the software. Unfortunately, there is

often a difference between what the user believes the software can accomplish and what is actually

does accomplish. The chapter recommends both static and dynamic testing. The static testing will

concentrate on the user manual and other documentation, while the dynamic testing will examine

the software in operation. The cost of testing is always less than the cost of improper processing.

Objective

The objective of this off-the-shelf testing process is to provide the highest possible assurance of

correct processing with a minimal effort. However, the process should be used for noncritical off-

the-shelf software if the software is critical to the ongoing operations of the organization. If the

software should be subject to a full scale of system testing, the process might be called “80-20”

testing because it will attempt with 20 percent of the testing effort to catch 80 percent of the

problems. That 80 percent should include almost the entire significant problem if they exist.

Concern

The user of the off-the-shelf software should be concerned with these areas.

11 Unedited Version: Software Testing

 Items missing: A variance between what is advertised or included in the manual versus what

is actually in the software.

 Software fails to perform: The software does not correctly perform the task/items it was

designed to perform.

 Extra feature: This poses two problems. First, the extra tasks may cause problems during

processing; and second, if you discover the extra task and rely on it, it may not be included in

future versions.

 Does not meet business needs: The software does not fit with the user business need.

 Does not meet operational needs: The system does not operate in the manner, or on the

hardware configuration, that is expected by the user.

 Does not people needs: The software does not fit with the skill sets of the users.

14.9 Workbench

Testing off-the-shelf software is illustrated on a work bench. The workbench shows three static

tasks, which are to

(1) test business for,

(2) test system fit, and

(3) test people fit.

It is generally advisable with off-the-shelf software to have a repository for user reported problems.

This can be accomplished by having a single individual appointed manager for a specific off-the-shelf

software package. All problems are reported to that individual. The individual will determine what

action needs to be taken, and then notify all of the users of the software.

Input:

Two inputs are being in count in this step. The first input is the manuals that accompany the OTSS.

These normally include installation and operation manuals. The manuals describe what the software

is designed to accomplish and how to perform the tasks necessary to accomplish the software

functions. The second input is the software itself. Note that is some instances the user instructions

will be contained within the software. Thus, the first few screens of the software may explain how to

use the software.

Do Procedures

The execution of this process involves four tasks plus the check procedures described as follows

Task 1: Test Business Fit

12 Unedited Version: Software Testing

The objective of this task is to determine whether the software meets your needs. The task involves

carefully your business needs and then verifying whether the software in question will accomplish

them.

Step 1: Completeness of Needs Specification

This test determines whether you have adequately defined your needs. Your needs should be

defined in terms of the following two categories of outputs:

1. Output products/reports: Output products/reports are specific documents that you want

produced by the computer system. In many instances, such as the previous payroll check

example, the style and format of these output products is important. This does not mean

that the specific location of the check has to be defined but, rather, the categories of

information to be included on the check. Computer-produced reports may also be important

for tax information (e.g., employee withholding forms sent to governmental units), financial

statements of where specific statements are wanted (e.g., balance sheets or statements of

income and expense) or costumer invoice and billing forms which you might want

preprinted to include your logo and conditions of payment.

2. Management decision information: This category tries to define the information needed for

decision-making purposes. In the computer product/report category you were looking for a

document; in this case you are looking for information. How that information is provided is

unimportant. Thus, the structures of the document are, or their size, frequency, or volume is

not significant. All you needs is information.

Testing the Completeness of Needs

The objective of this first test is to help you determine how completely your needs are defined. The

test is based on the criteria learned by the large corporations. The first test is a cause-effect test that

attempts to identify the potential causes of poor needs definition. This test indicates the probability

of completeness of needs documentation.

After your needs are documented, they should be evaluated using the 10-factor test of

completeness of business requirement illustrated below:

1 Familiarize yourself with the documented business needs.

2 Indicate your agreement or disagreement with the statement based on your understanding

of each item.

 Strongly agree with the statement (SA)

 Agree with the statement (A)

 Neither agree nor disagree with the Statement (i.e., are basically neutral and are not sure

whether the statement is applicable or inapplicable)(N)

 Disagree with the statement (D)

 Strongly disagree with the Statement (SD)

 Check the appropriate assessment column for each of the 10 Statements.

13 Unedited Version: Software Testing

3 ` Calculate an assessment score for each of the 10 statements as follows : For each item

checked SA, score 5 points ; for each S, score 4 points; for each N, score 3 points ; each d, score 2

points; for each SD, score 1 point. Your final score will range between 10 and 50.

The score can be assessed as follows:

 10-25 points: Poorly defined requirements. You are not ready to consider buying a

software package; do some additional thinking and discussion about this need.

 26-37 points: The needs are barely acceptable, particularly at the low end of the

range. While you have a good start, you may want to do some clarification of the reports or

decision –making information.

 38-50 points: Good requirements. In this range, you are ready to continue the software

testing process.

At the conclusion of this test you will either go no to the next test or further clarify your needs. Te

experience of the “big boys” in computing indicates that it is a mistake to pass this point without

well –defined needs

Step 2: critical success Factor Test

The software package would stand to the business needs this is stated by this test .Critical success

factors (CSF’s) are those criteria factors that must be present in the acquired software for it to be

successful.. Some of the most common critical success factors for OTSS you may want to use are:

Ease of use: The software is understandable and usable by the average person.

Expandability: The vendor plans to add additional features in the future.

Maintainability: The vendor will provide support/assistance to help utilize the package in the event

of problems.

Cost-effectiveness: The software package makes money for your business by reducing costs, and so

on.

Transferability: If you change your computer equipment the vendor indicates that they will support

new models or hardware.

Reliability: In computer language, the system is friendly, meaning it will you get your transactions

entered into the system so that you can produce your results readily.

Security: The system has adequate safeguards to protect the data against damage (for example,

power failures, operator errors, or other goofs that could cause you to lose your data).

In making the evaluation, the following factors must be considered:

 Through understanding of the business application.

 Knowledge of the features of the software package.

14 Unedited Version: Software Testing

 Ability to conceptualize how the software package will function on a day-to-day basis.

 Use of CSFs to indicate whether you believe:

o There is a high probability that the software package will meet the CSF (put an X in

the Yes column).

o The software package does not have a high probability of meeting the CSF (put an X

in the No column).

o There is less than a 50-50 probability of the software package’s success (put an X in

the appropriate column and then clarify your assessment in the comments column).

At the conclusion of this test, you will have matched your business needs against the software

capabilities, and assessed the probability of its success. If the probability of success is low (i.e., there

are several No responses or highly qualified Yes responses), you should probably not adopt this

software package. Clearly, additional study and analysis is warranted before you move forward and

expend the resources to implement a potentially unsuccessful system.

Task 2: Test Operational Fit

This task determines the functionality of the software in the system. With your business there are

several constraints that must be satisfied before you acquire the software, including: At the end of

this task, you will know whether the software fits into the way you do business, and will operate on

your computer hardware. This task includes three steps that need to be performed to ensure an

appropriate fit between the software being evaluated and your in-house systems.

Step 1: Compatibility with Your Hardware, Operating System, and Other

Software Packages

It involves a simple matching between your processing capabilities and limitations, and what the

vendor of the software says it is necessary to run the software package. The most difficult part of

this evaluation is ensuring the multiple software packages can properly interface.

In addition to the hardware on which the software runs, and the operating system with which it

must interact to run, there are two other important compatibilities:

(1) compatibility with other software packages and

(2) compatibility with available data.

System compatibility is defined in data processing jargon as “interoperability”. This term refers to

the amount of effort required to interconnect computer systems. In other words, how do you tie

two or more programs together so that they will work and pass data between them is the main

function.

If you cannot pass information easily (i.e., worksheet, word processing, database, graphics, and

communications), information transfer will be definition be difficult. Difficulty means that you may

have to print information out of one program, and then manually reenter it at the keyboard into

another program. Commercial data processing installations estimate that they spend about one-half

15 Unedited Version: Software Testing

of their total computer effort entering, validating, and correcting data. In other words, when the

input data is entered correctly they are halfway home. To lose their data means that they have lost

of their total data processing effort to date.

Finding someone who can tell you whether you have program and/or data compatibility is difficult.

That someone must understand data formats, know what data formats programs use, and know that

those programs or data will work when they are interconnected. In many instances, trial and error is

the only method of determination. However, that one program cannot read the data created by

another program does not mean that the original data cannot be reused. To help you prepare a

compatibility list for the purpose of testing, the information that needs to be included is described

below. The list is divided into hardware, operating systems, programs, and data.

Hardware compatibility: List the following characteristics for your computer hardware:

 Hardware vendor

 Amount of main storage

 Disk storage unit identifier

 Disk storage unit capacity

 Type of printer

 Number of print columns

 Type of terminal

 Maximum terminal display size

 Keyboard restrictions

Operating System Compatibility: For the operating system used by your computer hardware,

list:

 Name of operating system (e.g., Unix or Windows)

 Version of operating system in use

Program compatibility: List all of the programs with which you expect or would like this specific

application to interact.

Data compatibility: In many cases program compatibility will answer the questions on data

compatibility. However, if you created special files you may need descriptions of the individual data

elements and files. Again, as with program compatibility, you may have to actually verify through

trail whether the data can be read and used by other programs.

Step 2: Integrating the software into your Business system work flow

Each computer system makes certain assumptions. Unfortunately, these assumptions are rarely

started in the vendor literature. The objective of this test is to determine whether you can plug the

OTSS into your existing manual system without disrupting your entire operation. Remember that:

 Your manual system is based on a certain set of assumptions.

 Your manual system uses existing forms, existing data, and existing procedures.

16 Unedited Version: Software Testing

 The computer system is based on asset of assumptions.

 The computer system uses a predetermined set of forms and procedures.

 Your current manual system and the new computer system may be incompatible.

 If they are incompatible, the computer system is not going to change-you will have to.

 You may not want to change-then what?

The process for test of fit of the computer system into your existing manual system requires you to

prepare a document flow diagram or narrative description. A document flow diagram is pictorial or

narrative description of your process is performed. That is, you plug the computer system into your

existing system and then determine if you like what you see. If you do, your computer system has

passed this test. If not, you will either have to change your existing method of doing work, or search

for another computer system.

1. Performing the Data Flow Diagram Test: Dataflow diagram entirely defines the testing. At

the same time that it tests whether you can integrate the computer system into your

business system, it shows you how to do it. It is both a system into your business system; it

shows you how to do it. It is both a system test and a system design methodology

incorporated into a single process. So, to prepare the document flow narrative or document

flow description, these three tasks must be performed.

2. Prepare a document flow of your existing system: Through personal experience or inquiry,

quickly put down in document flow format the steps required to complete the process as it

is now performed. Since there will be 15 or fewer steps in most instances, this should only

take a few minutes.

3. Add the computer responsibility to the data flow diagram: Use a colour pencil to cross out

each of the tasks now being performed manually that will be performed by the computer.

Indicate the tasks you will continue to perform manually in a different colour pencil. If the

computer is going to perform tasks that were not performed before, those should be

indicated by using a third colour. At the end of this exercise, you will have a clearly marked

list of which manual tasks were replaced by the computer, which manual tasks will remain as

such, and which new tasks have been added.

4. Modify the manual tasks as necessary: Some of the manual tasks can stay as is; other will

need to be added or modifies. Again do this in a different colour. The reason for the

different colour pencils is to highlight and illustrate these changes.

The type and frequency of work flow changes that will be occurring is defined by the objectives of

this study. At the end of this test, you will need to decide whether you are pleased with the revised

work flow. If you feel the changes can be effectively integrated into your work flow, the potential

computer system has passed the test. If you feel the changes in work flow will be disruptive, you

may want to fail the software in this test and either look for other software or continue manual

processing.

If the testing is to continue, you should prepare a clean data flow diagram indicating what actions

need to be taken to integrate the computer system into your organization’s work flow. This new

data flow diagram becomes your installation plan of action. It will tell you what changes need to be

17 Unedited Version: Software Testing

made, who are involved in them, what training might be necessary, and areas of potential work flow

problems.

Step 3: Demonstrating the Software in Operation

This test analyzes the many facets of software. Software developers are always excited when their

program goes to what they call “end of job.” This means that is executes and concludes without

abnormally terminating i.e., stops after doing all the desired tasks.

1. Computer store controlled demonstration: In this mode, the demonstration is conducted at

the computer store, by computer store personnel, using their data. The objective is to show

your various aspects of the computer software, but not let you get too involved in the

process. This is done primarily to limit the time involved in the demonstration.

2. Customer site demonstration: In this mode, the demonstration takes place at your site,

under control, by your personnel, using your information. It is by far the most desirable of all

demonstration, but many software OTSS computer stores may not permit it unless you

purchase the OTSS. These aspects of computer software should be observed during the

demonstration:

3. Understandability: As you watch and listen to the demonstration, you need to evaluate the

ease with which the operating process can be learned. If the commands and processes

appear more like magic than logical steps, you should be concerned about implementing the

concept in your organization. If you have trouble figuring out how to do it, think about how

difficult it may be for some of your clerical personnel who understand neither used the

business application nor the computer.

4. Clarity of communication: Much of the computer process is communication between man

and machine. That is, you must learn the language of the computer software programs in

order to communicate with the computer. Communication occurs through a series of

questions and responses. If you do not understand the communications, you will have

difficulty using the routine.

5. East of use of instruction manual: While monitoring the use of the equipment, the tasks

being demonstrated should be cross-referred to the instruction manual. Can you identify the

steps performed during the demonstration with the same steps included in the manual? In

other words, does the operator have to know more than is included in the manual, or are

the steps to use the process laid out so clearly in the manual that they appear easy to

follow?

6. Functionality of the software: Ask to observe the more common functions included in the

software: Are these functions described in the manual? Are these the functions that the

salesperson described to you? Are they the functions that you expected? Concentrate

extensively on the applicability of those functions to your business problem.

7. Knowledge to execute: An earlier test has already determined the extent of the

salesperson’s knowledge. During the demonstration, you should evaluate whether a lesser-

skilled person could as easily operate the system with some minimal training. Probe the

18 Unedited Version: Software Testing

demonstrator about how frequently they run the demonstration and how knowledgeable

they are about the software.

8. Effectiveness of help routines: Help routines are designed to get you out of trouble when

you get into it. For example, if you are not sure how something works you can the word

“help” or an equivalent and the screen should provide you additional information. Even

without typing “help” it should be easy to work through the routines from the information

displayed on the screen. Examine the instructions and evaluate whether you believe you

could have operated the system based on the normal instructions. Then ask the operator

periodically to call the help routines to determine their clarity.

9. Evaluate program compatibility: If you have programs you need to interact with, attempt to

have that interaction demonstrated. If you purchased other software from the same store

where you are now getting the demonstration, they should be able to show you how data is

passed between the programs.

10. Data compatibility: Take one of your data files with you. Ask the demonstrator to use your

file as part of the software demonstration. This will determine the ease with which existing

business data can be used with the new software.

11. Smell test: While watching the demonstration, let part of your mind be a casual overseer of

the entire process. Attempt to get a feel for what is happening and how that might impact

your business. You want to end up being able to assess whether you feel good about the

software. If you have concerns, attempt to articulate them to the demonstrator as well as

possible to determine how the demonstrator responds and address those concerns.

To determine whether an individual has the appropriate skill level to use the OTSS it is

recommended to involve one or more typical users of the OTSS in software demonstrations (i.e.,

Task 3) and in the validation of the software processing (i.e., Task 4). If the selected users are able to

perform those dynamic tests with minimal support, it is reasonable to assume that the average user

will possess the number of skills necessary to master the use of the OTSS. If, on the other hand, the

selected user appears unable to operate the software in a dynamic mode, it is logical to assume that

significant training and/or support will be required for effectively using the OTSS.

Task 3: Test People Fit

A determination of usage of this software by the employee class is done. This testing consists of

ensuring that your employees have or can be taught the necessary skills. This test evaluates whether

people possess the skills necessary to effectively use computers in their day-to-day work. The

evaluation can be of current skills, or the program that will be put into place to teach individuals the

necessary skills. Note that this includes the owner-president of the organization as well as the

lowest-level employee in the organization.

The test is performed by selecting a representative sample of the people who will use the software.

The sample need not be large. This group is given training that may only involve handing someone

19 Unedited Version: Software Testing

the manuals and software. The users will then attempt to use the software for the purpose for which

it was intended. The results of this test will show:

1. The software can be used as is.

2. Additional training/support is necessary.

3. The software is not usable with the skill sets of the proposed users.

Task 4: Validate Acceptance Test Software process

The objective of this task is to validate that the off-the –shelf software the functional and structural
needs of the user of the software. We have divided testing into functional and structural testing,
which also could be called correctness and reliability testing. “Correctness” means that the function
produces the desired results. “Reliability” means that the correct result will be produced under
actual business conditions.

Step 1: Create Functional Test conditions
It is important to understand the difference between correctness and reliability because it impacts
both testing and operation. The types of test conditions that are needed to verify the functional
accuracy and completeness of computer processing include:

 All transactions types to ensure they are properly processed

 Verification of all totals

 Assurance that all outputs are produced

 Assurance that all processing is complete

 Assurance that controls work (e.g., input can be balanced to an independent control total)

 Reports that are printed on the proper paper, and in the proper number of copies

 Correct field editing (e.g., decimal points are in the appropriate places)

 Logic paths in the system that direct the inputs to the appropriate processing routines

 Employees that can input properly

 Employees that understand the meaning and makeup of the computer outputs they

generate.

The objective of this checklist is to help ensure that sufficient functional test conditions are used. As

test conditions for the types are listed and completed that line should be checked. At the completion

of the test conditions, those types of functional test conditions that have not been checked should

be evaluated to determine whether they are needed. The checklist is designed to help ensure the

completeness of functional test conditions.

Step 2: Create Structural Test Conditions

Structural, or reliability, test conditions are challenging to create and execute. Novices to the

computer field should not expect to do extensive structural testing. They should limit their structural

testing to conditions closely related to functional testing. However, structural testing is easier to

perform as computer proficiency increases. This type of testing is quite valuable. Some of the easier-

to-perform structural testing relates to erroneous input. In some definitions of testing, this reliability

testing is included in functional testing. It is included here because if the input was correct the

20 Unedited Version: Software Testing

system would perform in a functionally correct way; therefore, incorrect input is not a purely

functional problem.

Most of the problems that are encountered with computer systems are directly associated with

inaccurate or incomplete data. This does not necessarily mean that the data is invalid for the

computer system

The second part of structural testing deals with the architecture of the system. Architecture is a data

processing term that describes how the system is put together. It is used in the same context that an

architect designs a building. Some of the architectural problems that could affect computer

processing include:

 Internal limits on number of events that can occur in a transaction (e.g., number of products

that can be included on an invoice)

 Maximum size of fields (e.g., quantity is only two positions in length, making it impossible to

enter an order for over 99 items)

 Disk storage limitations (e.g., you are only permitted to have X customers)

 Performance limitations (e.g., the time to process transactions jumps significantly when you

enter over X transactions)

These are but a few of the potential architectural limitations placed on computer software. You must

remember that each software system is finite and has built-in limitations. Sometimes the vendor

tells you that you can from time to time find these limitations if you search through the

documentation, and occasionally you won’t know them until they occur. However, all limits can be

determined through structural testing. The questions at hand are: Do you feel competent to do it?

and Is it worth doing? The answer to these questions depend on the critical nature of the software

and what would happen if your business was unable to continue computer processing because you

reached the program limitation.

A final category of potential structural problems relates to file-handling problems. While these do

appear to be a problem, they are frequently found in computer software. Typical problems that

occur are incorrect processing when the last record on a file is updated, or adding a record that will

become the first record on a file. These types of problems have haunted the computer programming

profession for years. In the personal computer software market there is literally thousands of people

writing software. Some have good ideas but are not experienced programmers, thus, they fall into

the age-old traps of file manipulation problems.

14.10 Check Procedures

At the conclusion of this testing process, the tester verifies that the OTSS test process has been

conducted effectively.

14.11 Output

There are three potential outputs as a result of executing the OTSS test process:

21 Unedited Version: Software Testing

1. Fully acceptable: The software meets the full needs of the organization and is acceptable for

use.

2. Unacceptable: The OTSS package has sufficient deficiencies that it is not acceptable for use.

3. Acceptable with conditions: The OTSS package does not fully meet the needs of the

organization, but either lowering those expectations or taking alternate procedures to

compensate for deficiencies makes the package usable, and thus it will be disseminated for

use.

14.12 Guidelines

The following guidelines are given to aid in testing off-the-shelf software:

 Spend one day of your time learning and evaluating software and you will gain problem-free

use of that software.

 Only acquire computer software after you have established the need for that software and

can demonstrate how it will be used in your day-to-day work.

 Instinct regarding goodness and badness should be used to help you select software.

 Testing is not done to complicate you life, but rather to simplify it. After testing, you will

operate your software from a position of strength. You will know what works, what doesn’t

work, and how it works. After testing, you will not be intimidated by the unknown.

 The cost of throwing away bad software will be significantly less than the cost of keeping it.

In addition to saving you time and money, it will also save frustration.

 The best testing is that done by the individuals who have a stake in the correct functioning

of the software. These stakeholders should both prepare the test and evaluate the results of

testing.

 If your users can run the acceptance tests successfully from their procedures and training

courses, they will be able to run their software successfully in conjunction with their

business function.

14.13 Summary

The process outlined in this chapter is designed for testing off-the-shelf software. It assumes that the

testers will not have access to the program code; therefore, the test emphasizes usability. The test is

similar in approach to acceptance testing.

14.14 References

 “Effective Methods of Software Testing”, William Perry, John Wiley

14.15 Review questions

 Write short note on intranet, extranet, web server, CGI, Firewall and internet.

 Differentiate between client-server architecture and webbased architecture.

 Discuss the concern that tester should have while conducting web based testing.

 What is OTSS? Explain the concerns of users of OTSS.

22 Unedited Version: Software Testing

 Describe the critical success factors of OTSS.

1 Unedited Version: Software Testing

Chapter 15 : Testing in a Multiplatform Environment and testing security

Learning objectives :

15.1 Introductions

15.2 Objective

15.3 Concerns

15.4 Workbench

15.5 Input

15.6 Do Procedures

15.7 Check Procedure

15.8 Output

15.9 Roadmap

15.10 Summary

15.11 Testing Security

15.12 Introduction

15.13 Objective

15.14 Concerns

15.15 Workbench

15.16 Input

15.17 Do procedures

15.18 check Procedure

15.19 Output

15.20 Guidelines

15.21 Summary

15.22 References

15.23 Review question

2 Unedited Version: Software Testing

15.1 Introductions

Software is designed to run on more than one platform must undergo two tests. The first is to

validate that the software performs its intended functions. The second test is that the software will

perform in the same manner regardless of the platform on which it is executed. This chapter focuses

on the test process.

Each platform on which software is designed to execute operationally may have slightly different

characteristics. These distinct characteristics include various operating systems, hardware

configurations, operating instructions, and supporting software, such as database management

systems. These different characteristics may or may not cause the software to perform its intended

functions differently. The objective of testing is to determine whether the software will produce the

correct results on various platforms.

15.2 Objective

The objective of the six –task process is to validate that a single software package executed on different

platforms will produce the same results. The test process is basically the same that was used in parallel

testing .Software must operate on multiple platforms with the individual results being compared to assure

consistency in output. The testing normally requires a test lab that includes the predetermined platforms.

15.3 Concerns

There are three major concerns in multiplatform testing:

1. The platforms in the test lab will not be representative of the platforms in the real world. This can

happen because the platform in the test lab many not be upgraded to current specifications, or

may be configured in a manner that is not representative of the typical configuration for that

platform.

2. The software will be expected to work on platforms not included in the test labs. By implication,

users may expect the software to work on a platform that has not been included in testing.

3. The supporting software on various platforms is not comprehensive. User platform may contain

software that is not the same as that used on the platform in the test lab, for example, a different

database management system and so forth.

15.4 Workbench

The workbench for testing in a multiplatform environment is illustrated in Figure 15.1 This figure shows that

six tasks are needed to effectively test in a multiplatform environment. Most tasks assume that the platforms

will be indentified in detail, and that the software to run on the different platforms has been previously

validated as being correct five of the six tasks are designed to determine what tests are needed to validate

the correct functioning of the identified platforms, and the sixth task executes those tests.

15.5 Input

3 Unedited Version: Software Testing

The two inputs for testing in a multiplatform environment are as follows:

1. List of platforms on which software must execute. The main requirement for multiplatform testing

is a list of the platforms. These platforms must be described in detail as input to testing, or described

in detail prior to commencing testing

2. Software to be tested. The software package (s) to be tested is input to the test process. This

software must be validated that it performs its functions correctly prior to multiplatform testing. If

this has not been done, then the software should be subject to the 11-step testing process, described

in Part Three of this book, prior to commencing multiplatform testing.

Fig.15.1 workbench for testing in a multiplatform environment

4 Unedited Version: Software Testing

15.6 Do Procedures

The following six tasks should be performed to validate that software performs consistently
in a multiplatform environment:
1. Define platform configuration concerns.
2. List needed platform configurations.
3. Assess test room configurations.
4. List structural components affected by the platform(s).
5. List interfaces platform affects.
6. Execute the tests.

Step 1: Define Platform configuration Concerns

 The first task in testing a multiplatform environment is to develop a list of potential concerns about

the environment. The testing that follows will then determine the validity of those concerns the

recommended process for identifying concerns is error guessing.

 Error guessing attempts to anticipate problems within the software package and its operation.

Studies by the IBM Corporation indicate that the same types of software defects occur with the same

frequency from project to project. Software test experts can predict the types of defects that will

occur in software.

 Error guessing requires the following two prerequisites:

1. The error- guessing group understands how the platform works.

2. The error-guessing group knows how the software functions.

 It is possible to perform error guessing with one person or more, it is brain storming process.

 Error guessing requires a recorder to write down the ideas developed by the group. Each member of

the group is allowed time to express what he or she believes might go wrong with the software. Until

every individual has had an initial opportunity to list problems, there can be no criticism or comment

on what other individuals have stated after the initial go-round. The recorder backs these items one

by one.

 One group rule of this discussion is that there can be no criticism of errors raised or the individual who

raised them. All comments must be stated positively.

 The end product of error guessing is a list of potential error conditions for additional investigation and

test. It is not up to the error-guessing team to determine what happens when these error conditions

occur. They need to be familiar with the software to know whether there may be a problem, but they

do not need to know all of the solutions.

 Error guessing is meant to be a relatively unstructured, unorganized process. The following is a short

list of questions to brainstorm during error guessing:

o Does your software have any unusual transactions?

o What are the most common errors that you are now making?

o What would happen to processing if you forgot to perform one of the steps?

o What would happen if you did not enter all of the data in an input transaction?

5 Unedited Version: Software Testing

o Will you be able to determine who performed what computer operation in case

questions arise regarding the correctness of operations?

o If the computer by the computer produces a diagnostic message, how will you know it
has been properly corrected?

o How will you know the person operating the computer knows how to operate it
correctly?

Step 2: List Needed Platform Configurations

 The test must identify the platforms that must be tested. The list of platforms and detailed description
of the platforms would be input to the test process.

 The needed platforms are either those that will be advertised as acceptable for using the software, or
platforms within an organization on which the software will be executed.

 Tester must then determine whether those platforms are available for testing. If the exact platform is
not available, the testers need to determine whether an existing platform is acceptable.

Step 3: Assess Test Room Configurations

The testers need to make a determination as to whether the platforms available in the test room are

acceptable for testing. This involves two steps:

1. For each needed platform document the platform to be used for testing,

2. Make a determination as to whether the available platform is acceptable for testing.

Step 4: List Structural Components Affected by the Platform(s)

 Structural testing deals with the architecture of the system. Architecture describes how the

system is put together. It is used in the same context that an architect designs a building.

Some of the architectural problems that could affect computer processing include:

o Internal limits on number of events that can occur in a transaction (e.g., number of

products that can be included on an invoice).

o Maximum size of fields (e.g., quantity in only two positions in length, making it

impossible to enter an order for over 99 items).

o Disk storage limitations (e.g., you are only permitted to have X customers).

o Performance limitations (e.g., the time to process transactions jumps significantly when

you enter over X transactions).

 Structural testing also relates to file-handling problems. Typical of the types of file problems

that occur are incorrect processing when the last record on file is updated or adding a record

that will become the first record on a file.

 Step 5: Interface-Platform Effects

6 Unedited Version: Software Testing

 Systems tend to fail at interface points—that is, the points at which control is passed
from one processing component to another for example, when data is retrieved from a
database, output reports are printed or transmitted, or a person interrupts processing to
make a correction. These interface points are where most failures will occur. Thus, the
purpose of this task is to identify those interfaces so that they can be tested.

 This is categorized in two- steps as follows.

o Part one is to identify the interfaces within the software systems. These interfaces

should be readily identifiable in the user manual for the software.

o The second part is to determine whether those interfaces could be impacted by the

specific platform on which the software executes. This is a judgmental exercise.

However, if there is a doubt in the tester’s mind, he or she should test this interface

on all of the platforms that might impact the interface.

 At the conclusion of this task the tests that will be needed to validate multiplatform

operations will have been determined. The remaining task will be to execute those tests.

Step 6: Execute the Tests

The platform should be executed in the same manner as other tests are executed in the 11-step

software testing process. The only difference may be that the same test would be performed on

multiple platforms to determine that consistent processing occurs.

15.7 Check Procedures

Prior to completing multiplatform testing a determination should be made that testing was performed correctly.

Work Paper provides a series of questions to challenge correctness of multiplatform testing. A Yes response to

those items indicates that multiplatform testing was performed correctly; a No response indicates that it may or

may not have been done correctly. Each No response should be clarified in the Comments column. The N/A

column is for items that are not applicable to this specific platform test.

15.8 Output

The output from this test process is a report indicating

 Structural components that work or don’t work by platform

 Interfaces that work or don’t work by platform

 Multiplatform operational concerns that have been eliminated or substantiated

 Platforms on which the software should operate, but that have not been tested

 The report will be used to clarify user operation instructions and/or make changes o the software.

15.9 Roadmap

Multiplatform testing is a costly, time –consuming and extensive component of testing. The resources expended

on multiplatform testing can be significantly reduced if that testing focuses on predefined multiplatform

7 Unedited Version: Software Testing

concerns. Identified structural components that might be impacted by the software and interfaces that might be

impacted by multiple platforms should comprise most of the testing. This will focus the testing on what should be

the major risks faced in operating a single software package on many different platforms.

15.10 Summary

This multiplatform testing process is designed to be used in conjunction with the 11- step testing process. It is

essential that the software that is to be tested on multiple platforms be validated as correct prior to

multiplatform testing . Combining software validated testing with multiplatform testing normally will slow the

test process and increase the cost.

15.11 Testing Security

In present environment security is an important strategy of organizations. Security involves various

elements like confidentiality, integrity, authentication, availability and authorization.

 15.12 Introduction

In present environment security is becoming an important strategy of organizations. The features for

physical security have been proven to be effective. However, one of the greatest risks organizations now

face is computer software security. This occurs both internally, through employees, and externally,

through communication lines and Inter complex and costly activity.

Effectiveness of security testing can be improved by focusing on the points where security has the highest

probability of being compromised.

15.13 Objective

The objective of the security baseline is to determine the current level of security. The object of the

penetration-point matrix is to enable organizations to focus security measures on the points of

highest risk.

15.14 Concerns

There are two major security concerns.

 The first is that the security risks will be identified,

 The second is that adequate controls are installed to minimize these risks.

15.15 Workbench

8 Unedited Version: Software Testing

This workbench assumes a team knowledgeable about the information system to be

secured. This team must be knowledgeable about the following:

 Communication network in use

 Individuals having access to those communication networks

 Software systems containing data or processes requiring protection

 Value of information or processes requiring protection

 Processing flow of software systems so that points of data movement can be indentified

 Knowledge of security systems and concepts

 Knowledge of security penetration methods and techniques

The workbench provides five tasks for building and using a penetration point matrix (see Figure 15.1)

the tool that is used n this workbench is the penetration point matrix. The prime purpose of the

matrix is to focus discussion on high-risk points of potential penetration and to assist in determining

which points require the most attention. The tool can be used by project teams , special teams

convened to identify its security, or by quality assurance/ quality control personnel to assess the

adequacy of security systems.

 Fig 15.1 Workbench for testing software system security

15.16 Input

The input to this test process is a team that is knowledgeable about the location/ information

system to be protected. The reliability of the results will be heavily dependent upon the knowledge

of the individuals involved with the location/information system and the specific types of individuals

9 Unedited Version: Software Testing

that are likely to penetrate the system at those points. The technique is simplistic enough that the

team would not require prior training in the use of the test process.

15.17 Do Procedure

This test process involves performing the following five tasks, explained below:

 Task 1: Identify Potential Perpetrators.

In conducting this test process, the team should narrow down the list of potential suspects and

points of possible penetration. The team should make a list of the potential perpetrators. This list

might include:

 Key organizational employees holding positions of trust in the rea of investigation (e.g.,

company officers and managers)

 Computer project personnel

 Computer operators

 Involved third parties (e.g., auditors)

 Contract workers: maintenance personnel for computers, software consultants, or cleaning

personnel

 Anyone (e.g., ex-employees) familiar with the system who might be able to penetrate it over

communications lines or who could have built a Trojan Horse or similar routine into the

supplication system.

 Business customers

 Others

Listed below is the type of description that the team should develop about every potential

perpetrator. Example of data entry operator describes the position in terms of skill, knowledge, and

potential to do harm. Examples of a description of a data entry operator as a potential perpetrator

include:

Function. This employee operates a remote terminal and enters transactions, data, and programs at

the direction of user personnel.

Knowledge. The employee must understand source document content and format; terminal output

content and format; terminal protocol, identification and verification procedures; and other

procedural controls.

Skills. Typing and keyboard operation, manual dexterity for equipment operation, and basic reading

skills are all required.

Access. This operation has access to the terminal area, source documents, terminal output, terminal

output, terminal operation instructions, and identification and verification materials.

Vulnerability. The system is vulnerable to both physical and operational violations by this individual.

The principle area of vulnerability involves the modification, destructions, or disclosure of data

10 Unedited Version: Software Testing

belonging to the individual’s immediate user organization (either internal or external to the system).

Two secondary areas of vulnerability are the destruction or disclosure of the user organization’s

application programs and the physical destruction or taking terminal equipment.

Conclusions. This individual is in a key position relative to the immediate user organization’s data

and programs entering the system and results (i.e., output) exiting the system. Data modification is

more of a threat than program modification because this individual is not apt to understand enough

about the programs to do significant damage. A serious danger is the destruction of data or

programs, particularly when source documents have no backup. Individual operators, however, can

manipulate data and programs only for the application areas that they service.

Task 2: Identify Potential Points of Penetration

Penetration points are points within the computerized business environment at which penetration

could occur. Penetration points are typically the least controlled areas and thus the most vulnerable

to unauthorized manipulation.

The objective of this task is to develop a list of points in application processing at which a reasonable

possibility of penetration exists. Generally, penetration occurs at such points in the system as when

the transaction is originated, entered into a system stored, retrieved, processed, outputted, or used.

In Task 4, the team determines the probability of penetration occurring at these points; at this task,

however, only those points at which the team believes a reasonable opportunity for penetration

exists should be listed.

The following sections describe the areas of greatest vulnerabilities in security the primary locations

of those vulnerabilities, distinctions accidental and intentional losses, and natural forces that

increase system vulnerability.

Functional Vulnerabilities

The eight primary functional vulnerabilities to computer abuse are listed and summarized below in

order of frequency of occurrence.

1. Poor controls over manual handling of input/output data. The greatest vulnerability here

occurs whenever access is most open. Data access is easier when manipulating manual

controls, than when programs must be manipulated to achieve unauthorized access.

Controls that are often absent or weak include separation of data handling and conversion

tasks, dual control of tasks, document counts, batch total checking, audit trails, protective

storage, access restrictions, and labeling.

2. Weak or nonexistent physical access controls. When physical access is the primary

vulnerability, nonemployees have gained access to computer facilities, and employees have

gained access at unauthorized times and in unauthorized areas. Perpetrators’’ motivations

include political, competitive, and financial gain. Financial gain can occur through the

unauthorized selling of computer services, burglary, and larceny. In some cases, a

disgruntled employee is the motivating factor. In the cases reported, some of these

11 Unedited Version: Software Testing

employees had become frustrated with various aspects of automated society. Controls that

were found to be weak with various aspects of automated society. Controls that were found

to be weak or nonexistent involved door access, intrusion alarms, low visibility of access,

identification and establishment of secure perimeters, badge systems, guard and automated

monitoring functions (e.g., closed-circuit television), inspection of transported equipment

and supplies, and staff sensitivity to intrusion. Some of the violations occurred during

nonworking hours when safeguards and staff were not present.

3. Computer and terminal operational procedures. Here, losses have resulted from sabotage,

espionage, sale of services and data extracted from computer systems, unauthorized use of

facilities for personal advantage, and direct financial gain from negotiable instruments in IT

areas. The controls include: separation of operational staff tasks, dual control over sensitive

functions, staff accountability, accounting of resources and services, threat, monitoring, close

supervision of operating staff, sensitivity briefings of staff, documentation of operational

procedures, backup capabilities and resources, and recovery and contingency plans

4. Weaknesses in the business test process. A weakness or breakdown in the business test
process can result in computer abuse perpetrated in the name of a business or government
organization. The principal act is related more to corporate test processes or management
decisions rather than to identifiable unauthorized acts of individuals using computers. These
test processes and decisions result in deception, intimidation, unauthorized use of the
service or products, financial fraud, espionage, and sabotage in competitive Situations.
Controls include review of business test processes by company board of directors or other
senior Level management, audits, and effective regulatory and law enforcement.

5. Weaknesses in the control of computer programs. Programs that are subject to abuse. They
can also be used as tools in the perpetration of abuse and are subject to unauthorized
changes to perpetration of abuse and are subject to unauthorized changes to perpetrate
abusive acts. Controls found lacking include: labelling programs to identify ownership,
formal development methods (including testing and quality assurance), separation of
programming responsibilities in large program developments, dual control over sensitive
parts of programs, accountability of Programmers for the programs they produce, safe
storage of programs and documentation audit Comparison of operational programs with
master copies, formal update and maintenance procedures, and Establishment of program
ownerships.

6. Weaknesses in operating system access and integrity. These abuses involve the use of the

time- sharing Services. Frauds can occur as a result of discovering design weaknesses or by
taking advantage of bugs or Shortcuts introduced by the programmers in the
implementation of operating system, or the unauthorized Exploitation of weaknesses in
operating systems, or the unauthorized exploitation of weaknesses in Operating systems.
Controls to eliminate weaknesses in operating System, imposing sufficient implementation
methods and discipline, proving the integrity of implemented System relative to complete
and consistent specifications, and adopting rigorous maintenance procedures.

7. Poor controls over access through impersonation. Unauthorized access to time-sharing services

through impersonation can most easily be gained by obtaining secret passwords. Perpetrators

learn passwords that are exposed accidentally through carelessness, administrative error, and

12 Unedited Version: Software Testing

conning people into revealing their their passwords, or by guessing obvious combinations of

characters and digits. It is suspected that this type of abuse is so common that few victims

bother to report cases. Control failures include poor administration of passwords, failure to

change passwords periodically, failure of users to protect their passwords, poor choices of

passwords, absence threat monitoring or password-use analysis in time-sharing systems, and

failure to suppress the printing or display of passwords.

8. Weakness in media control. Theft and destruction of magnetic data are acts attributed to

weakness in the control of magnetic media. Many other cases, identified as operational

procedure problems, involved the manipulation or copying of data. Controls found lacking

include limited access to data libraries, safe storage of magnetic media, labeling data,

location, number accounting, controls of degausser equipment, and backup capabilities.

Location of Vulnerabilities

Data and report preparation areas and computer operation facilities with the highest concentration

of manual functions were found to be the most vulnerable locations. Nine primary functional

locations are listed, described, and ranked in Figure 24.2, according to vulnerability. They are also

discussed below in detail.

1. Computer data and report preparation facilities. Vulnerable areas include key-to-disk;

computer job setup; output control and distribution; data collection; and data

transportation. Input and output areas associated with on-line remote terminals are

excluded here.

2. Computer operations. All functional locations concerned with operating computers in the

immediate area or rooms housing central computer systems are included in this category.

Detached areas containing peripheral equipment connected to computers by cable and

computer hardware maintenance areas or offices are included. On-line remote terminals

(connected by telephone circuits to computers) are excluded here.

3. Non-IT areas. Many of these cases involve business decisions in which the primary abusive

act occurs in such non-IT areas as management, marketing, sales, and business offices.

4. Central processors. These functional area within computer systems where acts occur in the

computer operating system (non inducted from terminals).

5. Programming offices. This area includes office areas in which programmers produce and

store program listings and documentation.

6. Magnetic media storage facilities. This area includes data libraries and any storage place

containing usable data.

7. On-line terminal systems. The vulnerable functional areas are within on-line systems where

acts occur by execution of such programmed instructions as are generated by terminal

commands.

8. On-line data preparation output report handling areas. This category is the equivalent of

the computer operations discussed previously, but involves the on-line terminal areas.

Accidental versus Intentional Losses

13 Unedited Version: Software Testing

 Errors and omission generally occur in labour –intensive functions in which people are
involved in detail work. The vulnerabilities occur when detailed, meticulous, and intense
activity requires close concentration. They are Usually manifested in data errors, computer
program errors (bugs), and damage to equipment or supplies. This requires frequent
rerunning of a job, error correction, and replacement and repair of equipment or supplies.

 It is often difficult to distinguish between accidental loss and intentional Loss. In fact, some
reported intentional loss comes from perpetrators discovering and making use of errors that
result in their favour.

 When loss occurs, employees and managers tend to blame the computer hardware first
because this would absolve them from blame, and the problem becomes one for the vendor
to solve. The problem is rarely hardware error, but proof of this is usually required before
the source of the Loss is searched for elsewhere.

 The next most common area of suspicion is the user department or the source of data
generation because, again, the IT department can blame another organization. Blame is
usually next placed on the computer programming staff.

 When all other targets of blame have been exonerated, IT employees will suspect their own
Work. It is not rare to see informal meetings between computer operators, programmers,
maintenance engineers, and users arguing over who should start looking for the cause of a
Loss. The through that the loss was intentional is remote because they generally assume
they function in a benign environment.

Vulnerabilities Caused by Natural Forces

 Computer systems clearly are vulnerable to a wide range of natural as well as manufactured

forces. Computer systems and facilities are fragile, and intruders can use simple method to

engage in malicious mischief, arson, vandalism, sabotage, and extortion with threats of

damage.

 Natural events such as extreme weather and earth movement can also be used by an

intruder to achieve destructive purposes. Most computer centres possess a degaussing

(demagnetizing) device for the purpose of erasing magnetic tapes. It is about the size of a

portable electric hot plate. Degassers should be kept under lock and key or at least located

In a different room or area from the one used to store magnetic tapes.

Task 3: Create a Penetration Point Matrix

To build a penetration point matrix, the vertical and horizontal axis of a matrix is completed. The
vertical axis of the penetration point matrix is the list of potential perpetrators identified in Task 1;
the horizontal axis is the list of points of penetration identified in Task2. The completion of the
penetration point matrix involves two parts.

Part 1: Identify probability of penetration Of each point

The team must examine each point in the matrix. In the penetration point matrix example, the team
would determine the probability of a perpetrator penetrating at point 1. This estimation should be

14 Unedited Version: Software Testing

based on the team’s experience and judgment in this and other similar applications. The probability
should be scored as follows:

3 A high probability of the individual penetrating at this point.

2 An average probability of the individual penetrating at this point.

1 Some probability of the individual penetrating at this point.

0 Minimal or no probability of penetration at this point.

Part 2: Add Vertical and Horizontal

The probability scores should be added both vertically and horizontally. In the penetration point

matrix example, potential penetrator “A” scores 6 points in the perpetrator total column;

penetration point “1” scores a total of 13. All of the rows and columns should be totaled. Although it

is not statistically accurate to add probabilities, the objective of this task is to identify the person and

points with the greatest probability, and experience has shown that this partial violation of statistics

is still a very helpful tool in improving security.

Task 4 will use the information in the matrix to calculate the most probable points of penetration.

Task 4: Identify High-Risk points of Penetration.

The penetration point matrix can be used to identify the point of probable penetration and the most

likely individual to commit that violation. The penetration point is based on the following two

assumptions.

 The individual with the greatest opportunity would commit fraud most frequently.

 The system would be defrauded at its most vulnerable point.

The objective of Task 4 is to select the point or points requiring investigation. In the example, only

one point has been selected, but in the actual process many points can be selected. The method for

selecting points is to identify the highest perpetrator totals and highest point totals. In most

instances, the team would select three to five of the highest perpetrator totals and three to five of

the highest point totals. After the high totals have been circled, the intersections between the

circled totals should be identified.

The team should look for those intersections that have a probability of 3 or 2. The number 3

probabilities are the points with the greatest potential for penetration.

At the end of the task, the team has identified the most probable points for penetration and the

sequence in which they should be investigated or controlled. The sequence starts with the high-

number totals.

Task 5: Execute Security Test

15 Unedited Version: Software Testing

One or all of the following three tests should be executed for the points with the highest probability

of penetration. The three tests that can be performed are as follows:

1. Evaluate the adequacy of security controls at identified points. The objective of this test is

to evaluate whether the security controls in place are adequate to prevent or significantly

deter penetration. The process is one of evaluating the magnitude of the risk and strength of

controls. If the controls are perceived to be stronger than the magnitude of the risk, the

probability of penetration at that point would be significantly reduced. On the other hand, if

the controls appear inadequate the testers could that the identified point is of high risk.

2. Determine if penetration can occur at identified point(s). In this test, the testers actually try

to penetrate the system at the identified point. For example, if it was the payroll system and

the determination was trying to be made whether invalid overtime can be entered into the

payroll system, the testers would attempt to do this. In fact, the testers would attempt to

break security by actually doing it.

3. Determine if penetration has actually occurred at this point. This test would involve

conducting such investigation As to determine whether the system has actually been

penetrated. For example, if improper overtime was the area Of concern and the payroll clerks

were the most likely perpetrators then the testers investigate paid overtime to determine that

it was in fact properly authorized overtime.

15.18 Check procedures

The check procedures for this test process should focus on the completeness and competency of the
team using the penetration point matrix, as well as the completeness of the list of potential
perpetrators and potential points of penetration. The analysis should also be challenged.

15.19 Output

The output from this test process is the penetration point matrix identifying the high risk points of
penetration. If Task 5 performed, the output will expand on the high –risk points identified in the
matrix.

15.20 Guidelines

The penetration point matrix can be used in one of two ways:

1. It can be used to identify the people and the potential points of penetration so that an

information system has been penetrated.

2. It can be used to evaluate / build / improve the system of security to minimize the risk of

penetration at the high –risk points.

15.21 Summary

This test process is designed to help software testers conduct tests on the adequacy of
computer security. The process is built on two premises: First, extensive security testing is

16 Unedited Version: Software Testing

impractical; after all, practical security testing involves focusing on specific points of
vulnerability. Second, software testers are most effective in identifying points of potential
security weakness, but help may be needed in performing the actual security analysis.

15.22 References

 “Effective Methods of Software Testing”, William Perry, John Wiley

15.23 Review question
 What is multiplatform testing? Explain the major concerns in multiplatform testing.

 What are the inputs required for testing a multiplatform environment?

 Define penetration point.

 Discuss the functional vulnerabilities to computer in detail.

 What is location of vulnerabilities to computer in detail.

1 Unedited Version: Software Testing

Chapter 16: Testing a Data Warehouse and Test documentation

Learning objectives:

16.1 Introduction

16.2 Objective

16.3 Concerns

16.4 Workbench

16.5 Input

16.6 Do Procedures

16.7 Check procedures

16.8 Output

16.9 Roadmap

16.10 Summary

16.11 Creating Test Documentation

16.12 Uses

16.13 Effective Methods for Software Testing

16.14 Types

16.15Responsibility

16.16 Storage

16.17 Test Plan Documentation

16.18 Test Analysis Report Documentation

16.19 Summary

16.20 References

16.21 Review questions

2 Unedited Version: Software Testing

16.1 Introduction

A data warehouse is believed to be a central repository of data, made available to users. The

centralized storage of data provides significant processing advantages to users, but at the same time

raises concerns of the security, accessibility, and integrity of data.

This testing process lists the more common concerns associated with the data warehouse concept.

Testing begins by determining the appropriateness of those concerns to the data warehouse process

under test. If appropriate, then the severity of those concerns must be determined. This is achieved

by relating those high-severity concerns to the data warehouse activity controls. If in place and

working, the controls should minimize the concerns.

16.2 Objective

The objective of this test are to determine whether the data warehouse activities have adequately

addressed the concerns associated with the operation of the data warehouse. Those activities

should address installation of the appropriate infrastructure and data controls to ensure that the

concerns do not turn into data warehouse failures.

16.3 Concerns

The following are the concerns most commonly associated with a data warehouse

1. Inadequate assignment of responsibilities. There is inappropriate segregation of duties or

failure to recognize placement of responsibility.

2. Inaccurate or incomplete data in a data warehouse. The integrity of data entered in the data

warehouse is lost due to inadvertent or intentional acts.

3. Losing an update to a single data item. One or more updates to a single data item can be lost

due to inadequate concurrent update procedures.

4. Inadequate audit trail to reconstruct transaction. The use of data by multiple applications

may split the audit trail among those applications and the data warehouse software audit trail.

5. Unauthorized access to data in a data warehouse. The concentration of data may make

sensitive data available to anyone gaining access to data warehouse.

6. Inadequate service to data in a data warehouse. The Contesting for the same resources may

degrade the service to all due to excessive demand or inadequate resources.

7. Placing data in the wrong calendar period. Identifying transactions with the proper calendar

period is more difficult in some on-line data warehouse environments than in others.

8. Failure of data warehouse software to function as specified. Most data warehouse software

is provided by vendors, making the data warehouse administrator dependent on the vendor to

assure the proper functioning of the software.

9. Improper use of data. System that control resources are always subject to misuse and abuse.

10. Lack of skilled independent data warehouse reviewers. Most reviewers not skilled in data

warehouse technology and thus have not evaluated data warehouse installations.

3 Unedited Version: Software Testing

11. Inadequate documentation. Documentation of data warehouse technology is needed to

ensure consistency and use by multiple users.

12. Loss of continuity of processing. Many organizations rely heavily on data warehouse

technology for the performance of their day- to –day processing.

13. Lack of criteria to evaluate. Without established performance criteria, an organization cannot

be assured that it is achieving data warehouse goals.

14. Lack of management support. Without adequate resources and “clout,” the advantages of

data warehouse technology may not be achieved.

16.4 Workbench

The workbench for testing the adequacy of the data warehouse activity is listed. The workbench is a

three-task process that is as follows

(i) Measures the magnitude of the concerns

(ii) Identifies the data warehouse activity processes to test

(iii) Test the adequacy of Data warehouse activity processes.

 Those performing the test must be familiar with the data warehouse activity processes. The end result

of the test is an assessment of the adequacy of those processes to minimize the high-magnitude

concerns.

16.5 Input

Companies implementing the data warehouse activity need to establish processes to mange,

operate, and control that activity. The input to this test process is knowledge of those data

warehouse processes. If the test team does not have that knowledge, they should be supplemented

with an individual(s) possessing a detailed knowledge of the data warehouse activity processes.

16.6 Do Procedures

The three tasks included in this test process are as follows.

 Task 1: Measure the Magnitude of Data Warehouse Concerns

 This task involves two activities.

o The first activity is the confirmation that the 14 data warehouse concerns are

appropriate for the organization under test. The list of concerns can be expanded or

reduced. For example, Concern 1 is inadequate assignment of responsibilities, make

the appropriate change.

o Once the list of potential data warehouse concerns has been finalized, the

magnitude of those concerns must be determined. Work Paper should be used to

rate the magnitude of the data warehouse concerns. If the list of concerns has been

modified, Work paper will also have to be modified.

4 Unedited Version: Software Testing

o To use Work Paper, a team of testers knowledgeable in both testing and the data

warehouse activity should be assembled. For each concern a Work Paper lists

several criteria relating to that concern. The criteria should each be answered with a

Yes or No response. The test team should have a consensus on the response. A Yes

response means that the criterion has been met. Being met means that is both in

place and used. For instance, Concern 1 asks whether a charter has been established

for a data warehouse administration function. A Yes response would mean that the

charter has been established and is in fact in place and used. The Comments column

is available to clarify the Yes and No responses.

o At the conclusion of rating the criteria for each concern, the percent of No responses

should be calculated. For example, in Concern 1 there are seven criteria. If three of

the seven criteria have a No response, then approximately 43 percent would have

received a No response.

o When Work paper has been completed, the results should be posted to second

phase Work paper . The percent of No responses should be posted for each of the

14 concerns. The data warehouse concerns column of Work paper shows the

percent of No responses from 0 to 100 percent.

Task 2: Identify Data warehouse Activity Processes to Test

 Various processes are associated with data warehouse . The more common processes associated

with the data warehouse activity are listed below:

 Organizational Process

 The data warehouse introduces a new function into the company. With the function comes a shifting

of responsibilities. Much of this shifting involves a transfer of responsibilities from the application

system development areas and the user areas to a centralized data warehouse administration

function.

 The introduction of the data warehouse is normally associated with the company of a formal data

warehouse administration group. This group usually reports within the data processing function, and

directly to the data processing manager. The objective of the data warehouse administration

function is to oversee and direct the installation and operation of the data warehouse.

 The data warehouse administration function normally has line responsibilities for data

documentation, system development procedures, and standards for those applications using data

warehouse technology. The data base administrator (DBA) function also has indirect or dotted –line

responsibilities to computer operations and users of data warehouse technology through providing

advice and direction. In addition, the data warehouse administrator should be alert to potential

problems and actively involved in offering solutions.

 The success of data warehouse technology strongly indicate the need for planning. The important

part of this planning is the integration of the data warehouse into the organizational structure. This

integration requires some reorganization within both the data processing and user areas.

5 Unedited Version: Software Testing

Data Documentation Process

 The transition to data warehouse technology involves the switching of information technology

emphasis from processing to data. Many existing system are process driven, while data warehouse

technology involves data –driven systems. This change in emphasis necessitates better data

documentation.

 If multiple users are using the same data, there is a need for easy-to-use and complete

documentation. If there are misunderstandings regarding the data’s content, reliability consistency,

and so on, this will lead to problems in the interpretation and use of data. Clear and distinct

documentation helps reduce this risk.

 Many companies use standardized methods of data documentation. The simplest method is to use

forms and written procedures governing the method of defining data. Sophisticated installations use

data dictionaries. The data dictionary can be used as a standalone automated documentation tool or

can be integrated into the processing environment.

 The data warehouse administrator oversees the use of the data dictionary. This involves determining

what data elements will be documented, the type and extent of documentation requested, and

assurance that the documentation is up to data and in compliance with the documentation quality

standards.

 The documentation requirement for data is a threefold responsibility.

(i) First, individuals must be educated into the type of documentation required and provide that

 documentation.

(ii) Second, the documentation must be maintained to ensure its accuracy and completeness

(iii) Data used in the operating environment must conform to the documentation. If the data in

 operation is different from the documentation specifications, the entire process will crash.

System Development Process

 Data warehouse technology is designed to make system development easier, however, this

occurs only when the application system fits into the existing data hierarchy. If the system

requirements are outside the data warehouse structure, it may be more difficult and costly

to develop that system by using the data warehouse than by using non-data warehouse

methods.

 The method to ensure that the applications effectively use data warehouse technology is to

have data warehouse administration personnel involved in the development process.

 The data warehouse is a continually changing grouping of data. Part of the data warehouse

involvement in system development is to adjust and modify the structure continually to

meet the changing needs of application systems. Thus, the development process for the

data warehouse is twofold: first, to ensure that the applications effectively use the data

warehouse; and second, to establish new data warehouse directions in order to keep the

data warehouse in step with application needs.

6 Unedited Version: Software Testing

The system development process in the data warehouse technology has the following three

objectives:

1. To familiarize the system’s development people with the resources and capabilities available

for their use

2. To ensure that the proposed application system can be integrated into the existing data

warehouse structure, and if not, to modify the application and/or the data warehouse

structure

3. To ensure that application processing will preserve the consistency, reliability, and integrity

of data in the data warehouse

Access Control Process

 One of the major concerns to management about the data warehouse is the ready

accessibility of information. As more data is placed into a single repository, than repository

becomes more valuable to perpetrators. The access control function has two primary

purposes.

o The first is to identify the resources requiring control and determine who should be

authorized access to those resources.

o The second is to define and enforce the control specifications identified in the

previous responsibility in the operating environment.

 The access control function can be performed by the data warehouse administration

function or an independent security officer. An independent function is stronger than the

same function that administers the data warehouse. The method selected will be dependent

on the value of the information in the data warehouse and the size of the company. The

more valuable the data, or the larger the company, the more likely it is that the function will

be implemented through an independent security officer.

 The enforcement of the security profile for the data warehouse in on-line systems is

performed by security software. Some data warehouse management systems have security

features incorporated in the data warehouse software, while others need to supplement by

security packages. Many of the major hardware vendors, such as IBM, provide security

software. However, there are several independent vendors providing general-purpose

security software that interfaces with many data warehouse software systems.

 The access control function has the additional responsibility of monitoring the effectiveness

of security. Detecting and investigating access violations are important aspects of data

warehouse access control. First, unless the access control procedures are monitored,

violators will not be detected; and second, if violators are not reprimanded or prosecuted,

there will be little incentive for other involved parties to comply with access control rules.

 Data Integrity Process

7 Unedited Version: Software Testing

 The integrity of the contents of the data warehouse is the joint responsibility of the users

and the data warehouse administrator. The data warehouse administrator is concerned

more about the integrity of the structure and the physical records, while the users are

concerned about the contents or values contained in the data warehouse.

 The integrity of the file is primarily the responsibility of the user. The data processing

department has a responsibility to use the correct version of the file and to add those

features that protect the physical integrity of the records on the file. However, the ultimate

responsibility for the integrity resides with the user, and the application systems need to be

constructed to ensure that integrity. This is usually accomplished by accumulating the values

in one or more control fields and developing an independent control total which can be

checked each time the file is used.

 In a data warehouse environment, the traditional integrity responsibilities change. No longer

does a single user have control over all the uses of data in a data warehouse. For example,

several different application systems may be able to add, delete, or modify any single data

element in the data warehouse. In an airline reservation system, any authorized agent can

commit or delete a reserved seat for a flight. On the other hand, the data warehouse

administrator doesn’t have control over the uses of the data in the data warehouse. This

means that the data integrity must be assured through new procedures.

The data integrity process may involve many different groups within the company. These groups,

such as various users and the data warehouse administration function, will share parts of this data

integrity responsibility. In fulfilling data integrity responsibility, the following tasks need to be

performed.

1. Identify the method of ensuring the completeness of the physical records in the data

warehouse.

2. Determine the method of ensuring the completeness of the logical structure of the data

warehouse (i.e., schema).

3. Determine which users have responsibility for the integrity of which segments of the data

warehouse.

4. Develop methods to enable those users to perform their data integrity responsibilities.

5. Determine at what times the integrity of the data warehouse will be verified, and assure

there is adequate backup data between the periods of proven data integrity.

Operation Process

The evolution of data warehouse operations is from the data warehouse administration function to

specialized operations is from the data warehouse administration function to specialized operations

personnel and then to regular computer operators.

Operating data warehouse technology present the following challenges to computer operators:

 Monitoring space allocation to ensure minimal disruptions due to space management

problems.

8 Unedited Version: Software Testing

 Understanding and using data warehouse software operating procedures and messages.

 Monitoring services levels to ensure adequate resources for users.

 Maintaining operating statistics so that the data warehouse performance can be monitored.

 Reorganizing the data warehouse as necessary (usually under the direction of the data

warehouse administrator) to improve performance and add capabilities where necessary.

 Backup/Recovery Process

One of the most technically complex aspects of data processing is recovering a crashed data

warehouse. This procedure involves the following four major challenges:

1. Identifying that the integrity of the data warehouse has been lost.

2. Notifying users that the data warehouse is inoperable and providing them with alternate

processing means. (Note: These means should be predetermined and may be manual.)

3. Ensuring and having ready adequate backup data.

4. Performing those procedures necessary to recover the integrity of the data ware house.

During business days data warehouses are operational around the clock and some, seven days a week. It is

not uncommon for many thousands of transactions to occur in a single day. Unless the recovery operations

are well planned, it may take many hours or even days to recover the integrity of the data warehouse. The

Complexity and planning that must go into data warehouse, contingency planning cannot be

overemphasized.

The responsibility for data warehouse recovery is that of computer operations

One of the problems encountered is notifying users that the data warehouse is no longer
operational. In larger companies, there may be many users, even hundreds of users, connected to a
single data warehouse. It may take longer to notify the users that the data warehouse is not
operational than it will take to get the data warehouse back on-line. The group involved in the
recovery may not have adequate resources to inform all of the users. Some of the alternate
Procedures include:

 Messages to terminals if facilities to transmit are available

 User call-in to a recorded message indicating the data warehouse is down

 Education of users to desired service expectations, and procedures established if those
expectation are not met

The back/ recovery process begins with determining what operations must be recovered and in what

time frame. This provides the recovery specifications. From these specifications, the procedures are

developed and implemented to meet the recovery expectations. Much of the process involves

collecting and storing backup data Backup data is defined rather than for day-to -day operational

purposes. One type of data needed for recovery of the major files is the data warehouse software log.

This provides sequencing and content of data warehouse transactions.

9 Unedited Version: Software Testing

Task 3: Test the Adequacy of Data Warehouse Activity Processes

This task is to evaluate that each of the seven identified processes contains controls that are adequate to
reduce the concerns identified earlier in this chapter. A control is any means used to reduce the probability
of a failure occurring the determination of whether the individual applications enter, store, and use the
correct data will be performed using the 11-step Process.

16.7 Check procedures

Work Paper is a quality control checklist for this step. It is designed so that yes responses indicate good test
practices; No responses warrant additional investigation. A comments column is provided to explain No
responses and to record results of investigation. The N/A response is used when the checklist item is not
applicable to the test situation.

16.8 Output

The output from this data warehouse test process is an assessment of the adequacy of the data warehouse
activity processes to assure the activity is effectively operated. The assessment report should indicate the
concerns that the test team addressed, the processes in place in the data warehouse activity, and the
adequacy of those processes to ensure that the concerns do not result in data warehouse failures.

16.9 Roadmap

The testing of the data warehouse activity as proposed in this chapter is one of risk assessments. It is not
designed to ensure that the data warehouse will function properly for each use, but rather to appraise
management of the probability that failure will be minimized or that additional management action should
be taken to minimize those concerns. The actual determination of the correct processing of the warehouse
should be done in conjunction with the application software that uses the data warehouse.

16.10 Summary

The test process presented in this chapter is designed to assist testers in evaluating the work processes

associated with a data warehouse activity. It is designed to be used in conjunction with the test of

application software that uses the data warehouse. The actual processing of data from the data warehouse

should be tested using the 11-step process included in the chapter, however, unless adequate control

procedures are in place and working, the testers cannot rely on results of the one application software test

to be applicable to other data warehouse applications. If the data warehouse activity processes are

adequate to address the concerns, the testers can assume that the result s of testing one application will be

similar to testing other applications using the data warehouse. On the other hand, if the processes do not

adequately minimize the probability of failure in the data warehouse, more extensive testing may be

required of all the individual applications using the data warehouse.

10 Unedited Version: Software Testing

16.11 Creating Test Documentation

This chapter provides guidance on preparing test documentation for the major test

documents and on using that documentation. Documentation of the test process records

both the tests to be performed and the results of those tests. Computer testing is too

complex not to formalize the process. Documentation is an integral part of the formalization

of testing. Test documentation is important for conducting the test and for the reuse of the

test program during maintenance. Test documentation should be continually updated.

Testing should be covered by the same documentation standards as are other types of

system documentation. The more structured the documentation, the easier it is to update

and reuse. This chapter provides the recommended documentation for the test plan and the

report explaining the analysis of the test. Recommended tables of contents for both types of

test documentation are presented together with an explanation of each component of the

table of contents.

16.12 Uses

The test documentation should be an integral part of the documentation of application

systems. Information services documentation standards should specify the type and extent

of test documentation to be prepared and maintained. The type and extent of

documentation needed will depend on its usefulness. Test documentation should

commence in the requirements phase and continue through the life of the project. The test

process that has been outlined in each phase of the life cycle should be documented.

The uses of that documentation include:

16.13 Effective Methods for Software Testing

 Verify correctness of requirements. Test documentation defines test conditions to
verify the correctness of the requirements. An evaluation of those test conditions by
the project team is frequently helpful in clarifying the intent of user requirements.

 Improve user understanding of information services. Involving users in the test
process provides them with an appreciation of the complexity and detail required to
develop and operate an automated application. As users prepare test
documentation, they develop an appreciation for the systems development process.

 Improve user understanding of application systems. If the users can prepare test
conditions, and document those conditions, they will gain an understanding of the
application system in the process. It is impossible to create the test conditions and
produce the expected results from those conditions without understanding in detail

11 Unedited Version: Software Testing

how the application system works. This also helps the users clarify what they want
from the system.

 Justify test resources. Documenting the test plan specifies the tasks that need to be
performed in the test process. The same documentation can be used to identify the
resources needed for testing, and thus justify the use of those resources. If an
effective test plan is developed, and resources are not made available for testing, it
will be known in advance.

 Determine test risk. The completeness of the test plan, and the allocation of
resources to accomplish that plan, will provide the user with an understanding of
what testing can and cannot do. Understanding the test risk will help the user either
prepare for potential problems or authorize additional test resources.

 Create test transactions. The documentation should become the basis for creating
the transactions that will test the application system. The documentation can include
the test transactions on a character-by-character basis, or explain the information
needed to test the identified conditions.

 Evaluate test results. The documentation should contain the expected results from
each test transaction. This analysis may be manual or the results may be converted to
machine-readable media and the verification process automated.

 Retest the system. The test plan and selected test conditions provide the basis for
retesting the application throughout the maintenance phase.

 Analyze the effectiveness of the test. Documenting the test results provides a basis
for analysis of the soundness of the application system and to substantiate that
opinion to concerned parties.

16.14 Types

1. Test plan. The plan for the testing of the application system, including detailed
specifications, descriptions, and procedures for all tests, and test data reduction and
evaluation criteria.

2. Test analysis documentation. Documentation that covers the test analysis results
and findings; presents the demonstrated capabilities and deficiencies for review; and
provides a basis for preparing a statement of the application system readiness for
implementation.

The documentation may be manual or automated. Generally, automating the
documentation increases its usefulness. It is particularly valuable to have test transactions
and the expected results of those transactions on a machine that can read the specific data.

12 Unedited Version: Software Testing

Experience has shown that documentation on machine-readable media is updated more
frequently and more effectively than manually written documentation.

16.15 Responsibility

The responsibility for the preparation of test documentation will depend on the group
assigned test responsibility. For example, if the project team is responsible for testing, they
should prepare and maintain the test documentation; if an independent test team is
established, they should be assigned that responsibility. Test documentation is prepared over
an extended period of time. Numerous parties will be involved in this process, as of the life
cycle. These parties include information services personnel, users, and professional testers.
Each of these will contribute to the test documentation, but one individual or group should
be assigned responsibility for that documentation. The recommended approach to testing an
application system is the establishment of a test team. This team should be given
responsibility for testing throughout the life cycle and during maintenance. When such a
team is established, the team should have responsibility for maintenance of the test
documentation.

16.16 Storage

The test documentation is a part of the systems documentation; therefore, it should be
stored with the system documentation. However, it should be clearly identified as test
documentation and not intermixed with the other documentation. It is recommended that
documentation be stored by type. The test plan documentation should be stored in one
container, and the results in another. Each should include a table of contents outlining each
piece of information in the documentation and where that information is located.

16.17 Test Plan Documentation

The test plan outlines the process to be followed in testing the application system. It includes
the plan, the specifications for the test and how those tests will be evaluated, plus the
description of the test themselves. The information in the test plan may be minimal during
the requirements phase, but will continue to grow throughout the developmental life cycle.

A recommended table of contents for the test plan documentation is illustrated. The table of
contents divides the documentation into four sections: Each section is individually described
below.

 Section 1: General Information

1. Summary. This item summarizes the functions of the application system and the tests
to be performed.

2. Environment and Pre-test Background. This item summarizes the history of the

project. It is used to identify the user organization and the computer center where
the testing will be performed. It also describes any prior testing and notes results

13 Unedited Version: Software Testing

that may affect this testing. This pretest background is particularly helpful in later
phases of the life cycle.

3. References. References that are helpful in preparing for the test or conducting the

test should be listed, such as:

a. Project request (authorization)
b. Previously published documents on the project (project deliverables)
c. Documentation concerning related projects
d. Testing policies, standards, and procedures
e. Books and articles describing test processes, techniques, and tools

4. Schedule. Shows the detailed schedule of dates and events for the testing at this

location. Such events may include familiarization, training, data, as well as the
volume and frequency of the input.

5. Requirements. States the resource requirements, including:

a. Equipment. Show the expected period of use, types, and quantities of the
equipment needed.

b. Software. List other software that will be needed to support the testing that is
not part of the software to be tested.

c. Personnel. List the numbers and skill types of personnel that are expected to
be available during the test from both the user and development groups.
Include any special requirements such as multisite operation or key
personnel.

6. Testing Materials. List the materials needed for the test, such as:

a. Documentation
b. Software to be tested and its medium
c. Test inputs and sample outputs
d. Test control software and work papers

7. Test Training. Describe or reference the plan for providing training in the use of the

software being tested. Specify the types of training, personnel to be trained, and the
training staff.

8. Testing (Identify Location). Describe the plan for the second and subsequent

locations where the application system will be tested in a manner similar to
paragraph

 Section 2: Plan

1. Software Description. At a minimum, this section should contain the flow-chart of
the application system and a brief description of the inputs, outputs, and functions of
the application system that are being tested. This description will provide a frame of

14 Unedited Version: Software Testing

reference for the test conditions. It is frequently advisable to cross-reference to
application system documentation that provides this type of information.

2. Milestones. Identifies the milestone events, where they will occur, and the dates on

which the milestones should be achieved. Responsibility for accomplishing the
milestone events may also be listed.

3. Testing (Identify Location). This section identifies the participating organizations in

the test process and the locations where the software will be tested. This section will
be repeated for each test that will be performed during the testing of the application
system. A generalized test plan may be prepared for systems maintenance, rather
than providing a different section for each appropriate test.

 Section 3: Specifications and Evaluation

1. Specifications. This section describes the test conditions to be evaluated during the test
process. Test matrices are an effective means of documenting test specifications. At a
minimum, the test specification documentation should include:

o Requirements. List the functional requirements established by earlier
documentation.

o Software Functions. List the detailed application functions to be exercised during the

overall test. Consider including a test matrix in this section.

o Test/Function Relationships. List the tests to be performed on the software and relate
them to the functions in paragraph

o Test Progression. Describe the manner in which progression is made from one test to

another so that the entire test cycle is completed.

2. Methods and Constraints. This section should outline the test process. Organizations that
have a well-established test structure, standards, guidelines, and procedures may only need
minimal documentation for this section. Where well-established test standards exist, one of
the main objectives of this section will be to identify standards that are not applicable to the
testing of this application system. The information that can be included in this section is:

o Methodology. Describe the general method or strategy of the testing.

o Conditions. Specify the type of input to be used, such as live or test data, as well as
the volume and frequency of the input.

o Extent. Indicate the extent of the testing, such as total or partial Include any rationale

for partial testing.

15 Unedited Version: Software Testing

o Data Recording. Discuss the method to be used for recording the test results and
other information about the testing.

o Constraints. Indicate anticipated limitations on the test due to test conditions, such

as interfaces, equipment’s, personnel, databases.

3. Evaluation. Explain the process that will be used to evaluate the test results. If the test
verifies that the application conforms to the criteria described in this section of the test plan,
the application should be considered ready to be
placed in a production status, and the test process complete. Specifically, this section should
include:

o Criteria. Describe the rules to be used to evaluate test results such as range of data
values used, combinations of input types used, maximum number of allowable
interrupts or halts.

o Data Reduction. Describe the technique to be used for manipulating the test data

into a form suitable for evaluation, such as manual or automated methods, to allow
comparison of the results that should be produced to those that are produced.

Section 4: Test Descriptions

1. Test (Identify). This section describes the test to be performed accordingly described the
location and administrative aspects of each test to be conducted. A corresponding section
for each test will describe in detail the test to be performed. These sections may be very
lengthy, and some of the information may be included on computer media. At a minimum
this section should include:

o Control. Describe the test control, such as manual, semiautomatic, or automatic
insertion of inputs, sequencing of operations, and recording of results.

o Inputs. Describe the input data expected as a result of the test and any intermediate

messages that may be produced.

o Outputs. Describe the output data expected as a result of the test and any
intermediate messages that may be produced.

o Procedures. Specify the step-by-step procedures to accomplish the test include test

set-up, initialization, steps, and termination.

2. Test (Identify). Describe the second and subsequent tests in a manner similar to that used
in previous paragraph

16.18 Test Analysis Report Documentation

16 Unedited Version: Software Testing

The test analysis report documents the results of the test. It serves the dual purposes of
recording the results for analysis, and a means to report those analyses to involved parties.
The information contained in this document can be used to evaluate the effectiveness of the
department's test process. An analysis of the results of the testing of multiple applications
will indicate which processes are effective and which are not. This information can be used
to modify and approve the test methods used by information services organizations.

 The proposed table of contents contains four sections described below:

Section 1: General Information

This is an overview of the application being tested and the test process. The information that
could be included in this section is:

 Summary. Summarize both the general function of the application system tested and
the test analysis performed on the results of those tests.

 Environment. Identify the application, developer, user organization, and the
computer centre where the software is to be installed. Asses the manner in which
the test environment may be different from the operational environment and the
effects of this difference on the tests.

 List applicable references, such as:
a. Project request (authorization)
b. Previously published documents on the project
c. Documentation concerning related projects

Section 2: Test Results and Findings

This section should identify and present the results and findings of each test separately as
described in paragraph. The results of subsequent test would be identified in future sections
following the same format as outlined in previous paragraph

1. Test (Identify). For each test performed one or both of the following analyses should be
included:

 Dynamic Data Performance. Compare the dynamic data input and out- put results,
including the output of internally generated data, of this test with the dynamic data
input and output requirements. State the findings.

 Static Data Performance. Compare the static data input and output results, including
the output of internally generated data, of this test with the static data input and
output requirements. State the findings.

17 Unedited Version: Software Testing

2. Test (Identify). Present the results and findings of the second and succeeding test in a
manner similar to that of paragraph

Section 3: Software function findings

This section identifies and describes the findings of each function identified for test
purposes. Each finding should be described individually using the format outlined in
paragraph.
1. Function (Identify)

 Performance. Describe briefly the function. Describe the software capabilities that
were designed to satisfy this function. State the findings as to the demonstrated
capabilities from one or more tests.

 Limits. Describe the range of data values tested, including both dynamic and static
data. Identify the deficiencies, limitations, and constraints detected in the software
during the testing with respect to this function.

2. Function (Identify). Present the findings on the second and succeeding functions in a
manner similar to that of paragraph mentioned above.

Section 4: Analysis Summary

This section summarizes the results of conducting the test. At a minimum it should include:

 Capabilities. Describe the capabilities of the application system as demonstrated by
the tests. Where tests were to demonstrate fulfilment of one or specific performance
requirements, prepare findings showing the comparison of the results with these
requirements. Assess the effects of any differences in the test environment as
compared to those the operational environment may have had on this test
demonstration of capabilities.

 Deficiencies. Describe the deficiencies of the application system as demonstrated by
the tests. Describe the impact of each deficiency on the performance of the
application. Describe the cumulative or overall impact on performance of all
detected deficiencies.

 Recommendations and Estimates. For each deficiency provide any estimates of time
and effort required for its correction and any recommendations concerning:

a. The urgency of each correction
b. Parties responsible for corrections
c. Hoe the corrections should be made

 Opinion. State the readiness for implementation of the application to be placed into
production or to proceed to the next phase of the SDLC.

18 Unedited Version: Software Testing

16.19 Summary

Test documentation is needed for three purposes:

1. To record the planning and results of testing
2. To use when the software is changed and will be retested
3. As evidence in any lawsuit challenging the adequacy of software testing

16.20 References
 “Effective Methods of Software Testing”, William Perry, John Wiley

16.21 Review questions

 Describe the concerns associated with datawarehouse.

 Discuss the common processes associated with data warehouse.

 What are the challenges datawarehouse technology poses to computer operators?

 Write the uses of documentation.

 What is documentation? Explain different types of test documentation.

 Write a short note on test plan documentation

	chapter_1_new.pdf
	Chapter_2_ new
	Chapter_3_new
	chapter new4
	chapter new5
	chapter new6
	chapter new7
	chapter new8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter_14_new
	Chapter_15_new
	Chapter_16_new

