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Chapter 1 

Introduction to Fuzzy Logic 

1.1 Fuzzy Logic: The word fuzzy means uncertainty. Any particular event which 

do not result any of the exact value (i.e. true or false) is fuzzy. Fuzzy Logic was 

introduced in 1965 by Lofti A. In other words, we can say that fuzzy logic is not 

logic that is fuzzy, but logic that is used to describe fuzziness. There can be 

numerous other examples like this with the help of which we can understand the 

concept of fuzzy logic. 

The notion central to fuzzy systems is that truth values (in fuzzy logic) or 

membership values (in fuzzy sets) are indicated by a value on the range [0.0, 1.0], 

with 0.0 representing absolute Falseness and 1.0 representing absolute Truth. For 

example, let us take the statement: 

     "Rama is old." 

If Rama’s age was 75, we might assign the statement the truth value of 0.80. The 

statement could be translated into set terminology as follows: 

     "Rama is a member of the set of old people." 

This statement would be rendered symbolically with fuzzy sets as: 

mOLD(Rama) = 0.80 

where m is the membership function, operating in this case on the fuzzy set of old 

people, which returns a value between 0.0 and 1.0. 

 

A set is an unordered collection of different elements. It can be written explicitly by 

listing its elements using the set bracket. If the order of the elements is changed or any 

element of a set is repeated, it does not make any changes in the set. 

Example 

 A set of all positive integers. 

 A set of all the planets in the solar system. 

 A set of all the states in India. 

 A set of all the lowercase letters of the alphabet. 

1.2 Differences between Fuzzy Logic and Neural Networks 

Fuzzy logic allows making definite decisions based on imprecise or ambiguous data, whereas 
ANN tries to incorporate human thinking process to solve problems without mathematically 

modelling them. Even though both of these methods can be used to solve nonlinear problems, 

and problems that are not properly specified, they are not related. In contrast to Fuzzy logic, 
ANN tries to apply the thinking process in the human brain to solve problems. Further, ANN 

includes a learning process that involves learning algorithms and requires training data whereas 
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fuzzy logic includes development of membership functions and rules to relate them. Fuzzy 

logic basically deals with fixed and approximate (not exact) reasoning and the variables 

in fuzzy logic can take values from 0 to 1, this is contradicting to the traditional binary 

sets which takes value either 1 or 0 and since it can take any values in the range 0 to 1, 

it means that it is partially true and it is widely used for applications in control systems. 

Neural network on the other hand is based on biological neural network which is made 

up of artificial neurons interconnecting one another working in unison to produce 

outputs and it adapts to system with the data given to it by making adjustments to the 

synaptic connections that exist between the neurons. 

Fuzzy logic makes decision based on the raw and ambigous data given to it whereas 

Neural network tries to learn from the data, incorporating the same way involved in the 

biological neural network. Both of these system are used to solve non-linear and 

complex problems and are no where related to each other. 

1.3 Applications of Fuzzy System: 

Aerospace 

In aerospace, fuzzy logic is used in the following areas − 

 Altitude control of spacecraft 

 Satellite altitude control 

 Flow and mixture regulation in aircraft deicing vehicles 

Automotive 

In automotive, fuzzy logic is used in the following areas − 

 Trainable fuzzy systems for idle speed control 

 Shift scheduling method for automatic transmission 
 Intelligent highway systems 

 Traffic control 

 Improving efficiency of automatic transmissions 

Business 

In business, fuzzy logic is used in the following areas − 

 Decision-making support systems 

 Personnel evaluation in a large company 

Defense 

In defense, fuzzy logic is used in the following areas − 
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 Underwater target recognition 
 Automatic target recognition of thermal infrared images 

 Naval decision support aids 

 Control of a hypervelocity interceptor 

 Fuzzy set modeling of NATO decision making 

Electronics 

In electronics, fuzzy logic is used in the following areas − 

 Control of automatic exposure in video cameras 

 Humidity in a clean room 
 Air conditioning systems 

 Washing machine timing 

 Microwave ovens 

 Vacuum cleaners 

Finance 

In the finance field, fuzzy logic is used in the following areas − 

 Banknote transfer control 

 Fund management 

 Stock market predictions 

Industrial Sector 

In industrial, fuzzy logic is used in following areas − 

 Cement kiln controls heat exchanger control 
 Activated sludge wastewater treatment process control 

 Water purification plant control 

 Quantitative pattern analysis for industrial quality assurance 

 Control of constraint satisfaction problems in structural design 

 Control of water purification plants 

Manufacturing 

In the manufacturing industry, fuzzy logic is used in following areas − 

 Optimization of cheese production 

 Optimization of milk production 

Marine 

In the marine field, fuzzy logic is used in the following areas − 
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 Autopilot for ships 
 Optimal route selection 

 Control of autonomous underwater vehicles 

 Ship steering 

Medical 

In the medical field, fuzzy logic is used in the following areas − 

 Medical diagnostic support system 

 Control of arterial pressure during anesthesia 

 Multivariable control of anesthesia 
 Modeling of neuropathological findings in Alzheimer's patients 

 Radiology diagnoses 

 Fuzzy inference diagnosis of diabetes and prostate cancer 

Securities 

In securities, fuzzy logic is used in following areas − 

 Decision systems for securities trading 

 Various security appliances 

Transportation 

In transportation, fuzzy logic is used in the following areas − 

 Automatic underground train operation 

 Train schedule control 

 Railway acceleration 

 Braking and stopping 

Pattern Recognition and Classification 

In Pattern Recognition and Classification, fuzzy logic is used in the following areas − 

 Fuzzy logic based speech recognition 

 Fuzzy logic based 
 Handwriting recognition 

 Fuzzy logic based facial characteristic analysis 

 Command analysis 

 Fuzzy image search 

Psychology 

In Psychology, fuzzy logic is used in following areas − 
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 Fuzzy logic based analysis of human behavior 

 Criminal investigation and prevention based on fuzzy logic reasoning 

 

A set is an unordered collection of different elements. It can be written explicitly by 

listing its elements using the set bracket. If the order of the elements is changed or any 

element of a set is repeated, it does not make any changes in the set. 

Example 

 A set of all positive integers. 

 A set of all the planets in the solar system. 

 A set of all the states in India. 

 A set of all the lowercase letters of the alphabet. 

1.4 Historical Evolution Fuzzy Set: 

 

 Human Reasoning was dominated for centuries by the fundamental “Laws of Thought” 

(Korner, 1967), introduced by Aristotle (384-322 BC) and the philosophers that 

preceded him, which include:  

• The principle of identity  

• The law of the excluded middle  

• The law of contradiction  

In particular, the second of the above laws, stating that every proposition has to be 

either “True” or “False”, was the basis for the genesis of the Aristotle’s bi-valued Logic. 

The precision of the traditional mathematics owes undoubtedly a large part of its 

success to this Logic. 

However, even when Parmenides proposed, around 400 BC, the first version of the law 

of the excluded middle, there were strong and immediate objections. For example, 

Heraclitus opposed that things could be simultaneously true and not true, whereas the 

Buddha Sidhartha Gautama, who lived in India a century earlier, had already indicated 

that almost every notion contains elements from its opposite one. The ancient Greek 

philosopher Plato (427-377 BC) laid the foundation of what it was later called FL by 

claiming that there exists a third area beyond “True” and “False”, where these two 

opposite notions can exist together. More modern philosophers like Hegel, Marx, 

Engels and others adopted and further cultivated the above Plato’s belief.  

The Polish philosopher Jan Lukasiewicz (1878-1956) was the first to propose a 

systematic alternative of the bi-valued logic introducing in the early 1900’s a three 

valued logic by adding the term “Possible” between “True” and “False” (Lejewski, 

1967). Eventually he developed an entire notation and axiomatic system from which he 

hoped to derive modern mathematics. Later he also proposed four and five valued 



 

6 Unedited Version: Neural Network and Fuzzy System 

 

Logics and he finally arrived to the conclusion that axiomatically nothing could prevent 

the derivation of an infinite valued Logic.  

But it was not until relatively recently that an infinite-valued Logic was introduced 

(Zadeh, 1973), called FL, because it is based on the notion of FS initiated in 1965 

(Zadeh, 1965) by Lotfi (2018), Professor at the University of Berkeley, California. An 

important goal of FL is that through it algorithmic procedures can be devised which 

translate the “fuzzy” terminology into numerical values, perform reliable operations 

upon those values and then return natural language statements in a reliable manner.  

Zadeh (1921–2017) (Wikipedia, retrieved from the Web on February, 2012) was born in 

Baku, Azerbaijan of USSR, to a Russian Jewish mother (FanyaKoriman), who was a 

pediatrician, and an Iranian Azeri father (Rahim Aleskerzade), who was a journalist on 

assignment from Iran. 

At the age of 10, when Stalin introduced collectivization of farms in USSR, the Zadeh 

family moved to Iran. In 1942 Zadeh graduated from the University of Tehran with a 

degree in electrical engineering and moved to the USA in 1944. He received a MS from 

MIT in 1946 and a Ph.D. in electrical engineering from Columbia University in 1949. 

He taught for ten years in Columbia, promoted to a Full Professor in 1957, before 

moving to Berkeley in 1959. Among others he introduced jointly with J.R. Ragazzini in 

1962 the pioneering z-transform method used today in the digital analysis (Brule, 2016) 

whereas his more recent works include computing with words and perceptions (Zadeh, 

1984;2005a) and an outline towards a generalized theory of uncertainty (Zadeh, 2005b). 

It has been estimated that Zadeh, who died in Berkeley on 6 September 2017, aged 96, 

counted in 2011 more than 950 000 citations by other researchers!  

As it was expected, the far-reaching theory of fuzzy systems aroused some objections to 

the scientific community. While there have been generic complaints about the fuzziness 

of assigning values to linguistic terms, the most cogent criticisms come from Haak 

(1979). She argued that there are only two areas – the nature of Truth and Falsity and 

the fuzzy systems’ utility – in which FL could be possibly needed, and then maintained 

that in both cases it can be shown that FL is unnecessary.  

Fox (1981) responded to her objections indicating that FL is useful in three areas: To 

handle real-world relationships which are inherently fuzzy, to calculate the frequently 

existing in real world situations fuzzy data and to describe the operation of some 

inferential systems which are inherently fuzzy. His most powerful arguments were that 

traditional and FL need not be seen as competitive, but as complementary and that FL, 

despite the objections of classical logicians, has found its way into practical applications 

and has proved very successful there. 

1.5 The concept of Fuzzy Set 

Real life situations appear frequently where some definitions have not clear boundaries, 

like “the young people of a city”, “the good players of a team”, “the diligent students of 
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a class”, etc. The need to model mathematically such kind of situations was one of the 

main reasons that laid to the development of the FS theory.  

Let U be the set of the discourse. Then, according to Zadeh (1965), a fuzzy subset Α of 

U (or for brevity a FS in U) can be defined with the help of its membership function  

mA: U [0,1], which assigns to each element x of U a real value mΑ(Fox) in [0, 1], called 

the membership degree of x in Α. The closer is mΑ(Fox) to 1, the more x satisfies the 

characteristic property of Α. Then one defines Α as a set of ordered pairs of the form: A 

= {(x, mA(x)) :x€U 

Many authors, for reasons of simplicity, identify the FS Α with its membership function 

mA. A FS can be also denoted in the form of a symbolic sum, or a symbolic power 

series, or a symbolic integral, when U is a finite or numerable set or it has the power of 

the continuous respectively. For general facts on FS and the uncertainty connected to 

them we refer to the book of Klir and Folger (1988).  

Example 1: The young human ages  

Let U be the set of the non negative integers not exceeding 140 (considered as the upper 

bound of human life) representing the human ages. The set of all ages not exceeding a 

given integer in U, e.g. 20, is a crisp subset of U. On the contrary the set A of the young 

human ages, being not precisely defined, is a FS in U. The membership function of A 

can be defined by  

 

 
 

Therefore, the age of a recently born baby has membership degree mA(0) = 1, the age of 

25 years has membership degree: 

MA (25) = ( 1 + 12)-1 = 0.5 , etc. 

Mathematical Representation of a Set 

Sets can be represented in two ways − 

Roster or Tabular Form 

In this form, a set is represented by listing all the elements comprising it. The elements 

are enclosed within braces and separated by commas. 

Following are the examples of set in Roster or Tabular Form − 

 Set of vowels in English alphabet, A = {a,e,i,o,u} 

 Set of odd numbers less than 10, B = {1,3,5,7,9} 
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Set Builder Notation 

In this form, the set is defined by specifying a property that elements of the set have in 

common. The set is described as A = {x:p(x)} 

Example 1 − The set {a,e,i,o,u} is written as 

A = {x:x is a vowel in English alphabet} 

Example 2 − The set {1,3,5,7,9} is written as 

B = {x:1 ≤ x < 10 and (x%2) ≠ 0} 

If an element x is a member of any set S, it is denoted by x∈S and if an element y is not 

a member of set S, it is denoted by y∉S. 

Example − If S = {1,1.2,1.7,2},1 ∈ S but 1.5 ∉ S 

Cardinality of a Set 

Cardinality of a set S, denoted by |S||S|, is the number of elements of the set. The 

number is also referred as the cardinal number. If a set has an infinite number of 

elements, its cardinality is ∞∞. 

Example − |{1,4,3,5}| = 4,|{1,2,3,4,5,…}| = ∞ 

If there are two sets X and Y, |X| = |Y| denotes two sets X and Y having same 

cardinality. It occurs when the number of elements in X is exactly equal to the number 

of elements in Y. In this case, there exists a bijective function ‘f’ from X to Y. 

|X| ≤ |Y| denotes that set X’s cardinality is less than or equal to set Y’s cardinality. It 

occurs when the number of elements in X is less than or equal to that of Y. Here, there 

exists an injective function ‘f’ from X to Y. 

|X| < |Y| denotes that set X’s cardinality is less than set Y’s cardinality. It occurs when 

the number of elements in X is less than that of Y. Here, the function ‘f’ from X to Y is 

injective function but not bijective. 

If |X| ≤ |Y| and |X| ≤ |Y| then |X| = |Y|. The sets X and Y are commonly referred as 

equivalent sets. 

Types of Sets 

Sets can be classified into many types; some of which are finite, infinite, subset, 

universal, proper, singleton set, etc. 
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Finite Set 

A set which contains a definite number of elements is called a finite set. 

Example − S = {x|x∈ N and 70 > x > 50} 

Infinite Set 

A set which contains infinite number of elements is called an infinite set. 

Example − S = {x|x∈ N and x > 10} 

Subset 

A set X is a subset of set Y (Written as X ⊆ Y) if every element of X is an element of 

set Y. 

Example 1 − Let, X = {1,2,3,4,5,6} and Y = {1,2}. Here set Y is a subset of set X as all 

the elements of set Y is in set X. Hence, we can write Y⊆X. 

Example 2 − Let, X = {1,2,3} and Y = {1,2,3}. Here set Y is a subset (not a proper 

subset) of set X as all the elements of set Y is in set X. Hence, we can write Y⊆X. 

Proper Subset 

The term “proper subset” can be defined as “subset of but not equal to”. A Set X is a 

proper subset of set Y (Written as X ⊂ Y) if every element of X is an element of set Y 

and |X| < |Y|. 

Example − Let, X = {1,2,3,4,5,6} and Y = {1,2}. Here set Y ⊂ X, since all elements in 

Y are contained in X too and X has at least one element which is more than set Y. 

Universal Set 

It is a collection of all elements in a particular context or application. All the sets in that 

context or application are essentially subsets of this universal set. Universal sets are 

represented as U. 

Example − We may define U as the set of all animals on earth. In this case, a set of all 

mammals is a subset of U, a set of all fishes is a subset of U, a set of all insects is a 

subset of U, and so on. 
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Empty Set or Null Set 

An empty set contains no elements. It is denoted by Φ. As the number of elements in an 

empty set is finite, empty set is a finite set. The cardinality of empty set or null set is 

zero. 

Example – S = {x|x∈ N and 7 < x < 8} = Φ 

Singleton Set or Unit Set 

A Singleton set or Unit set contains only one element. A singleton set is denoted by {s}. 

Example − S = {x|x∈ N, 7 < x < 9} = {8} 

Equal Set 

If two sets contain the same elements, they are said to be equal. 

Example − If A = {1,2,6} and B = {6,1,2}, they are equal as every element of set A is 

an element of set B and every element of set B is an element of set A. 

Equivalent Set 

If the cardinalities of two sets are same, they are called equivalent sets. 

Example − If A = {1,2,6} and B = {16,17,22}, they are equivalent as cardinality of A is 

equal to the cardinality of B. i.e. |A| = |B| = 3 

Overlapping Set 

Two sets that have at least one common element are called overlapping sets. In case of 

overlapping sets − 

n(A∪B)=n(A)+n(B)−n(A∩B) 

n(A∪B)=n(A−B)+n(B−A)+n(A∩B) 

n(A)=n(A−B)+n(A∩B) 

n(B)=n(B−A)+n(A∩B) 

Example − Let, A = {1,2,6} and B = {6,12,42}. There is a common element ‘6’, hence 

these sets are overlapping sets. 
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Disjoint Set 

Two sets A and B are called disjoint sets if they do not have even one element in 

common. Therefore, disjoint sets have the following properties − 

n(A∩B)=ϕ 

n(A∪B)=n(A)+n(B) 

Example − Let, A = {1,2,6} and B = {7,9,14}, there is not a single common element, 

hence these sets are overlapping sets. 

Operations on Classical Sets 

Set Operations include Set Union, Set Intersection, Set Difference, Complement of Set, 

and Cartesian Product. 

Union 

The union of sets A and B (denoted by A∪ BA ∪ B) is the set of elements which are in 

A, in B, or in both A and B. Hence, A ∪ B = {x|x∈ A OR x ∈ B}. 

Example − If A = {10,11,12,13} and B = {13,14,15}, then A ∪ B = 

{10,11,12,13,14,15} – The common element occurs only once. 

 

Intersection 

The intersection of sets A and B (denoted by A ∩ B) is the set of elements which are in 

both A and B. Hence, A ∩ B = {x|x∈ A AND x ∈ B}. 
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Difference/ Relative Complement 

The set difference of sets A and B (denoted by A–B) is the set of elements which are 

only in A but not in B. Hence, A − B = {x|x∈ A AND x ∉ B}. 

Example − If A = {10,11,12,13} and B = {13,14,15}, then (A − B) = {10,11,12} and 

(B − A) = {14,15}. Here, we can see (A − B) ≠ (B − A) 

 

Complement of a Set 

The complement of a set A (denoted by A′) is the set of elements which are not in set A. 

Hence, A′ = {x|x∉ A}. 

More specifically, A′ = (U−A) where U is a universal set which contains all objects. 

Example − If A = {x|x belongs to set of add integers} then A′ = {y|y does not belong to 

set of odd integers} 

 

Cartesian Product / Cross Product 

The Cartesian product of n number of sets A1,A2,…An denoted as A1 × A2...× An can 

be defined as all possible ordered pairs (x1,x2,…xn) where x1 ∈ A1,x2 ∈ A2,…xn∈ An 

Example − If we take two sets A = {a,b} and B = {1,2}, 

The Cartesian product of A and B is written as − A × B = {(a,1),(a,2),(b,1),(b,2)} 
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And, the Cartesian product of B and A is written as − B × A = {(1,a),(1,b),(2,a),(2,b)} 

Properties of Classical Sets 

Properties on sets play an important role for obtaining the solution. Following are the 

different properties of classical sets − 

Commutative Property 

Having two sets A and B, this property states − 

A∪B=B∪A 

A∩B=B∩A 

Associative Property 

Having three sets A, B and C, this property states − 

A∪(B∪C)=(A∪B)∪C 

A∩(B∩C)=(A∩B)∩C 

Distributive Property 

Having three sets A, B and C, this property states − 

A∪(B∩C)=(A∪B)∩(A∪C) 

A∩(B∪C)=(A∩B)∪(A∩C) 

Idempotency Property 

For any set A, this property states − 

A∪A=A 

A∩A=A 

Identity Property 

For set A and universal set X, this property states − 

A∪φ=A 

A∩X=A 
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A∩φ=φ 

A∪X=X 

Transitive Property 

Having three sets A, B and C, the property states − 

If A⊆B⊆C 

, then A⊆C 

De Morgan’s Law 

It is a very important law and supports in proving tautologies and contradiction. This 

law states − 

𝐴 ∩ 𝐵=A∪B 

A∪B=A∩B 

 

Exercise: 

1. What is Fuzzy System? Give Example for the same. 

2. Explain the concept of fuzziness with suitable example. 

3. State the applications of fuzzy sets. 

4. What is fuzzy set/ 

5. Give comparison between fuzzy system and neural networks. 

6. Give the historical evolution of fuzzy system. 
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Chapter 2 

Fuzzy Sets 

 

Introduction: 

Fuzzy logic starts with and builds on a set of user-supplied human language rules. The 

fuzzy systems convert these rules to their mathematical equivalents. This simplifies the 

job of the system designer and the computer, and results in much more accurate 

representations of the way systems behave in the real world. 

Additional benefits of fuzzy logic include its simplicity and its flexibility. Fuzzy logic 

can handle problems with imprecise and incomplete data, and it can model nonlinear 

functions of arbitrary complexity. "If you don't have a good plant model, or if the 

system is changing, then fuzzy will produce a better solution than conventional control 

techniques," says Bob Varley, a Senior Systems Engineer at Harris Corp., an aerospace 

company in Palm Bay, Florida. 

You can create a fuzzy system to match any set of input-output data. The Fuzzy Logic 

Toolbox makes this particularly easy by supplying adaptive techniques such as adaptive 

neuro-fuzzy inference systems (ANFIS) and fuzzy subtractive clustering.  

Fuzzy logic models, called fuzzy inference systems, consist of a number of conditional 

"if-then" rules. For the designer who understands the system, these rules are easy to 

write, and as many rules as necessary can be supplied to describe the system adequately 

(although typically only a moderate number of rules are needed).  

In fuzzy logic, unlike standard conditional logic, the truth of any statement is a matter 

of degree. (How cold is it? How high should we set the heat?) We are familiar with 

inference rules of the form p -> q (p implies q). With fuzzy logic, it's possible to say 

(.5* p ) -> (.5 * q). For example, for the rule if (weather is cold) then (heat is on), both 

variables, cold and on, map to ranges of values. Fuzzy inference systems rely on 

membership functions to explain to the computer how to calculate the correct value 

between 0 and 1. The degree to which any fuzzy statement is true is denoted by a value 

between 0 and 1. 

Not only do the rule-based approach and flexible membership function scheme make 

fuzzy systems straightforward to create, but they also simplify the design of systems 

and ensure that you can easily update and maintain the system over time.  

 

Fuzzy Set Theory was formalised by Professor LoftiZadeh at the University of 

California in 1965. What Zadeh proposed is very much a paradigm shift that first gained 
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acceptance in the Far East and its successful application has ensured its adoption around 

the world.  

A paradigm is a set of rules and regulations which defines boundaries and tells us what 

to do to be successful in solving problems within these boundaries. For example the use 

of transistors instead of vacuum tubes is a paradigm shift - likewise the development of 

Fuzzy Set Theory from conventional bivalent set theory is a paradigm shift.  

Bivalent Set Theory can be somewhat limiting if we wish to describe a 'humanistic' 

problem mathematically. For example, Fig 1 below illustrates bivalent sets to 

characterise the temperature of a room.  

 
 

 

The most obvious limiting feature of bivalent sets that can be seen clearly from the 

diagram is that they are mutually exclusive - it is not possible to have membership of 

more than one set (opinion would widely vary as to whether 50 degrees Fahrenheit is 

'cold' or 'cool' hence the expert knowledge we need to define our system is 

mathematically at odds with the humanistic world). Clearly, it is not accurate to define a 

transition from a quantity such as 'warm' to 'hot' by the application of one degree 

Fahrenheit of heat. In the real world a smooth (unnoticeable) drift from warm to hot 

would occur. 

This natural phenomenon can be described more accurately by Fuzzy Set Theory. Fig.2 

below shows how fuzzy sets quantifying the same information can describe this natural 

drift. 
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Fuzzy Logic is a problem-solving control system methodology that lends itself to 

implementation in systems ranging from simple, small, embedded micro-controllers to 

large, networked, multi-channel PC or workstation-based data acquisition and control 

systems. It can be implemented in hardware, software, or a combination of both. FL 

provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, 

imprecise, noisy, or missing input information. FL's approach to control problems. 

FL requires some numerical parameters in order to operate such as what is considered 

significant error and significant rate-of-change-of-error, but exact values of these 

numbers are usually not critical unless very responsive performance is required in 

which case empirical tuning would determine them. For example, a simple temperature 

control system could use a single temperature feedback sensor whose data is subtracted 

from the command signal to compute "error" and then time-differentiated to yield the 

error slope or rate-of-change-of-error, hereafter called "error-dot". 

2.1 History of Fuzzy Logic 

Although, the concept of fuzzy logic had been studied since the 1920's. The term fuzzy 

logic was first used with 1965 by LotfiZadeh a professor of UC Berkeley in California. 

He observed that conventional computer logic was not capable of manipulating data 

representing subjective or unclear human ideas.  

Fuzzy logic has been applied to various fields, from control theory to AI. It was 

designed to allow the computer to determine the distinctions among data which is 

neither true nor false. Something similar to the process of human reasoning. Like Little 

dark, Some brightness, etc.  
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2.2 Characteristics of Fuzzy Logic 

Here, are some important characteristics of fuzzy logic:  

 Flexible and easy to implement machine learning technique  

 Helps you to mimic the logic of human thought  
 Logic may have two values which represent two possible solutions  

 Highly suitable method for uncertain or approximate reasoning  

 Fuzzy logic views inference as a process of propagating elastic constraints  

 Fuzzy logic allows you to build nonlinear functions of arbitrary complexity.  

 Fuzzy logic should be built with the complete guidance of experts  

However, fuzzy logic is never a cure for all. Therefore, it is equally important to 

understand that where we should not use fuzzy logic.  

Here, are certain situations when you better not use Fuzzy Logic:  

 If you don't find it convenient to map an input space to an output space 

 Fuzzy logic should not be used when you can use common sense  

 Many controllers can do the fine job without the use of fuzzy logic  

2.3 Fuzzy Logic Architecture 

 

Fuzzy Logic architecture has four main parts as shown in the diagram:  

Rule Base:  

It contains all the rules and the if-then conditions offered by the experts to control the 

decision-making system. The recent update in fuzzy theory provides various methods 

for the design and tuning of fuzzy controllers. This updates significantly reduce the 

number of the fuzzy set of rules.  

Fuzzification:  
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Fuzzification step helps to convert inputs. It allows you to convert, crisp numbers into 

fuzzy sets. Crisp inputs measured by sensors and passed into the control system for 

further processing. Like Room temperature, pressure, etc.  

Inference Engine:  

It helps you to determines the degree of match between fuzzy input and the rules. Based 

on the % match, it determines which rules need implment according to the given input 

field. After this, the applied rules are combined to develop the control actions.  

Defuzzification:  

At last the Defuzzification process is performed to convert the fuzzy sets into a crisp 

value. There are many types of techniques available, so you need to select it which is 

best suited when it is used with an expert system.  

Fuzzy Logic vs. Probability  

Fuzzy Logic Probability  

Fuzzy: Tom's degree of membership within the 

set of old people is 0.90.  

Probability: There is a 90% chance that Tom is 

old.  

Fuzzy logic takes truth degrees as a 

mathematical basis on the model of the 

vagueness phenomenon.  

Probability is a mathematical model of 

ignorance.  

Crisp vs. Fuzzy 

Crisp Fuzzy 

It has strict boundary T or F  Fuzzy boundary with a degree of membership  

Some crisp time set can be fuzzy  It can't be crisp  

True/False {0,1}  Membership values on [0,1]  

In Crisp logic law of Excluded Middle and 

Non- Contradiction may or may not hold  

In the fuzzy logic law of Excluded Middle and 

Non- Contradiction hold  

Classical Set vs. Fuzzy set Theory  

Classical Set Fuzzy Set Theory  

Classes of objects with sharp boundaries.  
Classes of objects do not have sharp 

boundaries.  

A classical set is defined by crisp boundaries, 

i.e., there is clarity about the location of the set 

A fuzzy set always has ambiguous boundaries, 

i.e., there may be uncertainty about the location 
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boundaries.  of the set boundaries.  

Widely used in digital system design  Used only in fuzzy controllers.  

Fuzzy Logic Examples  

See the below-given diagram. It shows that in fuzzy systems, the values are denoted by 

a 0 to 1 number. In this example, 1.0 means absolute truth and 0.0 means absolute 

falseness.  

 

2.4 Application Areas of Fuzzy Logic 

The Blow given table shows how famous companies using fuzzy logic in their products.  

Product Company Fuzzy Logic  

Anti-lock 

brakes  
Nissan  

Use fuzzy logic to controls brakes in hazardous cases 

depend on car speed, acceleration, wheel speed, and 

acceleration  

Auto 

transmission  
NOK/Nissan  

Fuzzy logic is used to control the fuel injection and 

ignition based on throttle setting, cooling water 

temperature, RPM, etc.  

Auto engine  Honda, Nissan  
Use to select geat based on engine load, driving style, 

and road conditions.  

Copy machine  Canon  Using for adjusting drum voltage based on picture 

https://www.guru99.com/images/1/110218_0659_FuzzyLogicT2.png
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density, humidity, and temperature.  

Cruise control  
Nissan, Isuzu, 

Mitsubishi  

Use it to adjusts throttle setting to set car speed and 

acceleration  

Dishwasher  Matsushita  

Use for adjusting the cleaning cycle, rinse and wash 

strategies based depend upon the number of dishes and 

the amount of food served on the dishes.  

Elevator control  
Fujitec, Mitsubishi 

Electric, Toshiba  

Use it to reduce waiting for time-based on passenger 

traffic  

Golf diagnostic 

system  
Maruman Golf  Selects golf club based on golfer's swing and physique.  

Fitness 

management  
Omron  

Fuzzy rules implied by them to check the fitness of their 

employees.  

Kiln control  Nippon Steel  Mixes cement  

Microwave 

oven  

Mitsubishi 

Chemical  
Sets lunes power and cooking strategy  

Palmtop 

computer  

Hitachi, Sharp, 

Sanyo, Toshiba  
Recognizes handwritten Kanji characters  

Plasma etching  Mitsubishi Electric  Sets etch time and strategy  

2.4.1 Advantages of Fuzzy Logic System 

 The structure of Fuzzy Logic Systems is easy and understandable 
 Fuzzy logic is widely used for commercial and practical purposes 

 It helps you to control machines and consumer products 

 It may not offer accurate reasoning, but the only acceptable reasoning 
 It helps you to deal with the uncertainty in engineering 

 Mostly robust as no precise inputs required 

 It can be programmed to in the situation when feedback sensor stops working 

 It can easily be modified to improve or alter system performance 
 inexpensive sensors can be used which helps you to keep the overall system cost and 

complexity low  

 It provides a most effective solution to complex issues  

2.4.2 Disadvantages of Fuzzy Logic Systems 

 Fuzzy logic is not always accurate, so The results are perceived based on assumption, 

so it may not be widely accepted.  

 Fuzzy systems don't have the capability of machine learning as-well-as neural network 
type pattern recognition 
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 Validation and Verification of a fuzzy knowledge-based system needs extensive testing 
with hardware 

 Setting exact, fuzzy rules and, membership functions is a difficult task  

 Some fuzzy time logic is confused with probability theory and the terms 

2.5 Features of Membership Functions 

We will now discuss the different features of Membership Functions. 

Core 

For any fuzzy set A˜, the core of a membership function is that region of universe that 

is characterize by full membership in the set. Hence, core consists of all those elements 

yof the universe of information such that, 

μA˜(y)=1 

Support 

For any fuzzy set A˜, the support of a membership function is the region of universe 

that is characterize by a nonzero membership in the set. Hence core consists of all those 

elements yof the universe of information such that, 

μA˜(y)>0 

Boundary 

For any fuzzy set A˜, the boundary of a membership function is the region of universe 

that is characterized by a nonzero but incomplete membership in the set. Hence, core 

consists of all those elements yof the universe of information such that, 

1>μA˜(y)>0 
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2.5.1 Fuzzification 

It may be defined as the process of transforming a crisp set to a fuzzy set or a fuzzy set 

to fuzzier set. Basically, this operation translates accurate crisp input values into 

linguistic variables. 

Following are the two important methods of fuzzification − 

Support Fuzzification(s-fuzzification) Method 

In this method, the fuzzified set can be expressed with the help of the following relation  

A˜=μ1Q(x1)+μ2Q(x2)+...+μnQ(xn) 

Here the fuzzy set Q(xi)is called as kernel of fuzzification. This method isimplemented 

by keeping μi constant and xi being transformed to a fuzzy set Q(xi). 

Grade Fuzzification (g-fuzzification) Method 

It is quite similar to the above method but the main difference is that it kept xiconstant 

and μiis expressed as a fuzzy set. 

2.5.2 Defuzzification 

It may be defined as the process of reducing a fuzzy set into a crisp set or to convert a 

fuzzy member into a crisp member. 

We have already studied that the fuzzification process involves conversion from crisp 

quantities to fuzzy quantities. In a number of engineering applications, it is necessary to 

defuzzify the result or rather “fuzzy result” so that it must be converted to crisp result. 

Mathematically, the process of Defuzzification is also called “rounding it off”. 

The different methods of Defuzzification are described below − 

Max-Membership Method 

This method is limited to peak output functions and also known as height method. 

Mathematically it can be represented as follows − 

μA˜(x∗)>μA˜(x)forallx∈X 

Here, x∗is the defuzzified output. 
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Centroid Method 

This method is also known as the center of area or the center of gravity method. 

Mathematically, the defuzzified output x∗will be represented as − 

x∗=∫μA˜(x).xdx∫μA˜(x).dx 

Weighted Average Method 

In this method, each membership function is weighted by its maximum membership 

value. Mathematically, the defuzzified output x∗ 

will be represented as − 

x∗=∑μA˜(xi).xi∑μA˜(xi) 

Mean-Max Membership 

This method is also known as the middle of the maxima. Mathematically, the 

defuzzified output x∗ 

will be represented as − 

x∗=∑i=1nxin 

 

2.6 Operations on Fuzzy Sets 

Having two fuzzy sets A˜ and B˜, the universe of information U and an element 𝑦 of 

the universe, the following relations express the union, intersection and complement 

operation on fuzzy sets. 

Union/Fuzzy ‘OR’ 

Let us consider the following representation to understand how the Union/Fuzzy ‘OR’ 

relation works − 

μA˜∪B˜(y)=μA˜∨μB˜∀y∈U 

Here ∨ represents the ‘max’ operation. 
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Intersection/Fuzzy ‘AND’ 

Let us consider the following representation to understand how the Intersection/Fuzzy 

‘AND’ relation works − 

μA˜∩B˜(y)=μA˜∧μB˜∀y∈U 

Here ∧ represents the ‘min’ operation. 

 

Complement/Fuzzy ‘NOT’ 

Let us consider the following representation to understand how the Complement/Fuzzy 

‘NOT’ relation works − 

μA˜=1−μA˜(y).y∈U 
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Definition. (support) Let A be a fuzzy subset ofX; the support of A, denoted supp(A), is 

the crispsubset of X whose elements all have nonzero membership grades in A. 

supp(A) = {x ∈X|A(x) >0}. 

 

Definition. (normal fuzzy set) A fuzzy subset A ofa classical set X is called normal if 

there exists anx ∈X such that A(x) = 1. Otherwise A is subnormal. 

Definition. (α-cut) An α-level set of a fuzzy setA of X is a non-fuzzy set denoted by 

[A]α and isdefined by 

[A]α= {
 {t ∈ X|A(t)  ≥ α} if α > 0

cl(suppA) if α =  0
 

 

wherecl(suppA) denotes the closure of the supportof A. 
 

Definition. (convex fuzzy set) A fuzzy set A of X iscalled convex if [A]α is a convex 

subset of X ∀α ∈[0, 1].Anα-cut of a triangular fuzzy number. 

 

In many situations people are only able to characterize numeric information 

imprecisely. For example, people use terms such as, about 5000, near zero, or 

essentially bigger than 5000. These are examples of what are called fuzzy numbers. 

Using the theory of fuzzy subsets we can represent these fuzzy numbers as fuzzy 

subsets of the set of real numbers. 

 

Definition. (fuzzy number) A fuzzy number A is afuzzy set of the real line with a normal, 

(fuzzy) convex and continuous membership function of bounded support. The family of 

fuzzy numbers will be denoted by F. 
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Definition. (quasi fuzzy number) A quasi fuzzy numberA is a fuzzy set of the real line 

with a normal,fuzzy convex and continuous membership functionsatisfying the limit 

conditions 

 
 
Let A be a fuzzy number. Then [A]γ is a closedconvex (compact) subset of R for all γ 

∈[0, 1]. Let us introduce the notations a1(γ) = min[A]γ, a2(γ) = max[A]γ 

In other words, a1(γ) denotes the left-hand side anda2(γ) denotes the right-hand side of 

the γ-cut. It iseasy to see that Ifα ≤β then [A]α⊃[A]β 

 

Furthermore, the left-hand side functiona1: [0, 1] →Ris monoton increasing and lower 

semi-continuous,and the right-hand side functiona2: [0, 1] →Ris monoton decreasing 

and upper semi-continuous. 

 

We shall use the notation[A]γ = [a1(γ), a2(γ)].The support of A is the open interval 

(a1(0), a2(0)). 

 

 
 

If A is not a fuzzy number then there exists a γ ∈ [0, 1] such that [A]γ is not a convex 

subset of R. 

Definition. (Triangular fuzzy number) A fuzzy set A is called triangular fuzzy number 

with peak (or center) a, left width α > 0 and right width β > 0 if its membership function 

has the following form 
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and we use the notation A = (a, α, β). It can easily be verified that  

[A]γ = [a − (1 − γ)α, a + (1 − γ)β], ∀γ ∈ [0, 1]. The support of A is (a − α, b + β). 

A triangular fuzzy number with center a may be seen as a fuzzy quantity “x is 

approximately equal to a”. 

 

Definition .(trapezoidal fuzzy number) A fuzzy set A is called trapezoidal fuzzy number 

with tolerance interval [a, b], left width α and right width β if its membership function 

has the following form 

 
 

 
 

and we use the notation A = (a, b, α, β). It can easily be shown that 

[A]γ = [a −(1 −γ)α, b + (1 −γ)β], ∀γ ∈[0, 1]. The support of A is (a −α, b + β). 

A trapezoidal fuzzy number may be seen as a fuzzy quantity ”x is approximately in the 

interval [a, b]”. 

 

Definition. (subsethood) Let A and B are fuzzy subsets of a classical set X. We say that 

A is a subset of B if A(t) ≤ B(t), ∀t ∈ X. 
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Operations on fuzzy sets 

We extend the classical set theoretic operations from ordinary set theory to fuzzy sets. 

We note that all those operations which are extensions of crisp concepts reduce to 

theirusual meaning when the fuzzy subsets have membership degrees that are drawn 

from{0,1}. For this reason, when extending operations to fuzzy sets we use the same 

symbol as in set theory. Let A and B are fuzzy subsets of a nonempty (crisp) set X. 

Definition. (intersection) The intersection of A and B is defined as 

(A∩ B)(t) = min{A(t),B(t)} = A(t) ∧B(t), for all t ∈X. 

 

 

 
 

Intersection of two triangular fuzzy numbers. 

 

Definition. (union) The union of A and B is definedasv(A ∪B)(t) = max{A(t),B(t)} = A(t) 

∨B(t),for all t ∈X. 

 

 

 
Union of two triangular fuzzy numbers. 

 

Definition. (complement) The complement of afuzzy set A is defined as 

 

(￢A)(t) = 1 − A(t) 
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A closely related pair of properties which hold inordinary set theory are the law of 

excluded middleA∨￢A = Xand the law of non-contradiction principle 

A ∧￢A = ∅.  It is clear that ￢1X = ∅and ￢∅= 1X, however, thelaws of excluded 

middle and non-contradiction arenot satisfied in fuzzy logic. 

 

2.7 FUZZY LOGIC OBJECTIONS 
It would be remarkable if a theory as far-reaching as fuzzy systems did not arouse some 

objections in the professional community. While there have been generic complaints about the 

"fuzziness" of the process of assigning values to linguistic terms, perhaps the most cogent 

criticisms come from Haack . A formal logician, Haack argues that there are only two areas in 

which fuzzy logic could possibly be demonstrated to be "needed," and then maintains that in 

each case it can be shown that fuzzy logic is not necessary.  

The first area Haack defines is that of the nature of Truth and Falsity: if it could be 

shown, she maintains, that these are fuzzy values and not discrete ones, then a need for 

fuzzy logic would have been demonstrated. The other area she identifies is that of fuzzy 

systems' utility: if it could be demonstrated that generalizing classic logic to encompass 

fuzzy logic would aid in calculations of a given sort, then again a need for fuzzy logic 

would exist.  

In regards to the first statement, Haack argues that True and False are discrete terms. 

For example, "The sky is blue" is either true or false; any fuzziness to the statement 

arises from an imprecise definition of terms, not out of the nature of Truth. As far as 

fuzzy systems' utility is concerned, she maintains that no area of data manipulation is 

made easier through the introduction of fuzzy calculus; if anything, she says, the 

calculations become more complex. Therefore, she asserts, fuzzy logic is unnecessary.  

Fox has responded to her objections, indicating that there are three areas in which fuzzy 

logic can be of benefit: as a "requisite" apparatus (to describe real-world relationships 

which are inherently fuzzy); as a "prescriptive" apparatus (because some data is fuzzy, 

and therefore requires a fuzzy calculus); and as a "descriptive" apparatus (because some 

inferencing systems are inherently fuzzy).  

His most powerful arguments come, however, from the notion that fuzzy and classic 

logics need not be seen as competitive, but complementary. He argues that many of 

Haack's objections stem from a lack of semantic clarity, and that ultimately fuzzy 

statements may be translatable into phrases which classical logicians would find 

palatable.  

 

 

Exercise: 

1. Explain in brief about fuzzy logic. 

2. Discuss the history of fuzzy system. 
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3. Explain fuzzy operations with suitable example. 

4. What is subsethood? Explain in brief with suitable example. 

5. Explain trapezoidal and union operation. 

6. Explain intersection and triangular operations. 

7. Explain in brief quasi fuzzy number. 
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Chapter 3 

Fuzzy Relations and Implications 

3.1 Crisp and Fuzzy Relation 

A fuzzy relation generalizes these degrees to membership grades. So, a crisp relation is a 

restricted case of a fuzzy relation. 

Crisp relation: 

  + degrees or strengths of relation 

   Fuzzy relation 

。Cartesian product : 

1{( , , ) | , }
n

i n i i n
i N

X x x x X i N

       

{1,2, , }nN n   

。n-ary relation:  a subset of 
n

i
i N

X

  

i.e.,
1 2 1 2( , , , )

              |                               |

n nR X X X X X X      
 

a set      the universal set 

Characteristic function: 

1 1

1 1

1 if ( , , )
( , , )

0 otherwise

n

R n

x x x R
x x x

 
  


 

。Binary, Ternary, Quaternary, Quinary, n-ary 

Relations 

Definition of Relation 

A relation among crisp sets X1,...,Xn is a subset of X1 × ... × Xn denoted as R(X1,...,Xn) or R(Xi 

| 1 ≤ i ≤ n). So, the relation R(X1,...,Xn) ⊆ X1 × ... ×Xn is set, too. The basic concept of sets can 

be also applied to relations: • containment, subset, union, intersection, complement Each crisp 
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relation can be defined by its characteristic function R(x1,...,xn) =(1, if and only if (x1,...,xn) ∈ R, 

0, otherwise. 

The membership of (x1,...,xn) in R signifies that the elements of (x1,...,xn) are related to 

each other. 

Relation as Ordered Set of Tuples 

A relation can be written as a set of ordered tuples. Thus R(X1,...,Xn) represents n-dim. 

membership array R = [ri1,...,in]. • Each element of i1 of R corresponds to exactly one member 

of X1. • Each element of i2 of R corresponds to exactly one member of X2. • And so on... 

If (x1,...,xn) ∈ X1 × ... ×Xn corresponds to ri1,...,in ∈ R, then ri1,...,in =(1, if and only if 

(x1,...,xn) ∈ R, 0, otherwise. 

Fuzzy Relations 

The characteristic function of a crisp relation can be generalized to allow tuples to have 

degrees of membership. • Recall the generalization of the characteristic function of a crisp set! 

Then a fuzzy relation is a fuzzy set defined on tuples (x1,...,xn) that may have varying 

degrees of membership within the relation. The membership grade indicates strength of the 

present relation between elements of the tuple. The fuzzy relation can also be represented by 

an n-dimensional membership array. 

Cartesian Product of Fuzzy Sets: n Dimensions 

Let n ≥ 2 fuzzy sets A1,...,An be defined in the universes of discourse X1,...,Xn, respectively. 

The Cartesian product of A1,...,An denoted by A1 × ... × An is a fuzzy relation in the product 

space X1 × ... × Xn. It is defined by its membership function 

µA1×...×An(x1,...,xn) = ⊤(µA1(x1),...,µAn(xn)) 

whereas xi ∈ Xi, 1 ≤i≤ n. Usually ⊤ is the minimum (sometimes also the product). 

Cartesian Product of Fuzzy Sets: 2 Dimensions 

A special case of the Cartesian product is when n = 2. Then the Cartesian product of fuzzy 

sets A∈ F(X) and B ∈ F(Y) is a fuzzy relation A × B ∈ F(X × Y) defined by 

µA×B(x,y) = ⊤[µA(x), µB(y)], ∀x ∈ X, ∀y ∈ Y. 

 

Subsequences 

Consider the Cartesian product of all sets in the family 

X = {Xi | i∈INn = {1,2,...,n}}. 
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For each sequence (n-tuple) x = (x1,...,xn) ∈×i∈INnXi and each sequence (r-tuple, r ≤ n) y = 

(y1,...,yr) ∈×j∈JXj where J ⊆INn and |J| = r y is called subsequence of x if and only if yj = xj, ∀j 

∈ J. y ≺ x denotes that y is subsequence of x. 

 

Projection 

Given a relation R(x1,...,xn). Let [R ↓ Y] denote the projection of R on Y. It disregards all sets 

in X except those in the family 

Y = {Xj | j ∈ J ⊆INn}. 

Then [R ↓ Y] is a fuzzy relation whose membership function is defined on the Cartesian 

product of the sets in Y 

[R ↓ Y](y) = max x≻y 

R(x). 

Under special circumstances, this projection can be generalized by replacing the max 

operator by another t-conorm. 

 

Cylindric Extension 

Another operation on relations is called cylindric extension. Let X and Y denote the same 

families of sets as used for projection. Let R be a relation defined on Cartesian product of sets 

in family Y. Let [R ↑ X \ Y] denote the cylindric extension of R into sets X1, (i∈INn) which are in 

X but not in Y. It follows that for each x with x ≻ y 

[R ↑ X \ Y](x) = R(y). 

The cylindric extension • produces largest fuzzy relation that is compatible with projection, • is 

the least specific of all relations compatible with projection, • guarantees that no information 

not included in projection is used to determine extended relation. 

Example 

Consider again the example for the projection. The membership functions of the cylindric 

extensions of all projections are already shown in the table under the assumption that their 

arguments are extended to (x1,x2,x3) e.g. 

[R23 ↑ {X1}](0,0,2) = [R23 ↑ {X1}](1,0,2) = R23(0,2) = 0.2. 

In this example none of the cylindric extensions are equal to the original fuzzy relation. This is 

identical with the respective projections. Some information was lost when the given relation 

was replaced by any one of its projections. 
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Cylindric Closure 

Relations that can be reconstructed from one of their projections by cylindric extension exist. 

However, they are rather rare. It is more common that relation can be exactly reconstructed • 

from several of its projections (max), • by taking set intersection of their cylindric extensions 

(min). The resulting relation is usually called cylindric closure. Let the set of projections {Pi | i∈ 

I} of a relation on X be given. Then the cylindric closure cyl{Pi} is defined for each x ∈ X as 

cyl{Pi}(x) = min i∈I [Pi ↑ X \ Yi](x). 

Yi denotes the family of sets on which Pi is defined. 

Example 

Consider again the example for the projection. The cylindric closures of three families of the 

projections are shown below: 

 

Motivation and Domain 

Binary relations are significant among n-dimensional relations. They are (in some sense) 

generalized mathematical functions. On the contrary to functions from X to Y, binary relations 

R(X,Y) may assign to each element of X two or more elements of Y. Some basic operations on 

functions, e.g. inverse and composition, are applicable to binary relations as well. Given a fuzzy 

relation R(X,Y). Its domain domR is the fuzzy set on X whose membership function is defined 

for each x ∈ X as 

domR(x) = max y∈Y 

R(x,y), 

i.e. each element of X belongs to the domain of R to a degree equal to the strength of its 

strongest relation to any y ∈ Y. 

Range and Height 

The range ran of R(X,Y) is a fuzzy relation on Y whose membership function is defined for each 

y ∈ Y as 

ranR(y) = max x∈X 
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R(x,y), 

i.e. the strength of the strongest relation which each y ∈ Y has to an x ∈ X equals to the degree 

of membership of y in the range of R. The height h of R(X,Y) is a number defined by 

h(R) = max y∈Y 

maxx∈X 

R(x,y). 

h(R) is the largest membership grade obtained by any pair (x,y) ∈ R. 

Representation and Inverse 

Consider e.g. the membership matrix R = [rxy] with rxy = R(x,y). 

Its inverse R−1(Y,X) of R(X,Y) is a relation on Y × X defined by 

R−1(y,x) = R(x,y), ∀x ∈ X, ∀y ∈ Y. 

R−1 = [r−1 xy ] representing R−1(y,x) is tje transpose of R for R(X,Y) 

(R−1)−1 = R, ∀R. 

Standard Composition 

Consider the binary relations P(X,Y), Q(Y,Z) with common set Y. The standard composition of P 

and Q is defined as 

(x,z) ∈ P ◦ Q ⇐⇒∃y ∈Y : {(x,y) ∈ P ∧ (y,z) ∈ Q}. 

In the fuzzy case this is generalized by 

[P ◦ Q](x,z) = sup y∈Y 

min{P(x,y), Q(y,z)}, ∀x ∈ X, ∀z ∈ Z. 

If Y is finite, sup operator is replaced by max. Then the standard composition is also called 

max-min composition. 

Inverse of Standard Composition 

The inverse of the max-min composition follows from its definition: 

[P(X,Y) ◦ Q(Y,Z)]−1 = Q−1(Z,Y) ◦ P−1(Y,X). 

Its associativity also comes directly from its definition: 

[P(X,Y)] ◦ Q(Y,Z)] ◦ R(Z,W) = P(X,Y) ◦ [Q(Y,Z) ◦ R(Z,W)]. 

Note that the standard composition is not commutative. Matrix notation: [rij] = [pik] ◦ [qkj] 

with rij = maxkmin(pik,qkj). 
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For instance: 

r11 = max{min(p11,q11),min(p12,q21),min(p13,q31)} = max{min(.3,.9),min(.5,.3),min(.8,1)} = 

.8 r32 = max{min(p31,q12),min(p32,q22),min(p33,q32)} = max{min(.4,.5),min(.6,.2),min(.5,0)} 

= .4 

Example: Types of Airplanes (Speed, Height, Type) 

Consider the following fuzzy relations for airplanes: • relation A between maximal speed and 

maximal height, • relation B between maximal height and the type. 

 

Relational Join 

A similar operation on two binary relations is the relational join. It yields triples (whereas 

composition returned pairs). For P(X,Y) and Q(Y,Z), the relational join P ∗ Q is defined by 
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[P ∗ Q](x,y,z) = min{P(x,y), Q(y,z)}, ∀x ∈X,∀y∈Y,∀z∈ Z. 

Then the max-min composition is obtained by aggregating the join by the maximum: 

[P ◦ Q](x,z) = max y∈Y 

[P ∗ Q](x,y,z), ∀x ∈X,∀z∈ Z. 

Example 

The join S = P ∗ Q of the relations P and Q has the following membership function (shown 

below on left-hand side). To convert this join into its corresponding composition R = P ◦ Q 

(shown on right-hand side), the two indicated pairs of S(x,y,z) are aggregated using max. 

 

For instance, 

R(1,β) = max{S(1,a,β), S(1,b,β)} = max{.7, .5} = .7 

Binary Relations on a Single Set 

It is also possible to define crisp or fuzzy binary relations among elements of a single set X. 

Such a binary relation can be denoted by R(X,X) or R(X2) which is a subset of X × X = X2. These 

relations are often referred to as directed graphs which is also an representation of them. • 

Each element of X is represented as node. • Directed connections between nodes indicate 

pairs of x ∈ X for which the grade of the membership is nonzero. • Each connection is labeled 

by its actual membership grade of the corresponding pair in R. 

Example 

An example of R(X,X) defined on X = 1,2,3,4. Two different representation are shown below. 
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Properties of Crisp Relations 

A crisp relation R(X,X) is called • reflexive if and only if ∀x ∈ X : (x,x) ∈ R, • symmetric if and 

only if ∀x,y∈ X : (x,y) ∈ R ↔ (y,x) ∈ R, • transitive if and only if (x,z) ∈ R whenever both (x,y) ∈ R 

and (y,z) ∈ R for at least one y ∈ X. 

 

Properties of Fuzzy Relations 

These properties can be extended for fuzzy relations. So one can define them in terms of the 

membership function of the relation. A fuzzy relation R(X,X) is called • reflexive if and only if 

∀x ∈ X : R(x,x) = 1, • symmetric if and only if ∀x,y∈ X : R(x,y) = R(y,x), • transitive if it satisfies 

R(x,z) ≥ max y∈Y 

min{R(x,y), R(y,z)}, ∀(x,z) ∈ X2. 

Note that a fuzzy binary relation that is reflexive, symmetric and transitive is called fuzzy 

equivalence relation. 

 

 

 

R. Kruse, C. Moewes FS – Fuzzy Relations 
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· Representation of a relation 

1( ,..., )nR X X
 

 

 

1 2, ,..,( )
ni i ir : n-D membership array 

1 2, ,.., ni i ir =   1    iff
1( ,..., )nx x R  

0 Otherwise 
 

○ Example 3.1 : 

1 2 3 4 2 1 3 4 5

1 3

2

1 3

2 1 3

2 1

( ) )

({ , } ,

1 1 1 1 0.8 0.8 0.8 0.8
{ | }

, ,* , ,$ , ,* , ,$ , ,* , ,$ , ,* , ,$

{ , }

[ ] :[ { , }]

{ }, {

i n

i n

j j

R X Y Z YY Y Y Z Z Z Z Z

R X X X J N Y X

X j J N R
X a X a Y b Y a X b X b Y b Y b

y X X

Y X j J

R X Y R X X

y X X Y X

 



  

  





 

 

 

 





   

          

 

  

  

    3

2,3

1,2 1,3

, } {(*,*), ( ,$), ( ,*), ( , )}

( ) ( ) [ { }]( ) max ( )

|

1 0.7 0.4 0.8
.

,* ,$ ,* ,$

0.9 0.4 1 0.7 0.8

, ,* , ,* , ,* , ,$ , ,$

0.9 0.4 1 0.8 0.9

, , , ,

i ij
x y

j j
j J

X x Y Y s

x R y R X Y R x R

Y j J X X

R
a a b b

X a X b Y a Y a Y b

R R
X a X b Y a Y b X

 

 












   

  

   

   

     

1 2

0 1 0.8

,* ,$ ,* ,$

1 0 0.6 0.9 0.7 0.3
0 ( , ,..., ) 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
n

X Y Y

R x x x
NY Beijing NY NY NY London Paris Beijing Paris NY Paris Londom

  

      

X



={English , French} , Y



={ dollar , pound , franc , mark} 
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  Z={US , France , Canada , Britain , Germary} 

( )R X Y Z
 


={(English , dollar , US) , (French , franc , France) 

          (English , dollar , Canada) , (French , dollar , Canada) 

          (English , pound , Britain)} 

 

1Y   Dollar   1   0   1   0   0        Dollar        0    0   1   0   0 

2Y   Pound   0   0   0   1   0        Pound        0    0   0   0   0 

3Y   Franc    0   0   0   0   0        Franc        0    1   0   0   0 

4Y  Mark     0   0   0   0   0        Mark        0   0   0   0   0 

US  Fran  Can  Brit  Ger                      US  Fran  Can  Brit  Ger 

1Z 2Z 3Z 4Z 5Z 1Z 2Z 3Z 4Z 5Z  

                   English                                          Franch 

1X 2X  
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· Fuzzy Relations 

    Cartesian Product :
1 2 nX X X

  

  

   

tuples :
1 2( , ,..., )nx x x  

membership grade : 

1 20 ( , ,..., ) 1nR x x x   

Example 3.2: Binary relation R : represents the concept “ very far” 

X



= { New York , Paris} 

Y


={Beijing , New York , London} 

Relation in list notation 

( )R X Y
 


=

1 0 0.6 0.9 0.7 0.3

( , ) ( , ) ( , ) ( , ) ( , ) ( , )NY Beijing NY NY NY London Paris Beijing Paris NY Paris Londom
    

 

Relation in membership array  

              NY         Paris 

Beijing         1           0.9 

NY            0           0.7 

London        0.6          0.3 
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· Ordinary fuzzy relation 

with valuation set [0,1] 

  L-fuzzy relation  

  With ordered valuation set L 

 

3.2 Projection and Cyclindric Extensions 

· set family X = { | }i nX i N




  

Let X = |i nx i N  
i

j J
X X






  

Let Y = |jY j J   j
j J
X X






  

Where nJ N  , | J | = r 

Y  a subsequence of X , Y X  

iff j jY X j J   

⊙Projection :[ ]R y   the projection of R on Y 

1 2( , , , )nR X X X
  

  

 : a relation 

   Y={ | }i nX j J N




   

[ ]R y : a fuzzy relation (set) 

[ ]( ) max ( )
x y

R y Y R x   

※max can be generalized by other t-conorms 
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· Example 3.3 
1X





={X,Y},
2X





={a,b},
3X





={*,$} 

1 2 3( , , )R X X X
  

  

=
0.9 0.4 1 0.7 0.8

, ,* , ,* , ,* , ,$ , ,$X a X b Y a Y a Y b
     

Let ijR =[ { , }]i jR X X
 

 

  , [ { }]i iR R X




   

 1,2

0.9 0.4 1 0.8

, , , ,
R

X a X b Y a Y b
     

1,3

0.9 0 1 0.8

,* ,$ ,* ,$
R

X X Y Y
     

2,3

1 0.7 0.4 0.8

,* ,$ ,* ,$
R

a a b b
     

1

0.9 1

*
R

y
   

2

1 0.8
R

a b
   

3

1 0.8

* $
R    

⊙Cyclindric Extension  [ ]R X Y  the CE of R into X-Y  

X-Y : sets iX




 that are in X but are not in Y 

[ ]( ) ( )R X Y x R y    

R: a relation defined on Y 
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·Example 3.4 ( Refer to example 3.3) 

Let X = 
1 2 3{ , , }X X X

  

  

 

And R= 1,2R
1 3{ , }y X X

 

 

   

∴ X-Y = 
3X





 = {*,$} 

From example 3.3 1,2

0.9 0.4 1 0.8

, , , ,
R

X a X b Y a Y b
     

 

∴ 1,2 3[ ] [ { }]R X Y R X




    =

0.9 0.9 0.4 0.4 1 1 0.8 0.8

, ,* , ,$ , ,* , ,$ , ,$ , ,$ , ,* , ,$X a X a X b X b Y a Y a Y b Y b
        

 

12 3[ ]:[ { }]R X Y R X




   13 2[ { }]R X




 23 1[ { }]R X




 1 2 2[ { , }]R X X
 

 

 2 1 3[ { , }]R X X
 

 



3 1 2[ { , }]R X X
 

 

  

Consider [ ]R X Y  = 2 1 3[ { , }]R X X
 

 

  

2 1 3{ }, { , } {(*,*),( ,$),( ,*),( , )}y X X Y X X x Y Y s
  

  

      

                 {x,y}  {x,$} 

R= 2

1 0.8
R

a b
   

∴ 2 1 3[ { , }]R X X
 

 

 =
1 1 1 1 0.8 0.8 0.8 0.8

, ,* , ,$ , ,* , ,$ , ,* , ,$ , ,* , ,$X a X a Y b Y a X b X b Y b Y b
        
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3.4 Cyclindric closure 

-A relation may be exactly reconstructed from several of its projections by taking the set 

intersection of their cyclindricextensions  IiPi | :a set of projections of a relation on X 

RXYXPXPcyl ii
Ii

i 


)]([min)}({  

iY ：The family of sets on which iP  is defined. 

‧ Example： 
















,,

8.0

,,

4.0

,$,

7.0

,,

1

,,

4.0

,,

9.0
},,{ 3,23,12,1

bybyayaybxax
RRRCyl  

Refer to the original relation ),,(
3

_

2

_

1

_


XXXR  in example 3.3.  

It is not fully reconstructable from its projections become of ignoramus of 1R  , 2R  ,and 3R . 
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3.3. Binary Relations R(







YX , ) 








 YX ：bipartite graph 








 YX ：directed graph 

‧ Representations 

i, matrices  ][ ijrR  , where ),( jiij yxRr   

ii, sagittal diagrams 

Examples： 

i)     54321 yyyyy  

6

5

4

3

2

1

x

x

x

x

x

x

2.0000

5.0000

4.0000

02.100

0004.0

00019.

 

ii) 
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3.9 

‧ Domain：dom R 

Crisp – dom R = },),(|{ YyRyxXx   

Fuzzy – dom R(x) = ),(max yxR
Yy

 

The domain of a fuzzy relation R(x,y) is a fuzzy set on X; dom R(x) is its membership function. 

e.g. dom R(
1X ) = max(0.9, 1) = 1 

‧ Range：ran R 

Crisp – ran R = },),(|{ XxRyxYy   

Fuzzy – ran R(y) = ),(max yxR
Xx

 

e.g. ran R( 5y ) = max(0.4, 0.5, 0.2) = 0.5 

‧Height： ),(maxmax)( yxRRh
XxYy 

  

e.g., 1)( Rh  normal fuzzy relation 
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‧Inverse： ),(1 XYR  

),(),(1 yxRxyR   

RRRR T   111 )(,  

e.g. 



















4.06.0

10

2.03.0

R  











4.012.0

6.003.0
1 TRR  

‧ Composition： ),(),(),( ZYQYXPZXR   

)],(),,(min[max),]([),( zyQyxPzxQPzxR
Yy

   

Max-min composition 

Properties：















)()(

)( 111

RQPRQP

PQQP

PQQP

。。。。

。。

。。

 

Matric form： ][][][ kjikij qpr 。  

Where ),min(max][ kjik
k

ij qpr   



 

19 Unedited Version: Neural Network and Fuzzy System 

 

3.11 

)],(),([max),]([),( zyQyxPzxQPzxR
Yy

‧。


  

max-product composition 

matrix form ][][][ kjikij qpr 。  

Where ),(max][ kjikij qpr   

‧ Example 

































5.05.00.00.1

9.00.02.03.0

7.07.05.09.0

5.06.04.0

0.17.00.0

8.05.03.0

。  

Max-min = 

















6.05.04.05.0

7.05.02.00.1

5.05.03.08.0

 

Max-prod = 

















54.028.02.05.0

63.05.014.00.1

45.04.015.08.0

 

‧ Relational join： ),(*),(),,( ZYQYXPZYXR   

)],(),,(min[),,](*[),,( zyQyxPzyxQPzyxR   

※The max-min composition can be obtained by aggregating appropriate elements of the 

corresponding join. 
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3.12‧Example 

※ ),,](*[max),]([ zyxQPzxQP
Yy

。  

 

5.4Binary Relation on a Simple Set 

‧Representations 
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3-13 

◎ characteristic Properties (Crisp case) 

i,      reflexive        

 

irrflexive  

 

antiflexive  

 

ii,    symmetric 

 

     asymmetric    

 

   antisymmetric  ( , ) , ( , )x y R y x R x y      

 

   strictly antisymmetric , ( , )x y x y R    or ( , )y x R  

 

iii,   transitive  

 

   nontransitive    

 

antitransitive  

 

◎ Fuzzy Relations 

i,   reflexive   --- x , ( , ) 1R x x   

irreflexive  --- x ,  ( , ) 1R x x   

antiflexive  --- x ,  ( , ) 1R x x   

 -reflexive --- x ,  ( , )R x x   
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3-14 

ii, symmetric     -- , ,x y ( , ) ( , )R x x R y x  

asymmetric    -- , ,x y ( , ) ( , )R x x R y x  

antisymmetric  --
( , ) 0

( , ) 0

R x x

R y x





x y   

 

iii, max-min transitive   -- ,x z  

 ( , ) max min ( , ), ( , )
y Y

R x z R x y R y z




  

max-product transitive -- ,x z  

 ( , ) max min ( , ) ( , )
y Y

R x z R x y R y z




   

nontransitive  -- ,x z  

 ( , ) max min ( , ), ( , )
y Y

R x z R x y R y z




  

antitransitive -- ,x z  

 ( , ) max min ( , ), ( , )
y Y

R x z R x y R y z




  

 

◎ Example 3.7   R:very near 
 reflexive, symmetric, nontransitive 
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3-15 

◎Summary 

 

R
ef

le
x

iv
e 

A
n

ti
re

fl
ex

iv
e 

S
y

m
m

et
ri

c 

A
n

ti
sy

m
m

et
ri

c 

T
ra

n
si

ti
v

e 

Crisp: equivalence; 

Fuzzy: similarity 

     

Quasi-equivalence      

Compatibility or 

Tolerance 

     

Partial ordering      

Preordering or  

Quasi-ordering 

     

Strict ordering      

Figure3.6  Some important types of binary relation R(X,X) 

◎ transitive closure: ( )TR X



 

Algorithm for computing TR  

1. / ( )R R R R   

2.  If /R R , Let /R R , go to step1    

3.  Stop, /

TR R  

Where : component-wise max 
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◎Example 3.8 

0.7 0.5 0.0 0.0

0.0 0.0 0.0 1.0

0.0 0.4 0.0 0.0

0.0 0.0 0.8 0.0

R

 
 
 
 
 
 

 

Step1: 

0.7 0.5 0.0 0.5

0.0 0.0 0.8 0.0

0.0 0.0 0.0 0.4

0.0 0.4 0.0 0.0

R R

 
 
 
 
 
 

 

/

0.7 0.5 0.0 0.5

0.0 0.0 0.8 1.0
( )

0.0 0.4 0.0 0.4

0.0 0.4 0.8 0.0

R R R R

 
 
   
 
 
 

 

Step2: /R R , Let /R R  

repeat step1 

0.7 0.5 0.5 0.5

0.0 0.4 0.8 0.4

0.0 0.4 0.4 0.4

0.0 0.4 0.4 0.4

R R

 
 
 
 
 
 

 

/

0.7 0.5 0.5 0.5

0.0 0.4 0.8 1.0
( )

0.0 0.4 0.4 0.4

0.0 0.4 0.8 0.0

R R R R

 
 
   
 
 
 

 

Step3: 
/R R , Let 

/R R  

repeat step1 

'

0.7 0.5 0.5 0.5

0.0 0.4 0.8 1.0

0.0 0.4 0.4 0.4

0.0 0.4 0.8 0.4

R R

 
 
  
 
 
 

 

Step4:  Stop 
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/

TR R  
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3-17 

3.5  Fuzzy Equivalence Relation 

◎Crisp binary relation 

equivalence: reflexive, symmetric, and transitive 

equivalence classes 

partition: X/R 

 

◎ Example 3.9: 

 1,2, ,10X



  

( )R X X
 

 
  { ( , ) | ,x y x y have the same remainder when divided by 3} 

 

R: reflexive, symmetric, transitive 

 equivalence 

partition  / (1,4,7,10), (2,5,8), (3,6,9)X R



  
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◎ Fuzzy Binary Relation 

。 Fuzzy 

   Similarity relation      equivalence relation 

   Similarity classes       equivalence classes 

2 Interpretations of a similarity relation: 

1.Group similar elements into crisp classes    

whose members are similar to each other  

to some specified degree. 

    2. ,x X



  associate a fuzzy set xA  

defined on X



. 

。a fuzzy relation 
[0,1]

R R






   (Theorem 2.5,  Eqs.(2.1)(2.2)) 

If  R: Similarity relation,  

:R equivalence relation 

。Let  ( ) :R the partition of X



 w.r.t. R  

  ( ) ( ) | 0,1R R      

( ) :R nested, i.e., 

( ) :R aredefinement of ( )R iff   
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Prove that :A fuzzy relation :R X X  is a similarity relation, then R  is a equivalent 

relation 

Pf :∵ R : a similar relation 

∴R :   reflexive, i.e.,  , ( , ) 1x X R x x    

symmetric, i.e., , , ( , ) ( , )x y X R x y R y x    

transitive, i.e., 2, , ( , ) max[ ( , ), ( , )]
y Y

x z X R x z R x y R y z


    

i,  R  : reflexive 

, ( , ) 1 [0,1],( , )x X R x x x x R       

R  : reflexive 

 

ii, R : symmetric 

∵R : symmetric 

, , ( , ) ( , )x y Z R x y R y x    

         Let ( , ) ( , )R x y R y x    

         Then    or    

a, if    => ( , ), ( , )x y y x R  

b, if    => ( , ), ( , )x y y x R  

 

iii, R  : transitive 

∵R : transitive 

2, , ( , ) max[ ( , ), ( , )]
y Y

x z X R x z R x y R y z


    

Let 1( , )R x y   , 2( , )R y z   

 

     Assume 1 2   

Then 1 2     , 1 2     , or 1 2     

a. if 1 2     => ( , ) , ( , )x y R y z R   --- (A) 
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1 2 1( , ) max[ ( , ), ( , )] min[ , ]
y Y

R x z R x y R y z    


     

( , ) , ( , )R x z x z R    --- (B) 

          (A) , (B) => :R transitive  

 

b.   if 
1 2     

( , ) , ( , )x y R y z R     , don’t care ( , )x z  

 

c.   if  1 2     

( , ) , ( , )x y R y z R     , don’t care ( , )x z  

 

 

 

 

 

 

Example 3.10 : ( , )R X X  : a fuzzy relation 

R : reflexive , symmetric , transitive ( ' ( )R R R R R   ) 

∵level set : {0.0,0.4,0.5,0.8,0.9,1.0}R   

              There are five nested partition ' s  

 

 

 The similarity class for each element is a fuzzy set defined by the row of the membership 
matrix corresponds to that element 

 

Example : see Example 3.10 

  For c :
0 0 1 0 1 0.9 0.5

a b c d e f g
       
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  For e :
0 0 1 0 1 0.9 0.5

a b c d e f g
       

∴c and e are similar at any level   

 

3.6 Compatibility Relations ---- reflexive , symmetric 

compatibility 

Alternatives :    tolerance       relation 

proximity 

 

 Crisp case : 
Maximal compatibility classes – not properly contained within any other compatibility 

class   

    Complete cover – all the maximal compatibility classes  

 

 Fuzzy case : 
α-compatibility class ---- a subset A of X , 

s.t. , , ( , ) ( , ) , :x y A if R x y R x y R     fuzzy compatibility 

relation 

maximalα ---- compatibility classes 

completeα-cover 

 

Example 3.11 : ( , )R X X  : a fuzzy relation 

∵R : reflexive , symmetric 

∴a compatibility relation 

∵ {0.0,0.4,0.5,0.7,0.8,1.0}R   

=>the completeα-covers   

 

 



 

31 Unedited Version: Neural Network and Fuzzy System 

 

3-25 

 

e.q. 

0.5

0.5

0.7 0.9

1 0.7 0 1 0.7

0 1 0 0.9 0

0.5 0.7 1 1 0.8

0 0 0 1 0

0 0.1 0 0.9 1

1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0

0 0 0 1 1 1 0 0 0

0 0 0 1 1 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1

b d

a

b

c

d

e

R

x y xx y

 



 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



    1 2

[ ]

[ ]

( , ) { , }

(x,y) ( , ( ) ( , )

( , )( )

x

x
x A

y xx X x y XS x x Xy Ax y

y X x y or y xAx XA Xx yR y R y x

x U R A x R y






       

        

   

0.4   

 

0.4

1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0

0 0 0 1 1 1 1 0 0

0 0 0 1 1 1 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1

R

 
 
 
 
 
 
 
 
 
 
 
 
 
 
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Look for complete subgraphs 

(1,2) , (3,4,5),(4,5,6,7),(5,8),(9) 

(34,),(4,5,6),(4,5,7),(3,5),(5,6) 

(4,5),(5,6,7),(4,6,7),(4,6),(6,7) 

maximal compatible classes (the complete 0.4-cover): 

(1,2),(3,4,5),(4,5,6,7),(5,8),(9) 

These do not partition X. 
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e.q. 0.5   

 

0.5

1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0

0 0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 1 0

0 0 0 1 1 1 0 0 0

0 0 0 1 1 0 1 0 0

0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1

R

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

maximal compatible classes 

( The complete 0.5-cover) 

(1,2),(3,4,5),(4,5,6),(4,5,7),(5,8),(9) 
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3.7. Ordering Relations 

˙ partial ordering: reflexive , antisummetric , transitive 

 

X Y  : X : predecessor 

precedes Y : successor 

 

if exist    First member : if x y y X   (minimum) 

unique    Last member : if y x y X   (maximam) 

 

may not   Minimal member : if y x x y    

be unique  Maximal member : if x y x y    

 

˙properties : 

1, if   , at most one first member  

if   , at most one last member 

2, There may be several maximal and minimal member 

3, if   a first member X ,  only one minimal member Y exists and x=y 

4, if   a last member x ,  only one maximal member Y exists and x=y. 

5, partial       the first member   the last member   inverse 

ordering     the last member   the first member   partial ordering 
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※ In a partial ordering , it does not guarantee that (x,y)  , ( ,x y or  y x ). 

 

If   ,   (x,y) : comparable (total ordering) 

Otherwise (x,y) : non comparable 

 

˙ A X  

If x X  , and y A   , x y , 

 x: lower bound of A on X 

If ……… , x y  

 x : upper bound of A on X 

 

˙greatest lower bound ( orinfimum ) GLB 

- a lower bound which succeeds every other lower bound 
 

 Least upper bound ( orsupermum ) LUB 

- a upper bound which preceeds every other upper bound 
 

˙Lattice – A partial ordering on X contains GLB and LUB , 1 2{ , }S x x X    
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˙ Connected – a partial ordering is said to be connected 

iff ,x y X   , x y   x<y or y>x 

 

˙ Linear ordering (total ordering , simple ordering , complete ordering ) 

- when a partial ordering is connected , then ( , )x y  : comparable 

 

˙ Hasse diagrams – representing partial orderings in which   indicates   

 

˙ Example 3.12 : Crisp partial orderings 
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˙ Fuzzy partial ordering  

- reflexive , antisymmetric , and transitive under some form of transitivity. 
 

※ any fuzzy partial ordering can be resolved into a series of crisp partial ordering . 
 

i.e. taking a series of  cut that produce increasing levels of refinement 

 

˙ In a fuzzy partial ordering , R 

x X   , twofuzzy sets are associated with  

[ ]xR  : dominating class 

[ ]( ) ( , )xR y R x y   

 

[ ]xR  : dominated class 

[ ]( ) ( , )xR y R y x   
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˙ xundominatediff  R(x,y) = 0  y x   

   X undominatingiff  R(y,x) = 0  y x   

 

˙ Fuzzy upper bound for A X  is a fuzzy set 

[ ]( , ) x
x A

U R A R


  

※ If a least upper bound of A exists , it is the unique element ( , )x U R A  

 

s.t. 1,                  2, 

( , )( )U R A x > 0        R(x,y) > 0 , 

y support [ U(R,A) ] 

 

˙ Example 3.13 

a   b   c   d    e    

Fuzzy partial ordering         R:    

1 0.7 0 1 0.7

0 1 0 0.9 0

0.5 0.7 1 1 0.8

0 0 0 1 0

0 0.1 0 0.9 1

a

b

c

d

e

 
 
 
 
 
 
  

 

 

1. row : dominating class for each element 
column : dominated class for each element 

2. d : undominated , C : undominating 
3. For A = {a,b} , U(R,A) = the intersection of 

The dominating classes of a and b =  
0.7 0.9

b d
  

4,  LUB(A) =b       
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3. Crisp ordering captured by the fuzzy ordering 

e.g. 5.0  

























11000

01000

11111

01010

11011

R  

# is → 2 3 1 5 3 

※The ordering become weaken with the increasing α 
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Fuzzy preordering – reflexive and transitive 

Fuzzy weak ordering –  

i, an ordering satisfying the proportion of a fuzzy total ordering except antisymmetry. 

ii, a fuzzy preordering in which yx  , either R(x,y)>0 or R(y,x)>0 

 

Fuzzy strict ordering – 

Antireflexive 

Antisymmetric 

Transitive 

 

3.8. Morphisms 

‧Crisp homomorphism h from (X,R) to (Y,Q) 

Where R(X,X), Q(Y,Y)：binary relations 

QxhxhRxx  ))(),((),( 2121  

‧ Fuzzy homomorphism h 

If R(X,X), Q(Y,Y)：Fuzzy binary relations 

And )](),([),( 2121 xhxhQxxR   

※ It’s possible that a relation Qxhxh ))(),(( 21 which Rxx ),( 21 . 

※ If this is never the case h is called a strong homomorphism. 
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‧Crisp strong homomorphism h 

If QxhxhRxx  ))(),((),( 2121
 

And RyhyhQyy   ))(),((),( 2

1

1

1

21  

※ where h : many to one → )(1 yh  contains a set of Xs 

 

‧Fuzzy strong homomorphism h 

H imposes a partition h on X 

Let  

},,,{ 21 naaaA   

},,,{ 21 nbbbB  
h  

R,Q：fuzzy relations 

h : strong homomorphism 

iff ),()),((max 21
,

yyQbaR ji
ji

  

where








Bbbhy

Aaahy

jj

ii

)(

)(

2

1
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‧Example 3.14 

R(X,X) 





















006.00

5.0001

09.000

005.00

R  

 

Q(Y,Y) 



















09.01

9.001

09.05.0

Q  

→h：ordinary fuzzy homomorphism (one way) 

strongxhxhQxxR  ))(),((),( 2121  

But 9.0),( Q 0),( cdR  

i,e, Q),(   while Rcd ),(  where   )(,)( chdh  
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R(X,X) 



























8.010000

001000

5.09.0005.00

0003.000

007.005.00

00004.08.0

 

 

Q(Y,Y) 

















101

08.04.0

9.007.0

 

→h：strong fuzzy homomorphism (two way) 
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※Q represents a simplification of R 

‧Isomorphism : (congruence) 

h:1-1, onto YX   

 

Endomorphism : (subgraph) 

h:X→Y, XY   

 

Automorphism : 

Isomorphism and End Endomorphism 

i.e.m X=Y nad R=Q 
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3.9 SUP-i Compositions of Fuzzy Relations Generalize max-min Composition 

i : t-norm 

sup : t-conorm 

‧ P(X,Y), Q(Y,Z)：fuzzy relations 

)( ZXQoP
i

 :sup-i composition 

)],(),,([sup),]([ zyQyxPiZXQoP
Yy

i



  

‧ Properties 

1. )()( RoQoPRoQoP
iiii

  

2. )()( j

i

j
j

j

i

QoPQoP   

3. )()( j

i

j
j

j

i

QoPQoP   

4. )()( QoPQoP
i

j
j

i

j
j

  

5. )()( QoPQoP
i

j
j

i

j
j

  

6. 111)(   RoQQoP
ii
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3. Show Eq.(3.16), i.e., ( ) ( ),
i i

j j

j J j J

P Q P Q
 

  

   Where ( , )P X Y
 


 and ( , )Q Y Z



 are fuzzy relations. 

 pf. From Eq.(3.13), i.e.,  ( , ) sup ( , ), ( , )
i

y Y

P Q x z i P x y Q y z




 
  

 

( ) ( , ) sup ( , ), ( , )
i

j j

j J j Jy Y

P Q x z i P x y Q y z


 

   
    
   

 

Let 
j

j J

Q Q


  

1 2, , ,
J

Q Q Q Q Q Q     

i.e., ( , ),y z
1( , ) ( , ), , ( , ) ( , )

J
Q y z Q y z Q y z Q y z   

i is monotonically increasing 



1[ ( , ), ( , )] [ ( , ), ( , )]

...........

[ ( , ), ( , )] [ ( , ), ( , )]
J

j

j J

j

j J

i P x y Q y z i P x y Q y z

i P x y Q y z i P x y Q y z





 









( , )x y  

 

[ ( , ), ( )( , )] [ ( , ), ( , )]j j

j J j J

i P x y Q y z i P x y Q y z
 

  

sup [ ( , ), ( )( , )] sup [ ( , ), ( , )]j j

j J j Jy Y y Y

i P x y Q y z i P x y Q y z
 

  

   

sup [ ( , ), ( , )], ( , ), ( , )j

j J y Y

i P x y Q y z x y y z


 

   

( ) ( , ) ( ) ( , ), ( , )
i i

j j

j J j J

P Q x z P Q x z x z
 

   
     

   
 

i,e., ( ) ( )
i i

j j

j J j J

P Q P Q
 

  
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。Sup-i composition monotonically increases 

i.e., 
1 2

1 2

(5.20)

(5.21)

i i

i i

P Q P Q

Q P Q P

 

 

  if 
1 2Q Q  

 

。Identity of 
i

 

1,
( , )

0,

x y
E x y

x y


 



1

1

0

0

 
 
 
 
 

 

i.e.,
i i

E P P E P   

 

。Relation Ron 
2

X



:i-transitive 

iff  ( , ) ( , ), ( , ) , , ,R x z i R x y R y z x y z X



    

i

R R R   

。i-transitive closure ( )T iR  

  --- The smallest i-transitive relation containing R 

。Theorem 3.1: R: any fuzzy relation 

( )

( )

1

n

T i

n

R R




   , where 

( ) ( 1)
i

n nR R R   
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proof: 

i, ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 , 1

i i i
n m n m n m

T i T i

n m n m n m

R R R R R R R
    



    

     
      

    
 

( ) ( )

( )

2 1

k k

T i

k k

R R R
 

 

    

    i.e., ( )T iR : i-transitive (
( ) ( ) ( )

i

T i T i T iR R R ) 

ii, Let S:i-transitive, R S  

(2)
i i

R R R S S S     

  If ( ) ,nR S  

( 1) ( )
i i

n nR R R S S S     

( ) ,kR S k    

( )

( )

1

k

T i

k

R R S




    

  i.e., ( )T iR : smallest 

 

。Theorem 3.2:   R: reflexive fuzzy relation on 
2

X



, X n




  

( ) 1

( 1)

( ) 1

m m

n

T i n n

R R
R R m

R R







 
      

 

By (5.15) (5.17) 

mathematical 

induction 

(5.20)(5.21) monotonically increasing 

i-transitive 
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proof :i, : ,R reflexive  

(2),
i i

E R R E R R R R      

( 1) ( )n nR R     (By repetition) 

ii, show ( 1) ( )n nR R   

proof: If ( 1), ( , ) 1nx y R x x    

             If ,x y   

 

 
1 1

( )

1 1 2 1
, ,

( , ) sup ( , ), ( , ), , ( , )
n

n

n
Z Z

R x y i R x z R z z R z y


  

X n



  

0 1, , , nX Z Z Z y   contains 

at least 2 identical element.  

              Say ( )r sZ Z r s   

  ( )

1 1 1 1( , ), , ( , ), , ( , ), , ( , ) ( , ),( 1)k

r r s s ni R x z R z z R z z R z y R x y k n       

( ) ( 1), , ( , ) ( , ),n nx y X R x y R x y





    

( ) ( 1) ( )n nR R B   ( ) ( 1) ( , )n nR R A B    

( 1)

( )

n

T iR R    

reflexive 

Extension of definition 

i
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3.10 INF- iw  Compositions of Fuzzy Relations 

。 iw operation:  

 ( , ) sup [0,1] | ( , )iw a b x i a x b    

where , [0,1]a b  , i : continuous t-norm 

※ If i  : logical conjunction (i.e.,  , and)              

iw : logical implication (i.e.,  , if  then)      

 

。Theorem 3.3 

 1, ( , )i a b d iff ( , )iw a b b  

 2, ( ( , ), )i iw w a b b a  

 3, ( ( , ), ) ( , ( , ))i i iw i a b d w a w b d  

 4, , ( , ) ( , )i ia b w a d w b d    ---- i 

( , ) ( , )i iw d a w d b  --- ii 

3, ( ( , ), ( , )) ( , )i i ii w a b w b d w a d  

 6, (inf , ) sup ( , )i j i j
j j

w a b w a b  

 7, (sup , ) inf ( , )i j i j
jj

w a b w a b  

 8, ( ,sup ) sup ( , )i j i j
j j

w b a w b a  

 9, ( ,inf ) inf ( , )i j i j
j j

w b a w b a  

10, ( , ( , ))ii a w a b b  

1

a b b

a b

  

  
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proof: (1) i , If  ( , ) , | ( , )i a b d b x i a x d     

( )  sup | ( , ) ( , )ib x i a x d w a d     

ii, If ( , )ib w a d  

( )    ( , ) ( , ( , )) ( ,sup | ( , ) ) sup ( , ) | ( , )ii a b i a w a d i a x i a x d i a x i a x d d      

(3)                              

( , ) ( , ) ( , ( , ))ii a x w b d i b i a x d    

 

( ( , ), ) ( ( , ) )ii i a b x d x w i a b d     

( ( , ), )iw i a b d  

   ( , ( , )) sup | ( , ) ( , ) sup | ( ( , ), ) ( ( , ), )i i i i iw a w b d x i a x w b d x x w i a b d w i a b d       

       (7) Let sup j
j

S a ---(B) ,ja s j    

( , ) ( , ),i i jw s b w a b j    

( , ) inf ( , )i i j
j

w s b w a b    ---- (C) 

0 0inf ( , ) ( , ),i j i j
j

w a b w a b j J    

0 0( ,inf ( , )) ,j i j
j

i a w a b b j    

0

0

( ,inf ( , )) sup ( ,inf ( , ))i j j i j
j jj

i s w a b i a w a b b    

( , ) inf ( , )i i j
j

w s b w a b   --- (D) 

(sup , ) ( , ) inf ( , )i j i i j
j

j

w a b w s b w a b    

 d i: monotone increasing 

i: continuous 

monotone 

b a

b 

d By (1)<= 
By (1)=> d b a 

Associativity 

communitation 

By (A) 

By(4) 

By(1) 

By(1) 

By(B)(C)(D) 
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(2)Show ( ( , ), )i iw w a b b a  (Theorem 3.3 (2)) 

proof :  ( , ) [0,1] | ( , )iw a b Sup x i a x b    and by Theorem 3.10 

min ( , ) ( , ) min( , )i a b i a b a b   

i, If  a>b                         

   ( , ) [0,1] | ( , ) [0,1] | min( , )iw a b Sup x i a x b Sup x a x b b        



( ( , ), )

( , )

( ,1)

ii w a b a

i b a

i b

b







 

( ( , ), )ii w a b a b   

i, If a b  

   ( , ) [0,1] | ( , ) [0,1] | min( , ) 1iw a b Sup x i a x b Sup x a x b        

 ( ( , ), ) ( ( , ), )i ii w a b a i w a b b  

(1, )

( ,1)

i a

i b

b







 

( ( , ), )ii w a b a b   

      By Theorem 3.3 property 1(i.e., ( , )i a b d iff ( , )iw a d b ) 

( ( , ), ) ( ( , ), )i i ii w a b a b w w a b b a    

By Axiom i2 ( , )iw a b b  

By Axiom i2  ( 1a  ) 

By Axiom i1 

By Axiom i2 ( , ) 1iw a b   

By Axiom i2  

By Axiom i1 
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(4) prove Theorem 3.3 (4) : a b  =>i, ( , ) ( , )i iW a d W b d  

ii, ( , ) ( , )i iW d a W d b  

proof :i, ( , ) ( , )i iW a d W b d  

( , ) sup{ | ( , ) }iW a d x i a x d   ---- (A) 

( , ) sup{ | ( , ) }iW b d x i b x d   ---- (B) 

a, if d a b   => (A)=d , (B)=d ,  

∴ (A)=(B) ----- (1) 

b, if a d b   => (A)=1 , (B)=d 

∴ (A) (B) ----- (2) 

c, if a b d   => (A)=1 , (B)=1 

∴ (A)= (B) ----- (3) 

         (1),(2),(3) => (A) (B) 

           i.e., ( , ) ( , )i iW a d W b d  

ii, see i 

 

5. show ( ( , ), ( , )) ( , )i i ii W a d W b d W a d  

Proof :∵   if ( , )ia b W a b b    

if ( , ) 1ia b W a b    

       A, if  ( ( , ), ( , )) ( , ( , ))i i ia b i W a b W b d i b W b d    

=> ( , ( , )) ( , ) min( , )ii b W b d i b d b d d    

( , )iW a d d  

 

 

          => ( , ( , )) ( ,1)ii b W b d i b b   

( , ) 1iW a d   
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          => ( , ( , )) ( ,1)ii b W b d i b b   

( , ) 1iW a d   

 

B, if ( ( , ), ( , )) (1, ( , )) ( , )i i i ia b i W a b W b d i W b d W b d     

     => ( , )iW b d d  

( , )iW a d d  

 

( , )iW b d d  

( , ) 1iW a d   

 

( , ) 1iW b d   

( , ) 1iW a d   

 

 

 

 

 

10. show ( , ( , )ii a W a b b  

Proof :∵ ( , )ia b W a b b    

( , ) 1ia b W a b    

 

       A, if  a b  

( , ( , )) ( , ) min( , )ii a W a b i a b a b b     

       B, if  a b  

( , ( , )) ( ,1)ii a W a b i a a b     
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 inf iW  composition 

inf

( )( , ) ( ( , ), ( , ))
iW

iP Q x z y YW P x y Q y z   

 

 Theorem 3.4 : 

1 1 1(1)( ) ( ) ( ( ) )
i iW Wi

P Q R Q P R P Q R        

(2)( ( ) ( )
i i iW W Wi

P Q S P Q S  

 

 Theorem 3.5 : 

( ) ( )

( ) ) ( )

( ) ( )

( ) ( )

i i

i i

i i

i i

W W

j j
j j

W W

j j
j j

W W

j j j
j j

W W

j j j
j j

P Q P Q

P Q P Q

P Q P Q

P Q P Q

  

 

  

 

 

 Theorem 3.6 : if 1 2Q Q  =>
1 2

i iW W

P Q P Q  

1 2

i iW W

Q R Q R  

Proof : 1 2Q Q  => 1 2 1Q Q Q   , 1 2 2Q Q Q   

∵
1 2 1 2 1( ) ( ) ( )

i i i iW W W W

P Q P Q P Q Q P Q     

            =>
1 2

i iW W

P Q P Q  

∵
1 2 1 2 2( ) ( ) ( )

i i i iW W W W

Q R Q R Q Q R Q R     

            =>
1 2

i iW W

Q R Q R  
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 Theorem 3.7 : 

1. 1 ( )
iWi

P P Q Q   

2. 1( )
iW i

R P P R  

3. 1( )
i iW W

P P Q Q  

4. 1( )
i iW W

R R Q Q  

Proof : 

     (1) 1 1( )
i iW W

P Q P Q   ---- (A) 

(5.26) (5.25)  

         i.e., 1( ) ( )
iW i

Q P R P Q R    

let 
iW

P Q Q  , 1P P   , Q R  

1( ) ( )
i

A P P Q Q    

     (2)  1 1
i i

P R P R   ---- (B) 

Let 
1P P   , Q R  , 1

i

P R R   

1( ) ( )
iW i

B R P P R    

     (3) by (3.33) , 1 1 1[ ( )]
iWi

P P Q Q    

1 1( )
iW i

P Q P Q    ---- (C) 

        Let 1, ,
iW

P Q P P Q Q R    

1 1( ) ( )
i iW W

C P P Q Q     

      (4) follows (3)  
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W = W 

Chapter 4 

 
Single Layer Perception: Perceptron convergence theorem, Method of steepest descent-least mean 

square algorithms. 

 

Single-Layer NN Systems 

Here,asimplePerceptronModelandanADALINENetworkModelispresented. 

Single layerPerceptron 

Definition:Anarrangementofoneinputlayerofneuronsfeedforwardtooneoutputlayerofneurons 

isknownasSingleLayerPerceptron. 

inputxi weightswij outputyj 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Xn y

m
 

 
Single layer Perceptron Fig.  

Simple  PerceptronModel 

 
1 if net j>0 n 

where  netj=  xiwij 

0 if net j<0 i=1 

 
• LearningAlgorithm:TrainingPerceptron 

ThetrainingofPerceptronisasupervisedlearningalgorithmwhereweightsareadjustedtominimize 

errorwhenevertheoutputdoesnotmatchthedesiredoutput. 

- Iftheoutputiscorrectthennoadjustmentofweightsisdone. 

K+1 K 

i.e. 
ij ij 
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- Iftheoutputis1butshouldhavebeen0thentheweightsaredecreasedontheactiveinputlink 

K+1 K - .xi 
i.e. 

i j 
= W

ij
 W 
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- Iftheoutputis0butshouldhavebeen1thentheweightsareincreasedontheactiveinputlink 

 
K+1 K + . xi 

i.e. 
i j 

= W
ij

 

 

Where 
 

 

K+1 K 

 
 

W
ij 

isthenewadjustedweight,W
ij 

is the oldweight 

xi istheinputandisthelearningrateparameter. 

 smallleadstoslowandlargeleadstofastlearning. 

 

• PerceptronandLinearlySeparableTask 
 

Perceptroncannothandletaskswhicharenotseparable. 

- Definition:Setsofpointsin2-Dspacearelinearlyseparableifthesetscanbeseparatedbyastraight line. 

- Generalizing,asetofpointsinn-dimensionalspacearelinearlyseparableifthereisahyperplaneof (n-

1)dimensionsseparatesthesets. 

Example 

 
 

(a) Linearlyseparablepatterns (b) Not Linearly separablepatterns 

Note:Perceptroncannotfindweightsforclassificationproblemsthatarenotlinearlyseparable. 

W 
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• XOR Problem 

:Exclusive 

ORoperation 

Fig. Output of XOR in x1 , x2 plane 

 

Evenparityis,evennumberof1bitsintheinput 

Oddparityis,oddnumberof1bitsintheinput 

- Thereisnowaytodrawasinglestraightlinesothatthecirclesareononesideofthelineandthedots 

ontheotherside. 

- Perceptronisunabletofindalineseparatingevenparityinputpatternsfromoddparityinputpatterns. 

 

• PerceptronLearningAlgorithm 
 

The algorithm is illustrated step-by-step. 
 

* Step 1: 

Createapeceptronwith(n+1)inputneuronsx0,x1,.............. , . xn, 

where xo = 1 is the bias input. Let O be the output neuron. 
 

* Step 2: 

InitializeweightW=(w
0
,w

1
, ............. ,.wn)torandomweights. 

* Step 3: 

IteratethroughtheinputpatternsXjofthetrainingsetusingtheweightset;iecomputetheweightedsum of 

inputs net j=  xiwi foreachinputpatternj. 

i=1 
 

* Step 4: 

Compute the output y j using the step function 
 

1 if net j>0 n 

yj=f(netj)=  where  netj=  xi 

wij0 if net j<0   i=1 
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* Step 5: 

Compare thecomputedoutput yj with thetargetoutput yj

 foreachinputpatternj.Ifalltheinputpatternshavebeenclassif

iedcorrectly,thenoutput(read)theweightsandexit. 

* Step 6: 

Otherwise, update the weights as given below : 

Ifthecomputedoutputsyjis1butshouldhavebeen0, 

Then  wi = wi - xi, i= 0,1,2,..........,n 

Ifthecomputedoutputsyjis0butshouldhavebeen1, 

Thenwi=wi+xi, i= 0,1,2,..........,n 

where is the learning parameter and is constant. 

* Step 7: 

goto step 3 
 

* END 

 

AnADALINEconsistsofasingleneuronoftheMcCulloch-Pittstype,whereitsweightsaredetermined 

bythenormalizedleastmeansquare(LMS)traininglaw.TheLMSlearningruleisalsoreferredtoas 

deltarule.Itisawell-establishedsupervisedtrainingmethodthathasbeenusedoverawiderangeof 

diverseapplications. 

 

• ArchitectureofasimpleADALINE 
 

Desired Output 

 

 

ThebasicstructureofanADALINEissimilartoaneuronwithalinearactivationfunctionandafeedback 

loop.DuringthetrainingphaseofADALINE,theinputvectoraswellasthedesiredoutputarepresented to 

thenetwork. 

[The complete training mechanism has been explained in the next slide. ] 
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• ADALINETraining Mechanism 

(Ref. Fig. in the previous slide - Architecture of a simple ADALINE) 
 

* ThebasicstructureofanADALINEissimilartoalinearneuronwithanextrafeedbackloop. 

* DuringthetrainingphaseofADALINE,theinputvectorX=[x
1
,x

2
,...,xn]Taswellasdesired 

outputarepresentedtothenetwork. 

* Theweightsareadaptivelyadjustedbasedondeltarule. 

* AftertheADALINEistrained,aninputvectorpresentedtothenetworkwithfixedweightswillresult 

inascalaroutput. 

* Thus,thenetworkperformsanndimensionalmappingtoascalarvalue. 

* The activation function is not used during the training phase. Once the weights are properly adjusted, 

he response of the trained unit can be tested by applying various inputs, which are not in the training 

set.Ifthenetworkproducesconsistentresponsestoahighdegreewiththetestinputs,itissaidthatthe 

etworkcouldgeneralize.Theprocessoftrainingandgeneralizationaretwoimportantattributesofthis 

network. 

Usage of ADLINE : 

In practice, an ADALINE is used to 

- Makebinarydecisions;theoutputissentthroughabinarythreshold. 

- RealizationsoflogicgatessuchasAND,NOTandOR. 

- Realizeonlythoselogicfunctionsthatarelinearlyseparable. 

Applications of Neural Network 

Neural Network Applications can be grouped in following categories: 

* Clustering: 

Aclusteringalgorithmexploresthesimilaritybetweenpatternsandplacessimilarpatternsinacluster. 

Bestknownapplicationsincludedatacompressionanddatamining. 

* Classification/Pattern recognition: 

Thetaskofpatternrecognitionistoassignaninputpattern(likehandwrittensymbol)tooneofmany 

classes.Thiscategoryincludesalgorithmicimplementationssuchasassociativememory. 

* Function approximation: 

Thetasksoffunctionapproximationistofindanestimateoftheunknownfunctionsubjecttonoise. 

Variousengineeringandscientificdisciplinesrequirefunctionapproximation. 

* Prediction Systems: 

Thetaskistoforecastsomefuturevaluesofatime-sequenceddata.Predictionhasasignificantimpact 

ondecisionsupportsystems.Predictiondiffersfromfunctionapproximationbyconsideringtimefactor. 

System may be dynamic and may produce different results for the same input data based on system 

state(time). 
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h 

w + M - - ] [ 

SC - Neural Network 

 

 
Multilayer Perceptron: Derivation of the back-propagation, Algorithm , Learning 

Factors 
 

MULTI-LAYER PERCEPTRONS  

 

Intheprevioussectionweshowedthatbyaddinganextrahiddenunit,theXORproblemcanbesolved.For 

binaryunits,onecanprovethatthisarchitectureisabletoperformanytransformationgiventhecorrectconnections 

andweights.Themostprimitiveisthenextone.Foragiventransformationy=d(x),wecandividethesetofall 

possibleinputvectorsintotwoclasses:X+={x|d(x)=1}andX-={x|d(x).1} 

Since there are Ninput units, the total number of possible input vectors x is 2N. For every x p  c X+   

ahiddenunithcanbereservedofwhichtheactivationyhis1ifandonlyifthespecificpatternpispresentattheinput: 

wecanchooseitsweightsw
ih
equaltothespecificpatternxandthebiasU

h
equalto1-Nsuchthat 

p p 1 

y = sgn[w 
h i 

ih 
x - N +  -] 
i 2 

isequalto1forxp=wonly.Similarly,theweightstotheoutputneuroncanbechosensuchthattheoutputisoneas 

soonasoneoftheMpredicateneuronsisone: 

M 

y 
p

=sgn 
1

 
o h 

h=1 2 

Thisperceptronwillgiveyo=1onlyifxcX+:itperformsthedesiredmapping.Theproblemisthelargenumberof 

predicateunits,whichisequaltothenumberofpatternsinX+,whichismaximally2N.ofcoursewecandothesame 

trickforX-,andwewillalwaystaketheminimalnumberofmaskunits,whichismaximally2N-1.Amoreelegantproof 

isgivenbyMinskyandPapert,butthepointisthatforcomplextransformationsthenumberofrequiredunitsinthe 

hiddenlayerisexponentialinN. 

 
Back-Propagation 

 

Aswehaveseeninthepreviouschapter,asingle-layernetworkhassevererestrictions:theclassoftasksthat 

canbeaccomplishedisverylimited.Inthischapterwewillfocusonfeedforwardnetworkswithlayersofprocessing units. 

MinskyandPapertshowedin1969thatatwolayerfeed-forwardnetworkcanovercomemanyrestrictions, 

butdidnotpresentasolutiontotheproblemofhowtoadjusttheweightsfrominputtohiddenunits.Ananswertothis 

questionwaspresentedbyRumelhart,HintonandWilliamsin1986,andsimilarsolutionsappearedtohavebeen 

publishedearlier(Parker,1985;Cun,1985). 
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Thecentralideabehindthissolutionisthattheerrorsfortheunitsofthehiddenlayeraredeterminedbyback- 

propagatingtheerrorsoftheunitsoftheoutputlayer.Forthisreasonthemethodisoftencalledtheback-propagation 

learningrule.Back-propagationcanalsobeconsideredasageneralizationofthedeltarulefornon-linearactivation 

functionsandmultilayernetworks. 
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2 o o 

MULTI - LAYER FEED - FORWARD NETWORKS 

Afeed-forwardnetworkhasalayeredstructure.Eachlayerconsistsofunits,whichreceivetheirinputfrom units 

from a layer directly below and send their output to units in a layer directly above the unit. There are no 

connectionswithinalayer. 

TheNiinputsarefedintothefirstlayerofNh,1hiddenunits.Theinputunitsaremerely‘fan-out’units;no 

processingtakesplaceintheseunits.TheactivationofahiddenunitisafunctionFioftheweightedinputsplusabias, 

asgivenineq.(10.4).TheoutputofthehiddenunitsisdistributedoverthenextlayerofNh,2hiddenunits,untilthe 

lastlayerofhiddenunits,ofwhichtheoutputsarefedintoalayerofNooutputunits(seeFig.12.1). 

Althoughback-propagationcanbeappliedtonetworkswithanynumberoflayers,justasfornetworkswith 

binaryunits(section11.7)ithasbeenshown(Cybenko,1989;Funahashi,1989;Hornik,Stinchcombe,&White, 

1989;Hartman,Keeler,&Kowalski,1990)thatonlyonelayerofhiddenunitssufficestoapproximateanyfunction 

withfinitelymanydiscontinuitiestoarbitraryprecision,providedtheactivationfunctionsofthehiddenunitsarenon- 

linear(theuniversalapproximationtheorem). 

Fig. A multi-layer network with layers of units. 

Inmostapplicationsafeed-forwardnetworkwithasinglelayerofhidden 

unitsisusedwithasigmoidactivationfunctionfortheunits. 

 
THE GENERALISED DELTA RULE 

 
Sincewearenowusingunitswithnonlinearactivationfunctions,wehavetogeneralisethedeltarule,which 

waspresentedinchapter11 forlinearfunctionstothesetofnon-linearactivationfunctions.Theactivationisa 

differentiablefunctionofthetotalinput,givenby 

 

 
in which 

yP = F(Sp) ................................................................................................ (12.1) 
k k 

SP  =w yp    + 
k j 

jkk k 
....(12.2) 

 

To get the correct generalization of the delta rule as presented in the previous chapter, we must set 

 

p
w

jk 
= - 

EP
 

 

Wjk 

 

....(12.3) 

The error Ep is defined as the total quadratic error for pattern p at the output units : 

 
No 

EP = 
1(  dp    -yp)2 .......................................................................................................................................................... (12.4) 

o=1 





 

Unedited Version: Neural Network and Fuzzy System 

P 

k 

k 

S 

w 
j 

k 

k 

k j 

k 

 k 

y 

k 

where do is the desired output for unit 0 when pattemp is clamped.We further set E = EP
 

p 
as the summed 

squared error. We can write 

 

EP EP SP
 

 
   

SP 
w ...(12.5) 

 

 
 

By equation (12.2) we sec thal the scoond factor is 

 

P 

 k = yP jk 
 

...(12.6) 
 

 

 

When we define 
 

 

P = 
EP

 
 

 

SP
 

 
 

...(12.7) 
 

 
 

wewillgetanupdaterulewhichisequivalenttothedeltaruleasdescribedinthepreviouschapter,resultingina 

gradientdescentontheerrorsurfaceifwemaketheweightchangesaccordingto: 


p
W

jk
=PP ...(12.8) 

 

The trick is to figure out what p should be for each unit k in the network. The interesting result, 

whichwe nowderive,isthatthereisasimplerecursive computationofthese’swhichcanbeimplemented 

bypropagatingerrorsignalsbackwandthroughthenetwork. 

Tocomputepweapplythechainruletowritethispartialderivativeastheproductoftwofactors,onefactor 

reflectingthechangeinerrorasafunctionoftheoutputoftheunitandonereflectingthechangeinthecutputasa 

functionofchangesintheinput.Thus,wehave 

EP EP yP
 

P = k    
wP SP 

SP
 

k k k ...(12.9) 
 

Let us compute the scoond factor. By equation (12.1) we see that 
 
 

P      k= F(SP) 
SP k

 ...(12.10) 



w 
jk jk 
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o 

o o o o o 

o o o 

j 

o o 

o 

k k k n n n 

k k o w 

whichissimplythederivativeofthesquashingfunctionFforthekthunit,evaluatedattheactinputSftothatunit.To 

computethefirstfactorofequation(12.9),weconsidertwocases.First,assumethatunitkisanoutputunttk=oof 

thenetwork.Inthiscase,itfollowsfromthedefinitionofEPthat 

 

EP
 

 
 

 
= - (dP - yP ) 

 
...(12.11) 

yP o o 

 
 

which is the same result as we obtained with the standard delta rule. Substituting this  and  equation 

(12.10)inequation(12.9),weget 

P -(dp    -   yp) Ft   (Sp) ...(12.12) 

 
 
foranyoutputunito,Secondly,ifkisnotanoutputunitk-h,wedonotreadilyknowthecontributionoftheunitto 

theoutputerrorofthenetwork.However,theerrormeasurecanbewrittenasafunctionofthenetinputsfromhidden 

tooutputlayerEo-Ep(xp,xp,......sp,)andweusethechainruletowrite. 

 

N 

EP 
= EP SP

 
  

N 

= EP

N 

W
in 

N 

yP   EP
 

 

N 
w

ij
 P w

ij
 

yP 0=1  SP SP  0=1SP yP  j=1 j=1  SP j=1 

...(12.13) 
 

 

 

Substituting this in equation (12.9) yields. 
 

 

P =F(Sp) 

N
o

 


j=1 

 
 
 

P 
ho 

o 
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Equations (12.12) and (12.14) give a recursive procedure for computing the 6’s for all units in the network, 

whicharethenusedtocomputetheweightchangesaccordingtoequation(12.8).Thisprocedureconstitutesthegeneralized 

delta rule for a feed-forward network of non-linearunits. 

 

12.3.1 UnderstandingBack-Propagation 

 
The equations derived in the previous section may be mathematically correct, but what do they actually mean 
? 

Is there a way of understanding back-propagation other than reciting the necessary equations ? 

 
The answer is, of course, yes. In fact, the whole back-propagation process is intuitively very clear. What 

happensintheaboveequationsisthefollowing.Whenalearningpatternisclamped,theactivationvaluesarepropagated 

totheoutputunits,andtheactualnetworkoutputiscomparedwiththedesiredoutputvalues,we usuallyendupwithan error 

in each of the output units. Let’s call this error eofor a particular output unit o. We have to bring eotozero. 

The simplest method to do this is the greedy method: we strive to change the connections in the neural 

network 

insuchawaythat,nexttimearound,theerroreowillbezeroforthisparticularpattern.Weknowfromthedeltarulethat, in 

order to reduce an error, we have to adapt its incoming weightsaccording to 

Ow
ho

=(do- yo) yh 

Thatisstepone.Butitaloneisnotenough:whenweonlyapplythisrule,theweightsfrominputtohiddenunits are 

never changed, and we do not have the full representational power of the feed-forward network as promised by the 

universal approximationtheorem. 

In order to adapt the weights from input to hidden units, we again want to apply the delta rule. In this case, 

however, we do not have a value for 6 for the hidden units. This is solved by the chain rule which does the following: 

distribute the error of an output unit o to all the hidden units that is it connected to, weighted by this connection. 

Differentlyput,ahiddenunithreceivesadeltafromeachoutputunitoequaltothedeltaofthatoutputunitweightedwith (= 

multiplied by) the weight of the connection between thoseunits. 

In symbols: 6
h 
= \ 6

O
w

ho
Well, not exactly: we forgot the activation 

0 

 
 

function of the hidden unit; F’ has to be applied to the delta, before the backpropagation process can continue. 
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WORKINGWITH BACK-PROPAGATION 

 
Theapplicationofthegeneraliseddeltarulethusinvolvestwophases:Duringthefirstphasetheinputxis 

presentedandpropagatedforwardthroughthenetworktocomputetheoutputvaluesypforeachoutputunit.This 

outputiscomparedwithitsdesiredvaluedo,resultinginanerrorsignal6pforeachoutputunit. 

 

Thesecondphaseinvolvesabackwardpassthroughthenetworkduringwhichtheerrorsignalispassedto 

eachunitinthenetworkandappropriateweightchangesarecalculated. 

 

12.4.1 WeightAdjustmentswithSigmoidActivationFunction 

 
The results from the previous section can be summarised in three equations: 

 

* Theweightofaconnectionisadjustedbyanamountproportionaltotheproductofanerrorsignal6, 

ontheunitkreceivingtheinputandtheoutputoftheunitjsendingthissignalalongtheconnection: 
 


p
W

kj
=  PP ...(12.16) 

* Iftheunitisanoutputunit,theerrorsignalisgivenby 

 

P   -(dp    -   yp) Ft   (Sp) ...(12.17) 

Take as the activation function F the ‘sigmoid’function as defined in chapter 2 : 
 

yP = F(SP)= 

 
Inthiscasethederivativeisequalto 

1

 

1 + e-tP 

 

...( 12.18) 

 
F-1(SP) = __  1 =  1 (-e -t ) = -  1 (-e-t

p

) 
 

=  yp(1 -yp) ...(12.19) 

SP 1+e-S
P 

(1+e-S
P
)

2 
(1+e-S

P
)

2
(1+e-S

P
)

2
 

 
 

such that the error signal for an output unit can be written as : 

 

P   -(dp    -yp) yp (1-yp) ...(12.20) 

* Theerrorsignalforahiddenunitisdeterminedrecursivelyintermsoferrorsignalsoftheunitstowhichit 

directlyconnectsandtheweightsofthoseconnections.Forthesigmoidactivationfunction: 

N
o 

N
o 

P = Fp(Sp) 
j=1 

 

P 
ho 

- yP (1 - yp) 
j=1 

 

P 
ho ...( 12.21) 
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Learning Rate And Momentum 

 
The learning procedure requires that the change in weight is 6E . True gradient descent proportional to 

p 

6 

w 

. 

requiresthatinfinitesimalstepsaretaken.Theconstantofproportionalityisthelearningratey.Forpracticalpurposes 

wechoosealearningratethatisaslargeaspossiblewithoutleadingtooscillation.Onewaytoavoidoscillationat 

large,istomakethechangeinweightdependentofthepastweightchangebyaddingamomentumterm: 

Owjk (t + 1) = y6p 

yp+ aOw(t)... (12.22) 

k j jk 

where t indexes the presentation number and a is a constant which determines the effect of the previous weight 

change. 

TheroleofthemomentumtermisshowninFig.12.2.Whennomomentumtermisused,ittakesalongtime 

beforetheminimumhasbeenreachedwithalowlearningrate,whereasforhighlearningratestheminimumisnever 

reachedbecauseoftheoscillations.Whenaddingthemomentumterm,theminimumwillbereachedfaster. 
 

The descent in weight space. (a) for small learning rate; (b) for large learning rate: note the oscillations, and 

(c) with large learning rate and momentum term added. 

 
Learning Per Pattern 

 
Although,theoretically,theback-propagationalgorithmperformsgradientdescentonthetotalerroronlyiftheweights 

areadjustedafterthefullsetoflearningpatternshasbeenpresented,moreoftenthannotthelearningruleisapplied 

toeachpatternseparately,i.e.,apatternpisapplied,Episcalculated,andtheweightsareadapted(p=1,2,…,P). 

Thereexistsempiricalindicationthatthisresultsinfasterconvergence.Carehastobetaken,however,withtheorder 

inwhichthepatternsaretaught.Forexample,whenusingthesamesequenceoverandoveragainthenetworkmay 

becomefocusedonthefirstfewpatterns.Thisproblemcanbeovercomebyusingapermutedtrainingmethod. 

 

Example12.1:Afeed-forwardnetworkcanbeusedtoapproximateafunctionfromexamples.Supposewehavea 

system(forexampleachemicalprocessorafinancialmarket)ofwhichwewanttoknowthecharacteristics.The 

inputofthesystemisgivenbythetwo-dimensionalvectorxandtheoutputisgivenbytheone-dimensionalvectord. 

Wewanttoestimatetherelationshipd=ƒ(x)from80examples{xp,dp}asdepictedinFig.12.3(topleft).Afeed- 

forwardnetworkwasprogrammedwithtwoinputs,10hiddenunitswithsigmoidactivationfunctionandanoutput 

unitwithalinearactivationfunction.Checkforyourselfhowequation(4.20)shouldbeadaptedforthelinearinstead 

ofsigmoidactivationfunction.Thenetworkweightsareinitializedtosmallvaluesandthenetworkistrainedfor5,000 

learningiterationswiththeback-propagationtrainingrule,describedintheprevioussection.Therelationshipbetween 

xanddasrepresentedbythenetworkisshowninFig.12.3(topright),whilethefunctionwhichgeneratedthe 

learningsamplesisgiveninFig.12.3(bottomleft).TheapproximationerrorisdepictedinFig.12.3(bottomright). 

Weseethattheerrorishigherattheedgesoftheregionwithinwhichthelearningsamplesweregenerated.The 

networkisconsiderablybetteratinterpolationthanextrapolation. 
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Fig. Example of function approximation with a feed forward network. Top left: The original learning 

samples; Top right: The approximation with the network; Bottom left: The function which 

generated the learning samples; Bottom right: The error in the approximation. 

 

 

Exercise:  

Q1. What is mean by Single-Layer NN Systems. 

Q2. Explain Architecture of a simple ADALINE. 

Q3. What are the use of ADLINE. 

Q4. What are the Applications of Neural Network. 

Q5. What is mean by Learning Algorithm. 

Q6. Explain MULTI-LAYER PERCEPTRONS 

Q7. What is the process of Back Propagation. 

Q8. Write a short note on MULTI - LAYER FEED - FORWARD NETWORKS. 

Q 9. List out the GENERALISED DELTA RULE. 

Q10. How we can understand the Back Propagation. 
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Q11. Explain WORKINGWITH BACK-PROPAGATION. 

Q12. What is mean by Learning Rate And Momentum. 
 
 



 

 
 
Unedited Version: Neural Network and Fuzzy System 

Chapter 5 

 
Radial Basis and Recurrent Neural Networks: RBF network structure , theorem and the reparability 

of patterns, RBF learning strategies 

 
RadialBasisandRecurrentNeuralNetworks:RBFnetworkstructure,theoremandthereparabilityofpatternsRBF 

learningstrategies,K-meansandLMSalgorithms,comparisonofRBFandMLPnetworks:energyfunction,spurious 

states, errorperformance. 

Radialbasisfunction(RBF)networksarefeed-forwardnetworkstrainedusingasupervisedtrainingalgorithm.They 

aretypicallyconfiguredwithasinglehiddenlayerofunitswhoseactivationfunctionisselectedfromaclassof 

functionscalledbasisfunctions.Whilesimilartobackpropagationinmanyrespects,radialbasisfunctionnetworks 

haveseveraladvantages.Theyusuallytrainmuchfasterthanbackpropagationnetworks.Theyarelesssusceptibleto 

problemswithnon-stationaryinputsbecauseofthebehaviouroftheradialbasisfunctionhiddenunits. 

PopularizedbyMoodyandDarken(1989),RBFnetworkshaveproventobeausefulneuralnetworkarchitecture. 

ThemajordifferencebetweenRBFnetworksandbackpropagationnetworks(thatis,multilayerperceptrontrained 

byBackPropagationalgorithm)isthebehaviourofthesinglehiddenlayer.RatherthanusingthesigmoidalorS- 

shapedactivationfunctionasinbackpropagation,thehiddenunitsinRBFnetworksuseaGaussianorsomeother 

basiskernelfunction.Eachhiddenunitactsasalocallytunedprocessorthatcomputesascoreforthematchbetween 

theinputvectoranditsconnectionweightsorcentres.Ineffect,thebasisunitsarehighlyspecializedpatterndetectors. 

Theweightsconnectingthebasisunitstotheoutputsareusedtotakelinearcombinationsofthehiddenunitsto 

productthefinalclassificationoroutput.Inthischapterfirstthestructureofthenetworkwillbeintroducedanditwill 

beexplainedhowitcanbeusedforfunctionapproximationanddatainterpolation.Thenitwillbeexplainedhowitcan 

betrained. 

The Structure of the RBF Networks 

RadialBasisFunctionsarefirstintroducedinthesolutionoftherealmultivariableinterpolationproblems.BroomheadandL

owe(1988),andMoodyandDarken(1989)werethefirsttoexploittheuseofradialbasisfunctionsinthe 

designofneuralnetworks. 

The structure of an RBF networks in its most basic form involves three entirely different layers 
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Structure of the Standart RBF network 

Theinputlayerismadeupofsourcenodes(sensoryunits)whosenumberisequaltothedimensionpoftheinput vectoru. 
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Hidden layer 

Thesecondlayeristhehiddenlayerwhichiscomposedofnonlinearunitsthatareconnecteddirectlytoallofthe 

nodesintheinputlayer.Itisofhighenoughdimension,whichservesadifferentpurposefromthatinamultilayer 

perceptron. 

Eachhiddenunittakesitsinputfromallthenodesatthecomponentsattheinputlayer.Asmentionedabovethehidden 

unitscontainsabasisfunction,whichhastheparameterscenterandwidth.Thecenterofthebasisfunctionforanode 

iatthehiddenlayerisavectorciwhosesizeistheastheinputvectoruandthereisnormallyadifferentcenterforeach 

unitinthenetwork. 

First,theradialdistancedi,betweentheinputvectoruandthecenterofthebasisfunctionciiscomputedforeachunit 

iinthehiddenlayeras 

 

 

di= || u -ci|| (5.1.1) 

 
using the Euclidean distance. 

 

 
The output hiof each hidden unit t is then computed by applying the basis function G to this distance. 

hi=  G( di,i) (5.1.2) 

 
AsitisshowninFigure5.2.thebasisfunctionisacurve(tipicallyaGaussianfunction,thewidthcorrespondingtothe 

variance.i)whichhasapeakatzerodistanceanditdecreasesasthedistancefromthecenterincreases. 

 



 

 
 
Unedited Version: Neural Network and Fuzzy System 

Figure5.2.TheresponseregionofanRBFhiddennodearoundits 

centerasafunctionofthedistancefromthiscenter. 
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i 

ForaninputspaceuR2,thatisM=2,thiscorrespondstothetwodimensionalGaussiancenteredatciontheinput 

space,wherealsocR2,asitisshowninFigure5.3 

Figure5.3ResponseofahiddenunitontheinputspaceforuR2
 

 
 

5.1.2 Outputlayer 

Thetransformationfromtheinputspacetothehiddenunitspaceisnonlinear,whereasthetransformationtothe 

hiddenunitspacetotheoutputspaceislinear. 

The jth output is computed as 

t 

xj = fj (u) = woj+wyhi j = 1,2,.....,M (5.1.3) 
(w) 

 

 

 

Mathematicalmodel 

In summary, the mathematical model of the RBF network can be expressed as; 

 

 
x=f(u),f:RN RM (5.1.4) 

 
 

t 

x
j 
=f

j
(u)=w

oj
+w

g
G(|u-ct|) j=1,2,.....,M (5.1.5) 
|u| 
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where is the Euclidean distance between u and ci 
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i 

5.2 Functionapproximation 

Let y=g(u) be a given function of u, yR, uR, g:R  R, G i=1.. L, be a finite set of basis functions. 

 
 
The function g can be written in terms of the given basis functions as 

t 

y= g(u) = wtGt  (u) +r(u) (5.2.1) 
|u| 

 

 

 

where r(u) is the residual. 

 

 
The function y can be approximated as 

t 

y= g(u) wtGt(u) (5.2.2) 
|u| 

 
 

 

The aim is to minimize the error by setting the parameters of Giappropriately. A possible choice for the error 

definition is the L2 norm of the residual function r(u) which is defined as 

 
||y(u)||1.2  = r(u)2 (5.2.3) 

 
 

5.2.1 Approximation byRBFNN 

Now,considerthesingleinputsingleoutputRBFnetworkshowninFigure5.4.Thenxcanbewrittenas t 

x=f(u)=w
t
G

t
(||u-c

t
||) (5.2.4) 

|u| 
 

 

Bytheuseofsuchanetwork,ycanbewritten t 

y = wtG (||u - ct||) + r(u) = f(u)+r(u) (5.2.5) 
|u| 

 
 

 

where f(u) is the output of the RBFNN given in Figure 5.4 and r(u) is the residual. 

By setting the center c
i
, the variance i, and the weight w

i
the error appropriately, the error can be 
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Figure 5.4 Single input, single output RBF network 
 

Whatever we discussed here for g:RR, can be generalized to g:RN RM easily by using an N input, 

M output RBFNN given in figure 5.1 previously. 

 

5.2.2 DataInterpolation 

Giveninputoutputtrainingpatterns(uk,yk)
t
k=1,2...K,theaimofdatainterpolationistoapprimatethefunctiony 

fromwhichthedataisgenerated.Sincethefunctionyisunknown,theproblemcanbestatedasaminimization 

problemwhichtakesonlythesamplepointsintoconsideration: 

Choose wijand ci, i=1,2 ... L. j=1,2 ... M so as to minimize 

t 

J(wtc)= ||yk-f(uk)||2 (5.2.6) 
|u| 
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3 1 2 3 

Asanexample,theoutputofanRBFnetworktrainedtofitthedatapointsgiveninTable5.1isgiveninFigure5.5. 

 

 
TABLEI:13datapointsgeneratedbyusingsumofthreegaussisnswithc1=0.2000 c2 = 0.6000 

c =0.9000 w = 0.2000 w = 0.5000 w = 0.3000  =0.1000 

 
 

 

data no 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

9 
 

10 
 

11 
 

12 
 

13 

x 0.0500 0.2000 0.2500 0.3000 0.4000 0.4300 0.4800 0.6000 0.7000 0.8000 0.9000 0.9500 

f(x) 0.863 0.2662 0.2362 0.1687 0.1260 0.1756 0.3290 0.6694 0.4573 0.3320 0.4063 0.3535 

 

Figure 5.5 Output of the RBF network trained to fir the datapoints given in Table 5.1 
 

 

5.3 Training RBFNetworks 

ThetrainingofaRBFnetworkcanbeformulatedasanomilinearunconstrainedoptimizationproblemgivenbelow: 

Giveninputoutputtrainingpatterns(uk,yk)tk=1,2...K,Choosewijandci,i=1,2...L.j=1,2...M 

soastominimize 
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Note that the training problem becomes quadratic once if ci’s (radial basis function centers) are 

known. 

 

 

 

5.3.1 Adjusting thewidths 

 
Initssimplestform,allhiddenunitsintheRBFnetworkhavethesamewidthordegreeofsensitivitytoinputs. 

However,inportionsoftheinputspacewheretherearefewpatterns,itissometimedesirabletohavehiddenunits 

withawideareaofreception.Likewise,inportionsoftheinputspace,whicharecrowded,itmightbedesirableto 

haveveryhighlytunedprocessorswithnarrowreceptionfields.Computingtheseindividualwidthsincreasesth

e performanceoftheRBFnetworkattheexpenseofamorecomplicatedtrainingprocess. 

 

 

 
5.3.2 Adjusting thecenters 

 
Rememberthatinabackpropagationnetwork,allweightsinallofthelayersareadjustedatthesametime.Inradial 

basisfunctionnetworks,however,theweightsintothehiddenlayerbasisunitsareusuallysetbeforethesecondlaye

r 

ofweightsisadjusted.Astheinputmovesawayfromtheconnectionweights,theactivationvaluefallsoff.This 

behaviorleadstotheuseoftheterm“center”forthefirst-layerweights.Thesecenterweightscanbecomputedusing 

Kohonenfeaturemaps,statisticalmethodssuchasK-

Meansclustering,orsomeothermeans.Inanycase,theyare 

thenusedtosettheareasofsensitivityfortheRBFnetwork’shiddenunits,whichthenremainfixed. 

 

 

 
5.3.3 Adjusting theweights 

 
Oncethehiddenlayerweightsareset,asecondphaseoftrainingisusedtoadjusttheoutputweights.Thisprocess 

typicallyusesthestandardsteepestdescentalgorithm.Notethatthetrainingproblembecomesquadraticonceifci’

s(radialbasisfunctioncenters)areknown. 

 
 
 
 
 



 

 
 
Unedited Version: Neural Network and Fuzzy System 

Exercise 
 

Q1. Write a short on RadialBasisandRecurrentNeuralNetworks 

Q2. Explain the Structure of the RBF Networks. 

Q3. What is mean by Hidden layer. 

Q4. What is mean by Function approximation. 

Q5. Write a short note on DataInterpolation. 

Q6. Write a short note on Adjusting the centers. 

Q7. Write a short note on Adjusting the widths. 
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Chapter 6 

K-means and LMS algorithms, Comparison of RBF and MLP networks 

k-means clustering algorithm 

 
k-meansisoneofthesimplestunsupervisedlearningalgorithmsthatsolvethewellknownclusteringproblem.The 

procedurefollowsasimpleandeasywaytoclassifyagivendatasetthroughacertainnumberofclusters(assumek 

clusters)fixedapriori.Themainideaistodefinekcenters,oneforeachcluster.Thesecentersshouldbeplacedina 

cunningwaybecauseofdifferentlocationcausesdifferentresult.So,thebetterchoiceistoplacethemasmuchas 

possiblefarawayfromeachother.Thenextstepistotakeeachpointbelongingtoagivendatasetandassociateitto 

thenearestcenter.Whennopointispending,thefirststepiscompletedandanearlygroupageisdone.Atthispoint 

weneedtore-calculateknewcentroidsasbarycenteroftheclustersresultingfromthepreviousstep.Afterwehave 

theseknewcentroids,anewbindinghastobedonebetweenthesamedatasetpointsandthenearestnewcenter.A 

loophasbeengenerated.Asaresultofthisloopwemaynoticethatthekcenterschangetheirlocationstepbystep 

untilnomorechangesaredoneorinotherwordscentersdonotmoveanymore.Finally,this algorithmaimsat 

minimizinganobjectivefunctionknowassquarederrorfunctiongivenby: 

 

C C
i
  i j 

 

 
 

where, 

J(V) = (||x -v ||)2
 

i=1j=1 

‘||xi-vj||’istheEuclideandistancebetweenxiandvj. 

‘c’isthenumberofdatapointsinithcluster. 

‘c’ is the number of cluster centers. 

 

 
 

Algorithmic steps for k-means clustering 
 

LetX={x
1
,x

2
,x

3
,.............,xn}bethesetofdatapointsandV={v

1
,v

2
, ........................ v

c
}bethesetofcenters. 

1) Randomly select ‘c’ clustercenters. 

2) Calculalethedistancebetweeneachdatapointandclustercenters. 

3) Assignthedatapointtotheclustercenterwhosedistancefromtheclustercenterisminimumofalltheclusterc

enters. 

4) Recalculatethenewclustercenterusing: 

 

 
V

i
=(1/ci) 

Ci x
ij=1 
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i   where,‘c’representsthenumberofdatapointsinithcluster. 

 

 

5) Recalculatethedistancebetweeneachdatapointandnewobtainedclustercenters. 
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Advantages 
 

 

1) Fast,robustandeasiertounderstand. 

2) Relativelyefficient:O(tknd),wherenis#clusters,dis#dimensionofeachobject,andtis#iterations. 

Normally,k,t,d<<n. 

3) Givesbestresultwhendatasetaredistinctorwellseparatedfromeachother. 
 

Fig. I : Showing the result of k-means for ‘N’ = 60 and ‘c’ = 3 

Note : For more detailed figure for k-means algorithm please refer to k-means figuresub page. 

 

Disadvantages 
 

 

1) Thelearningalgorithmrequiresopriorispecificationofthenumberofclustercenters. 

2) TheuseofExclusiveAssigmnent-Iftherearetwohighlyoverlappingdatathenk-meanswillnotbeableto 

resolvethattherearetwoclusters. 

3) Thelearningalgorithmisnotinvarianttonon-lineartransformationi.e.withdifferentrepresentationofdata 

wegetdifferentresults(datarepresentedinformofcartesianco-ordinatesandpolarco-ordinateswillgive 

differentresults). 

4) Euclideandistancemeasurescanunequallyweightunderlyingfactors. 

5) Thelearningalgorithmprovidesthelocaloptimaofthesqurederrorfunction. 
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5) Thelearningalgorithmprovidesthelocaloptimaofthesquarederrorfunction. 

6) Randomlychoosingoftheclustercentercannotleadustothefruitfulresult.Pl.referFig. 

7) Applicableonlywhenmeanisdefinedi.e.failsforcategoricaldata. 

8) Unabletohandlenoisydataandoutliers. 

9) Algorithmfailsfornon-lineardataset. 

Fig II :Show.the non-linear data set where k-means algorithm fails. 
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t 

wt (n + 1) = wt (n) + [ x (n) f(n) - w (n)x (n) x (n) ] 

6.4 Least-Mean-Square Algorithm 

Theleast-mean-square(LMS)algorithmisbasedontheuseofinstantaneousestimatesoftheautocorrelationfunction 

rt(j.k)andthecross-correlationfunctionrul(k).Theseestimatesarededucteddirectlyfromthedefiningequations (6.8) 

and (6.7) as follows: 

 
and 

p
1
(j, k, n)  -x

1
(m)x

1
(n) (6.20) 

 
p
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(k, n) - x
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(m) x
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Theuseofahatinptandpuisintendedtosignifythatthesequantitiesare“estimates.”Thedefinitionsintroducedin 

Eqs.(6.20)and(6.21)havebeengeneralizedtoincludeanonstationaryenvironment,inwhichcaseallthesensory 

signalsandthedesiredresponseassumetime-varyingformstoo.Thus,substitutingp
1
(j,k,n)-x

1
(m)x

1
(n)andp

tt
(k, 

n) inplaceofr,(j,k)andfm(k)inEq.(6.17).Weget 
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t 
y  y j j 

= wt  (n) + [d(n)- w (m)x (n)  ]  x(n) 
j-1 

 

=wt(n)+[d(n)-y(m)]x(n)]x(n), k-1,2,......P. (6.22) 
y j j 

 

 

where y(n) is the output of the spatial filter computed at iteration n in accordance with the LMS algorithm; that is, 

d(n) =   w
y
(m)x

j
(n) (6.23) 

j-1 

 

NotethatinEq.(6.22)wehaveusedwy(n)inplaceofsy(n)toemphasizethefactthatEq.(6.22)invilves“estimates” 

oftheweightsofthespatialfilter. 

Figure6.3illustratestheoperationalenvironmentoftheLMSalgorithm,whichiscompletelydescribedby 

Eqs.(6.22)and(6.23).AsummaryoftheLMSalgorithmispresentedinTable6.1,whichclearlyillustratesthe 

simplicityofthealgorithm.Asindicatedinthistable,fortheinitializationofthealgorithm,itiscustomarytosetallthe 

initialvaluesoftheweightsofthefilterequaltozero. 

Inthemethodofsteepestdescentappliedtoa“known”environment,theweightvectorw(n),madeupofthe 

weights wy(n), wy(n),,w, (n). starts at some initial value w(i), and then follows a precisely defined trajectory 

(alongtheerrorsurface)thateventuallyterminatesontheoptimumsolutionw,providedthatthelearning-rateparameter 

nischosenproperly.Inconstrast,intheLMSalgorithmappliedtoan“unknown”environment,theweightvector 

w(n),respresentingan“estimate”ofw(n),followsarandomtrajectory.Forthisreason,theLMSalgorithmis 

sometimesreferredtoasa“stochasticgradientalgorithm.”AsthenumberofiterationsintheLMSalgorithmapproaches 
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infinity,w(n)performsarandomwalk(Brownianmotion)abouttheoptimumsolutionw,;seeAppendixD. 
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2 

p 

 

 

Desired response 

FIGURE 6.3 Adaptive spatial filter. 

 
AnotherwayofstatingthebasicdifferencebetweenthemethodofsteepestdescentandtheLMSalgorithm 

isintermsoftheerrorcalculationsinvolved.Atanyiterationn,themethodofsteepestdescentminimizesthemean- 

squarederrorj(n).Thiscostfunctioninvolvesensembleaveraging,theeffectofwhichistogivethemethodof 

steepestdescentan“exact”gradientvectorthatimprovesinpointingaccuracywithincreasingn.TheLMSalgorithm, 

ontheotherhand,minimizesaninstantaneousestimateofthecostfunctionj(n).Consequently,thegradientvectorin 

theLMSalgorithmis“random,”anditspointingaccuracyimproves“ontheaverage”withincreasingn. 

ThebasicdifferencebetweenthemethodofsteepestdescentandtheLMSalgorithmmayalsobestatedin 

termsoftime-domainideas,emphasizingotheraspectsoftheadaptivefilteringproblem.Themethodofsteepest 

discentminimizesthesumoferrorsquaresx,   (n),integratedoverallpreviousiterationsofthealgorithmuptoand 

including estimates of the autocorrelation function y,  and cross-correlation function yn. In constract, theLMS 

algorithmsimplyminimizestheinstantaneouserrorsquaredy(n),definedas(
1
)e2(n),therebyreducingthestorage 

requirementtotheminimumpossible.Inparticular,itdoesnotrequirestoringanymoreinformationthanispresentin 

theweightsofthefilter. 

 
TABLE 6.1 Summary of the LMS Algorithm 

1. Initialization.Set 

w
y
(1)  -  0   fork-1,2, ........ p. 

2. Filtering.  For time n-1,2, .......,compute. 

 

y(n) = w
y
(n)x

j 
(n) 

j-1 
 

e(n) - d(n) - y(n) 

wt
1
(n + 1) -  wx(n)  +ny(n) x

2
(n)   fork-1,2, ............ p 
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t 2 t 

ItisalsoimportanttorecognizethattheLMSalgorithmcanoperateinastationeryornonstationaryenvironment. 

Bya“nonstationery”environmentwemeanoneinwhichthestatisticsvarywithtime.Insuchasituationtheoptimum 

solutionassumesatime-varyingform,andtheLMSalgorithmthereforehasthetaskofnotonlyseekingtheminimum 

pointoftheerrorsurfacebutalsotruckingit.Inthiscontext,thesmallerwemakethelearning-rateparametern,the 

betterwillbethetrackingbehaviourofthealgorithm.However,thisimporovementinperformanceisattainedatthe 

costofaslowadaptationrate(Haykin,1991;WidrowandStearns,1985). 

Signal-Flow Graph Representation of the LMS Algorithm 

Equation(6.22)providesacompletedescriptionofthetimeevolutionoftheweightsintheLMSalgorithm.Rewriting 

thesecondlineofthisequationinmatricform,wemayexpressitasfollows: 

W(n+1)=w(n)+n[d(n)-x2(n)w(n)]x(n) (6.24) 
 

where 

 

 
and 

 
 

w(n) - [w (n), w (n), ......,w]t (6.25) 

 

 
x(n) - [w (n), w (n), ......,x(n)]t (6.26) 

t 2 t 

Rearranging terms in Eq. (6.24), we have 

W(n+1)=[I-nx(n)x2(n)]w(n)+nx(n)d(n) (6.27) 

whereIistheidentitymatrix.InusingtheLMSalgorithm,wenotethat 

W(n)  = z-1 [w(n)+1)] (6.28) 

 

 
wherez-1istheunit-delayoperatorimplyingstorage.UsingEqs.(6.27_and(6.28),wemaythusrepresenttheLMS 

algorithmbythesignal-flowgraphdepictedinFig.6.4. 

Thesignal-flowgraphofFig.6.4revealsthattheLMSalgorithmisanexampleofastochasticfeedback 

system.ThepresenceoffeedbackhasaprofoundimpactontheconvergencebehaviouroftheLMSalgorithm,as 

discussednext. 

 

 

 

 

 

 

 

 

 

 
FIGURE 6.4 Signal-flow graph representation of the LMS algorithm. 

 



 

9 Unedited Version: Neural Network and Fuzzy System 

 

 

 

Q1. What is mean by k-means clustering algorithm. 

Q2.What are the Algorithmic steps for k-means clustering. 

Q3. Write a Advantages and Dis Advantage of k-means clustering. 
Q4. Explain Least-Mean-Square Algorithm. 

Q5. Explain Signal-Flow Graph Representation of the LMS Algorithm 
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Chapter 7 

Hopfield networks: energy function, spurious states, error performance.   

 

 

Hopfield Network 

 

 

HopfieldneuralnetworkwasinventedbyDr.JohnJ.Hopfieldin1982.Itconsistsofasinglelayerwhichcontains one or 

more fully connected recurrent neurons. The Hopfield network is commonly used for auto-association and 

optimizationtasks. 

Discrete Hopfield Network 

 

A Hopfield network which operates in a discrete line fashion or in other words, it can be said the input and 

outputpatternsarediscretevector,whichcanbeeitherbinary(0,1)orbipolar(+1,-1)innature.Thenetworkhas 

symmetrical weights with no selfconnectionsi.e., w
ij
= w

ji
and w

ii 
=0. 

Architecture 

 

Following are some important points to keep in mind about discrete Hopfield network - 
 

* Thismodelconsistsofneuronswithoneinvertingandonenon-invertingoutput. 
 

* Theoutputofeachneuronshouldbetheinputofotherneuronsbutnottheinputofself. 
 

* Weight/connectionstrengthisrepresentedbyw
ij
. 

* Connectionscanbeexcitatoryaswellasinhibitory.Itwouldbeexcitatory,iftheoutputoftheneuronissame 

astheinput,otherwiseinhibitory. 

* Weightsshouldbesymmetrical,i.e.w
ij
=w

ji
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TheoutputfromY
1
goingtoY

2
,Y

i
andY

n
havetheweightsw

12
,w

1i
andw

1n
respectively. 

Similarly,otherarcshavetheweightsonthem. 
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Training Algorithm 

 

DuringtrainingofdiscreteHopfieldnetwork,weightswillbeupdated.Asweknowthatwecanhavethebinary input 

vectors as well as bipolar input vectors. Hence, in both the cases, weight updates can be done with the 

followingrelation. 

Case 1 - Binary input patterns 

For a set of binary patterns s(p), p = 1 to P 

Here, s(p)  =s
i
(p),s

2
(p), ...... ,S

i
(P), ...... ,S

n
(P) 

Weight Matrix is given by 
p 

ij  i j 

w = [2s (p) - 1] [2s (p) - 1] for ij 

p=1 
 

Case2- Bipolar inputpatterns 

For a set of binary patterns s(p), p = 1 to P 

Here,s(p)=s1(p),....,s2(p),....,si(p), ........................ , Sn(P) 

Weight Matrix is given by 
p 

w
ij 

=  [s
i
(p)] [s

j
(p) ] for i j 

p=1 

 

Step1- Initializetheweights,whichareobtainedfromtrainingalgorithmbyusingHebbianprinciple. 

Step2- Performsteps3-9,iftheactivationsofthenetworkisnotconsolidated. 

Step3- Foreachinputvectorx,performsteps4-8. 

Step4- Makeinitialactivationofthenetworkequaltotheexternalinputvectorxasfollows- 

y
i
= x

i
for i = 1 to 

nStep5- ForeachunitY
i
,performsteps6-9. 

Step6- Calculatethenetinputofthenetworkasfollows- 

Y
ini

=   x
i
+y

j 
w

ji 

j 

 
Step7- Applytheactivationasfollowsoverthenetinputtocalculatetheoutput- 

1 ifyini>

 iyi = yi

 ifyini= i 

0 ifyini< i 

Here i is the threshold. 
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i i f 

f f i f i 

n 

i i i 

i i 

= - 1 yyw - x y + y 

= y yw - xy + w 9  

 

Step9- Testthenetworkforconjunction. 

Energy Function Evaluation 

An energy function is defined as a function that is bonded and non-increasing function of the state of the system. 

EnergyfunctionalsocalledLyapunovfunctiondeterminesthestabilityofdiscreteHopfieldnetwork,andischaracterized as 

follows- 

n n n n 

f 2 i   j    ij  ii  ii 

i=1    j=1 i=1 i=1 
 

 
 

Condition :In a stable network, whenever the state of node changes, the above energy function will decrease. 

Suppose when node ihas changed state from y (k) to y (k + 1) then the Energy change E is given by the 

following relation. 

E = E (y (k+1) - E (y (k) ) 
 
 

= - ( w y (k) + x - )( y (k+1) - y (k) ) 
iji 

j=1 

i i i i 

 

= - (net )y 

Here y = y (k + 1) - y (k)
 

 

 

The change in energy depends on the fact that only one unit can update its activation at a time. 

 
Continuous Hopfield Network 

 
IncomparisonwithDiscreteHopfieldnetwork,continuousnetworkhastimeasacontinuousvariable.Itisalsoused 

inautoassociationandoptimizationproblemssuchastravellingsalesmanproblem. 

Model: Themodelorarchitecturecanbebuildupbyaddingelectricalcomponentssuchasamplifierswhichcan 

maptheinputvoltagetotheoutputvoltageoverasigmoidactivationfunction. 

Energy Function Evaluation : 

n n n n n y
i
 

1 1 
f 2 ij    ij  ii   ijri

0 

i=1    j=1 i=1 i=1 j=1 

ji ji 

 

Here  is gain parameter and 9riinput conductance. 

E 

E a-1 (y)dy 
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Some important points about Boltzmann Machine - 
 

* Theyuserecurrentstructure. 
 

* Theyconsistofstochasticneurons,whichhaveoneofthetwopossiblestates,either1or0. 
 

* Someoftheneuronsinthisareadaptive(freestate)andsomeareclamped(frozenstate). 
 

* IfweapplysimulatedannealingondiscreteHopfieldnetwork,thenitwouldbecomeBoltzmannMachine. 

 

 

Reference : 
 

https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_hopfield.htm 

 

spurious states 

purious states are patterns xsPxsP, where Pp is the set of patterns to be memorized. In other 

words, they 

correspondtolocalminimaintheenergyfunctionthatshouldn’tbethere.Theycanbecomposedofvariouscombinatio

ns 

oftheoriginalpatternsorsimplythenegationofanypatternintheoriginalpatternset.Thesetendtobecomepresent 

when=|P|/N=|P|/N(whereNN isthenumberofneurons)becomestoohighforacertainlearningrule. 

Itturns outthatspurious statesareimportant forderivingáá inHopfieldnetworks.Becauseweknowthatthe 

dynamicalupdateequationsalwaysreducetheenergyofasystem,spuriousminimawilltrapthenetworkandretur

n 

incorrectorincompleteresults.Typicallythesespuriousminimahaveahigherenergyandsmallerbasinthanrea

l 

patterns(thoughthisisnotguaranteedwhen|P||P|istoolarge).Thisnaturallyleadstoastochasticsolutionusinga 

MonteCarlotypeapproach,whereenoughenergyisgiventotheneuronssothattheyaren’tstuckinthelocalminima 

butdon’tjumpoutoftheclosestcorrectpatternminimum(theseareBoltzmannmachines). 

Here’ssomehand-

wavyintuition.Thelearningrulesprojectthecurrentconfigurationofthenetworkintothesubspace 

spannedbythepatternvectorsandthencalculatethepatternvectorthatliesclosesttotheprojectedconfiguration 

vector.Butevenifyouhadcompletelyorthogonalpatterns,youcannotspecifymorepatternsthanthenumberof 

neurons(becausetheneitheryouduplicateapatternorthenextpatternyouaddisn’torthogonal). 

Therealproblemisthatmostlearningrulesgive<<N<<N(e.g.theHebbrulegives0.1380.138using 

mean-fieldderivations)becausetheprojectionintothesubspaceisnotorthogonal.Thisisnotanissueifthepatterns 

http://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_hopfield.htm
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themselvesareorthogonal(i.e.completelyuncorrelated),butthatisveryrarelythecaseinpractice. 

Therearewaysto“unlearn”thesespuriousminimatoo.Seethisquestionforgoodreferences,especiallycheckthe 

Rojasbookwhichisavailableforfreeonline.Also,ifyoucangetyourhandsontheHertzbook,lookatEq.(10.22) 

whichisthemeanfieldequationwhosesolutionsgivethepossiblestates,includingspuriousones(theyalsogivean 

explanationforhowtofindthemspecifically). 

Exercise: 

Q1. Write short note onHopfield Network. 

Q2. Explain Discrete Hopfield Network. 

Q3. What are the important points of discrete Hopfield network. 

Q4. Write a note on Training Algorithm with its cases 

Q5. Explain Energy Function Evaluation. 

Q6. What is mean by Continuous Hopfield Network. 
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Chapter 8 

 

Simulated Annealing: The Boltzmann machine, Boltzmann learning rule, Bidirectional 

Associative Memory. 

Simulated Annealing 
 

Statistical Mechanics and the Simulated Annealing 

 
Thestartingpointofstatisticalmechanicsisanenergyfunction.Weconsideraphysicalsystemwithasetof 

probabilisticstatesx={x},eachofwhichhasenergyE(x).ForasystematatemperatureT>0,itsstatexvarieswith 

time,andquantitiessuchasEthatdependonthestatefluctuates.Althoughtheremustbesomedrivingmechanismfor 

thesefluctuations,partoftheideaoftemperatureinvolvestreatingthemasrandom.Whenasystemisfirstprepared, 

orafterachangeofparameters,thefluctuationshasonaverageadefinitedirectionsuchthattheenergyEdecreases. 

However,sometimeslater,anysuchtrendceasesandthesystemjustfluctuatesaroundaconstantaveragevalue. 

Thenwesaythatthesystemisinthermalequilibrium. 

 

 
Afundamentalresultfromphysicstellsusthatinthermalequilibriumeachofthepossiblestatesxoccurs 

withprobability,determinedaccordingtoBoltzmann-Gibbsdistribution, 

 

 
1 

P(x)=  e 
Z 

- 
E(x)
T 

 

 

where the normalizing factor 

Z  =e 
- E(x) 

x 
T 

 

 

is called the partition function and it is independent of the state x but temperature. 

 
TheBoltzmann-Gibbsdistributionisusually derivedfromvery general assumptionsaboutmicroscopic dynamics 

ofmaterials.ThecoefficientTisrelatedtoabsolutetemperatureTaofthesystemas 

T  =K
B
T

a
 

wherecoefficientkBisBoltzmann’sconstanthavingvalue1.38x10-16erg/K.Interestinglyenough,thesame 
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distributioncanalsobeachievedintheviewpointofinformationtheory.AlthoughthetemperatureThasnophysical 

meaningininformationtheory,itisinterpretedasapseudotemperatureinanabstractmanner. 
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K  

Givenastatedistributionfunctionfd(x),letP(x(k)=xi)betheprobabilityofthesystembeingatstatexiat 

thepresenttimek.Furthermore,letP(x(k+1)=xj|x(k)=xi)representtheconditionalprobabilityofnextstatexjgiven 

thepresentstateisxi.ThenotationP(xi)andP(xjxi)willbeusedsimplytosdenotetheseprobabilitiesrespectively. 

Inequilibriumthestatedistributionandthestatetransitionreachesabalancesatisfying: 

 

P(xj  | xi) P(xi) = P(xi| xj) P(xj) 

Therefore, in equilibrium the Boltzmann Gibbs distribution given by equation (8.1.1) results in : 
 

 
P(xj | xi) = 

1 
 

 

1+e  

 

where (xj)  (xI) 

Figure 8.1 Relation between temperature and probability of the states [Kung 93] 

 

TheMetropolisalgorithmprovidesasimplemethodforsimulatingtheevolutionofphysicalsysteminaheat 

bathtothermalequilibrium[Metropolisetal].ItisbasedonMonteCarloSimulationtechnique,whichaimsto 

approximatetheexpectedvalue<g(x)>ofsomefunctiong(x)ofarandomvectorxwithagivendensityfunction fd(x). 

For this purpose several x vectors, say x=Xk k=1..K, are randomly generated according to the density 

functionfd(x)andthenYkisfoundasYk=g(Xk).Byusingthestronglawoflargenumbers: 

lim1Yk = < Yk > = < g(x) > 

 

the average of generated Y vectors can be used as an estimate of <g(x)> [Sheldon 1989]. 
 

In each step of the Metropolis algorithm, an atom (unit) of the system is subjected to a small random 

displacement,andtheresultingchangeEintheenergyofthesystemisobserved.IfE<0,thenthedisplacementis 

accepted,andthenewsystemconfigurationwiththedisplacedatomisusedasthestartingpointforthenextstepof 



 

Unedited Version: Neural Network and Fuzzy System 
 

thealgorithm.If,ontheotherhand,E>0,thenthealgorithmproceedsinaprobabilisticmannersothattheconfiguration 

withthedisplacedatomisacceptedwithaprobabilitygivenby: 

P(E)=e-
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ProvidedenoughnumberoftransitionsintheMetropolisalgorithm,thesystemreachesthermalequilibrium. 

Thus,byrepeatingthebasicstepsofMetropolisalgorithm,weeffectivelysimulatethemotionsoftheatomsofa 

physicalsystemattemperatureT.Moreover,thechoiceofP(E)definedinEq.(8.1.8)ensuresthatthermalequilibrium 

ischaracterizedbytheBoltzmann-GibbsdistributionprovidedinEq.(8.1.5). 

ReferringtoEq.(8.1.5),noticethatifP(xi)>P(xj)impliesE(xi)<E(xj),andviceversa.Somaximizingthe 

probabilityfunctionisequivalentto minimizingtheenergy function.Furthermore,noticethatthis propertyisindependent 

ofthetemperature,althoughthediscriminationbecomesmoreapparentasthetemperaturedecreases(Figure8.1). 

Therefore,thetemperatureparameterTprovidesanewfreeparameterforsteeringthestepsizetowardthe 

globaloptimum.Withahightemperature,theequilibriumcanbereachedmorerapidly.However,ifthetemperature 

istoohigh,allthestateswillhaveasimilarlevelofprobability.Ontheotherhand,whenT0,theaveragestate 

becomesvery closetotheglobalminimum.Thisidea,thoughveryattractiveatthefirstglance,cannotbeimplemented 

directlyinpractice.Infact,withalowtemperature,itwilltakeaverylongtimetoreachequilibriumand,more 

seriously,thestateismoreeasilytrappedbylocalminima.Therefore,itisnecessarytostartatahightemperatureand 

thendecreaseitgradually.Correspondingly,theprobablestatethengraduallyconcentratearoundtheglobalminimum 

(Figure8.2). 

 
Low Temperature 

 

 
 

High Temperature 

 

 

 

 

Figure 8.2 The energy levels adjusted for high and low temperature 

Thishasananalogywithmetallurgicalannealing,inwhichabodyofmetalisheatedneartoitsmeltingpoint 

andisthenslowlycooledbackdowntoroomtemperature.Thisprocesseliminatesdislocationsandothercrystal 

latticedisruptionsbythermalagitationathightemperature.Furthermore,itpreventstheformation ofnewdislocations 

bycoolingthemetalveryslowly.Thisprovidesnecessarytimetorepairanydislocationsthatoccurasthetemperature 

drops.Theessenceofthisprocessisthatglobalenergyfunctionofthemetalwilleventuallyreachanabsoluteminimum value. 

Ifthematerialiscooledrapidly,itsatomsareoftencapturedinunfavorablelocationsinthelattice.Oncethe 

temperaturehasdroppedfarbelowthemeltingpoint,thesedefectssurviveforever,sinceanylocal rearrangementsof 

atomscostsmoreenergythanwhateveravailableinthermalfluctuations.Theatomiclatticethusremainscapturedin 

alocalenergyminimum.Inordertoescapefromlocalminimaandtohavethelatticeintheglobalenergyminimum,the 

thermalfluctuationscanbeenhancedbyreheatingthematerialuntilenergy-consuminglocalrearrangementsoccurat 

areasonablerate.Thelatticeimperfectionsthenstarttomoveandannihilate,untiltheatomiclatticeisfreeofdefects- 

exceptforthosecausedbythermalfluctuations.Thesecanbegraduallyreducedifthetemperatureisdecreasedso slowly 

thatthermalequilibriumismaintainedatalltimesduringthecoolingprocess.Howmuchtime mustbespentfor 

thecoolingprocessdependsonthespecificsituation.A greatdealofexperienceisrequiredtoperformtheannealing 

inanoptimalway.Ifthetemperatureisdecreasedquickly,somethermalfluctuationsarefrozenin.Ontheotherhand, 

ifoneproceedstooslowly,theprocessneverends. 
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Theamazingthingaboutannealingisthatthestatisticalprocessofthermalagitationleadstoapproximatelythesamef

inalenergystate.Thisresultisindependentoftheinitialconditionofthemetalandanyofthedetailsofthe 

statisticalannealingprocess.Themathematicalconceptofsimulatedannealingderivesfromananalogywiththis 

physicalbehavior. 

Thesimulatedannealingalgorithm,isavariantoftheMetropolisalgorithminwhichthetemperatureistime 

dependent.Inanalogywithmetallurgicalannealing,itstartswithahightemperatureandgraduallydecreasesit.At 

eachtemperature,itappliesseveraltimestheupdaterulegivenbyEq.(8.1.8).Anannealingschedulespecifiesafinite 

sequenceoftemperaturevaluesandafinitenumberoftransitionsattemptedateachvalueofthetemperature.The 

annealingscheduledevelopedby[Kirkpatricketal1983]isasfollows. 

TheinitialvalueT0ofthetemperatureischosenhighenoughtoensurethatvirtuallyallproposedtransitionsbe 

acceptedbythesimulatedannealingalgorithm.Thenthecoolingisperformed.Ateachtemperature,enoughtransitions 

areattemptedsothatthereisapredeterminednumberoftransitionsperexperimentontheaverage.Attheend,the 

systemisfrozenandannealingstopsifthedesirednumberofacceptancesisnotachievedatpredeterminednumberof 

successivetemperatures.Inthefollowing,weprovidetheannealingprocedureinmoredetail: 

 
 

Averyimportantpropertyofsimulatedannealingisitsasymptoticconvergence.Ithasbeenprovedin[GemanandGe

man84]thatifT(k)atiterationkischosensuchthatitsatisfies 

T0 

T(k) >
log (1+k)

 

 

providedtheinitialtemperatureT
0
ishighenough,thenthesystemwillconvergetotheminimumenergyconfiguration. 

Themaindrawbackofsimulatedannealingisthelargeamountofcomputationaltimenecessaryforstochasticrelaxation. 

SIMULATED ANNEALING 

Step1.SetInitialvalues:assignahighvaluetotemperatureasT(0)=T0,decide 

onconstantsKT,KAandKS,Typicalvaluesforwhichare0.8<KT<0.99, KA=10. 

and KS=3. 

Step2.Decrementthetemperature:T(k)=KT,(k-1)whereKT,isaconstant 

smallerbutclosetounity. 

Step3.Attemptenoughnumberoftransitionsateachtemperature,sothatthere 

areKAacceptedtransitionsperexperimentontheaverage. 

Step4.StopifthedesirednumberofacceptancesisnotachievedatKSsuccessive 

temperatureselserepeatsteps2and3. 
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Manyelementarytransformationsareperformedateachtemperaturestepinordertoreachanearequilibriumstate. 
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Themaindrawbackofsimulatedannealingisthelargeamountofcomputationaltimenecessaryforstochas

tic relaxation.Many elementary 

transformationsareperformedateachtemperaturestepinordertoreachnearequilibrium state. 

Exercise: 

 

Q1. What is mean by Simulated Annealing. 

Q2. Explain Statistical Mechanics. 

Q3. Explain Simulated Annealing. 

Q4. Write a short note on Boltzmann learning rule. 

Q5. Explain Bidirectional Associative Memory. 
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E(x)  ijij ii 

Chapter 9 
The Boltzmann machine, Boltzmann learning rule 

 

9.2 Boltzmann Machine 

 
Boltzmannmachine[Hintonetal83]isaconnectionistmodelhavingstochasticnature.Thestructureofthe 

BoltzmannmachineissimilartoHopfieldnetwork,butitaddssomeprobabilisticcomponenttotheoutputfunction.It 

usessimulatedannealingconcepts,inspiteofthedeterministicnatureinstatetransitionoftheHopfieldnetwork 

[Hintonetal83,Aartsetal1986,AllwrightandCarpenter1989,LaarhovenandAarts1987]. 

ABoltzmannmachinecanbeviewedasarecurrentneuralnetworkconsistingofNtwostateunits.Depending 

onthepurpose,thestatescanbechosenfrombinaryspace,thatisx¸{0,1}Norfrombipolarspacex¸{-1,1}N. 

TheenergyfunctionoftheBoltzmannmachineis: 

N N N 
=-1 w xx- x 

2 
i j i 

 
 

Theconnectionsaresymmetricalbydefinition,thatisw
ij
=w

ji
.Furthermoreinthebipolarcase,theconvergence 

ofthemachinerequiresw=0(orequivalentltly=0).Howeverinthebinarycaseself-loopsareallowed. 
ii i 

 

TheobjectiveofaBoltzmannmachineistoreachtheglobalminimumofitsenergyfunction,whichisthestate 

havingminimumenergy.Similartosimulatedannealingalgorithm,thestatetransitionmechanismofBoltzmannMachine 

usesastochasticacceptancecriterion,thusallowingittoescapefromitslocalminima.InasequentialBoltzmann 

machine,unitschangetheirstatesonebyone,whiletheychangestatealltogetherinaparallelBoltzmannmachine. 

LetX denotethestatespaceofthemachine,thatis thesetofallpossiblestates.Amongthese,thestate vectors 

differing only one bit are called neighboring states. The neighborhood NxX is  definedas the set  

ofallneighboringstatesofx.Letaxjtodenotetheneighboringstatethatisobtainedfromxbychangingthestate 

ofneuronj.Hence,inbinarycasewehave 

 
xj = xi if ij 

 
x (0,1)n, xj N

x
 

i 1-x 

In bipolar case, this becomes: 

if ij 

 

 
xj = xi if ij x (-1,1)n, xj N

x
 

i -x if ij 

i 

i 
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The difference in energy when the global state of the machine is changed from x to x j is : 
 

Note that the contribution of the connections wkmkj, mj, to E(x) and E(xj) is identical, 

furthermore wij=wij. For the binary case, by using equations (9.2.1) and (9.2.2), we obtain 

E(xj  |x) = (2x
j 
-1) (  w

ij
x

i
+

j
) x{0,1}N

 

For the bipolar case it is 

 

E(xj |x) = (2x
j
) (  w

ij
x

i
+

j
) x {-1,1}N , w

ii 
=0 

Therefore,thechangeintheenergycanbecomputedbyconsideringonlylocalinformation.Inasequential 

Boltzmannmachine,atrialforastatetransitionisatwo-stepprocess.Givenastatex,firstaunitjisselectedasa 

candidatetochangestate.Theselectionprobabilityusuallyhasuniformdistributionovertheunits.Thenaprobabilistic 

functiondetermineswhetherastatetransitionwilloccurornot.Thestatexjisacceptedwithprobability 

1 
P(xj |x) =   

1+e E(xj|x)/T 

 

whereTisacontrolparameterhavinganalogyintemperature.Initiallythetemperatureissetlargeenoughtoaccept 

almostallstatetransitionswithprobabilitycloseto0.5,andthenTisdecreasedintimetozero(Figure9.3).Witha 

propercoolingschedule,thesequentialBoltzmannmachineconvergesasymptoticallytoastatehavingminimum 

energy. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3. Acceptance probability in Boltzmann machine for different temperatures 
 

ABoltzmannmachinestartsexecutionwitharandominitialconfiguration.Initially,thevalueofTisverylarge. 

Acoolingscheduledetermineshowandwhentodecrementthecontrolparameter.AsT  0,lessandlessstate 

transitionsoccur.Ifnostatetransitionsoccurforaspecifiednumberoftrials,itisdecidedthattheBoltzmannmachine 

hasreachedthefinalstate. 
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A state x* ¸ X is called a locally minimal state, if 

E(x*j  |x*) >=0 j = 1..N 
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Notethat,alocalminimumisastatewhoseenergycannotbeincreasedbyasinglestatetransition.Lettheset 

ofalllocalminimabedenotedbyX*.WhiletheHopfieldnetworkistrappedmostlyinoneoftheselocalminima,the 

Boltzmannmachinecanescapefromthelocalminimabecauseofitsprobabilisticnature.Althoughthemachin

e asymptoticallyconvergestoaglobalminimum,thefinite-

timeapproximationoftheBoltzmannMachineprevents 

guaranteeingconvergencetoastatewithminimumenergy.However,stillthefinalstateofthemachinewillbeanearly 

minimumoneamongX*. 

UseofBoltzmannmachineasaneuraloptimizerinvolvestwophasesasitisexplainedfortheHopfield 

networkinChapter4.Inthefirstphase,theconnectionweightsaredetermined.Forthispurpose,anenergyfunctio

n forthegivenapplicationisdecided.Inthenon-

constrainedoptimizationapplications,theenergyfunctioncanbe 

directlyobtainedbyusingthecostfunction.However,inthecaseofconstrainedoptimization,theenergyfunctio

n 

mustbederivedusingboththeoriginalcostfunctionandtheconstraints.Thenextstepistodeterminetheconnection 

weights{w
ij
}byconsideringthisenergyfunction.Theninthesecondphase,themachinesearchestheglobalminimu

m throughtheannealingprocedure. 

 

 

 

 

 

 

 

Exercise: 

 
Q1. Write short note on Boltzmann Machine. 

Q2. Explain what is mean by Boltzmann learning. 

Q3. What are the rule of  Boltzmannlearning rule. 

Q4. Write a short note on Learning Per Pattern. 

Q5. Explain the Structure of the RBF Networks. 
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Chapter 10 

 

Bidirectional Associative Memory 

 
BIDIRECTIONALASSOCIATIVE MEMORY (BAM) 

 

Severalversionsoftheheteroassociativerecurrentneuralnetwork,orbidirectionalassociativememory(BAM), 

developedbyKosko(1988,1992a).-Abidirectionalassociativememory[Kosko,1988]storesasetofpattern 

associationsbysummingbipolarcorrelationmatrices(annbymouterproductmatrixforeachpatterntobestored). 

- Thearchitectureofthenetconsistsoftwolayersofneurons,connectedbydirectionalweightedconnectionpaths. 

- Thenetiterates,sendingsignalsbackandforthbetweenthetwolayersuntilallneuronsreachequilibrium(i.e.,until 

eachneuron’sactivationremainsconstantforseveralsteps).-Bidirectionalassociativememoryneuralnetscan 

respondtoinputtoeitherlayer.-Becausetheweightsarebidirectionalandthealgorithmalternatesbetweenupdating 

theactivationsforeachlayer,weshallrefertothelayersastheX-layerandtheY-layer(ratherthantheinputand 

outputlayers). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure : Bidirectional Associative Memory (BAM) 
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p 

p 

Architecture-Thesingle-layernonlinearfeedbackBAMnetwork(withheteroassociativecontentaddressablememory) 

hasnunitsinitsXlayerandmunitsinitsY-layer.-Theconnectionsbetweenthelayersarebidirectional;i.e.,ifthe 

weightmatrixforsignalssentfromtheX-layertotheY-layerisW,theweightmatrixforsignalssentfromtheY-layer totheX-

layerisWT. 

Discrete BAM 

Thetwobivalent(binaryorbipolar)formsofBAMarecloselyrelated.Ineach,theweightsarefoundfromthesum 

oftheouterproductsofthebipolarformofthetrainingvectorpairs.Also,theactivationfunctionisastepfunction, 

withthepossibilityofanonzerothreshold.Thebipolar 

vectors improve the performance of the net. 

* The weight matrix to store a set of input and target vectors s(p) : t(p), p = 1, . . . , P, where 

s(p) = (s1(p), …., si(p), …., sn(p)) ; 

t(p) = (t1(p), ……., tj(p), ……., tm(p)) 

can be determined by the Hebb rule. 

* Theformulasfortheentriesdependonwhetherthetrainingvectorsarebinaryorbipolar. 

For binary input vectors, the weight matrix 

W = {wij} is given by 

 

w
ij 

= (2s
i
(p) -1) (2t

j
(p)-1) 

p=1 

 

 Forbipolarinputvectors,theweightmatrixW={wij}isgivenby 

 

w
ij 

= s
i
(p)t

j
(p) 

p=1 

 
ActivationFunction:TheactivationfunctionforthediscreteBAMistheappropriatestepfunction,dependingon 

whetherbinaryorbipolarvectorsareused. 

 Forbinaryinputvectors,theactivationfunctionfortheY-layeris 
 

 1 if y_in
j 
> 0 

y
j 
= y

j
 if y_in

j 
= 0 

 0 if y_in
j 
< 0 

and the activation function for the X-layer is 
 

 1 if x_in
j 
> 0 

x
j 
= x

j
 if x_in

j 
= 0 

 0 if x_in
j 
< 0 
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 Forbinaryinputvectors,theactivationfunctionfortheY-layeris 

1 if y_in
j  

>0
j
 

y
j 
= y

j 
if y_in

j  
=0

j
 

-1 if y_in
j  

<0
j
. 

and the activation function for the X-layer is 

1 if x_in
i
>0

i
 

x
i
= x

i 
if x_in

i
=0

i
 

-1 if x_in
i
<0

i
. 

Notethatifthenetinputisexactlyequaltothethresholdvalue,theactivationfunction“decides”toleavetheactivation 

ofthatunitatitspreviousvalue. 

 Theactivationsofallunitsareinitializedtozero. 

 ThefirstsignalistobesentfromtheX-layertotheY-layer.However,iftheinputsignalfortheX-layeristhe 

zerovector,theinputsignaltotheY-layerwillbeunchangedbytheactivationfunction,andtheprocesswillbe 

thesameasifthefirstpieceofinformationhadbeensentfromtheY-layertotheX-layer. 

* Signals are sent only from one layer to the other at any step of the process, not simultaneously in both 

directions. 

Algorithm 

1. InitializetheweightstostoreasetofPvectors;initializeallactivationsto0 

2. Foreachtestinginput,doSteps3-7. 

3a. PresentinputpatternxtotheX-layer,(i.e.,setactivationsofX-layertocurrentinputpattern). 3b.

 PresentinputpatternytotheY-layer,(Eitheroftheinputpatternsmaybethezerovector.) 

4. Whileactivationsarenotconverged,doSteps5-7. 

5. UpdateactivationsofunitsinY-layer: 

Compute net inputs : 

y_in
j
= w

ij
x

i
 

i 

Compute activations : 

y
j 
= f (y.in

j
) 

Send signal to X-layer. 

6. UpdateactivationsofunitsinX-layer: 

Compute net inputs : 

x_in
i
= w

ij
y

j
 

j 

Compute net inputs : 

x
i
= f(x.in

i
) 

Send signal to Y-layer. 

7. Test for convergence: 
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If the activation vectors x and y have reached equilibrium, then stop; otherwise, continue. 
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p 

Continuous BAM 

Acontinuousbidirectionalassociativememory[Kosko,1988]transformsinputsmoothlyandcontinuouslyintooutput 

intherange[0,1]usingthelogisticsigmoidfunctionastheactivationfunctionforallunits. 

 Forbinaryinputvectors(s(p),t(p)),p=1,2,...,P,theweightsaredeterminedbytheformula 

 

w
ij 

= (2s
i
(p) -1) (2t

j
(p)-1) 

p=1 

 

 Theactivationfunctionisthelogisticsigmold 
 

f(y,in
j
) = 

1 
 

 

1 + exp(-y_in
j
) 

 whereabiasisincludedincalculatingthenetinputtoanyunitandcorrespondingformulas 

applyfortheunitsintheX-layer. 

y_in
j
=b

j
+ w

ij
x

i
 

i 

AnumberofotherformsofBAMshavebeendeveloped.Insome,theactivationschangebasedonadifferential 

equationknownasCohenGrossbergactivationdyanamics(Cohen&Grossberg,1983). 

 
Application 

Example-11 :A BAM net to associate letters with simple bipolar codes 

Considerthepossibilityofusinga(discrete)BAMnetwork(withbipolarvectors)tomaptwosimpleletters 

(givenby5x3patterns)tothefollowingbipolarcodes: 

 

 

 

 
 

he target output vector t for letter A is [-1 1] and for the letter C is [1 1], 
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The weight matrices are : 
 

(to store A -1 1) (C 1 1) (w, tostore both) 

1 -1 -1  -1 0 -2 

-1 1 1  1 0 2 

1 -1 1  1 2 0 

-1 1 1  1 0 2 

1 -1 -1  -1 0 -2 

-1 1 -1  -1 -2 0 

-1 1 1  1 0 2 

-1 1 -1  -1 -2 0 

-1 1 -1  -1 -2 0 

-1 1 1  1 0 2 

1 -1 -1  -1 0 -2 

-1 1 -1  -1 -2 0 

-1 1 -1  -1 -2 0 

1 -1 1  1 2 0 

-1 1 1  1 0 2 

 

ToillustratetheuseofaBAM,wefirstdemonstratethatthenetgivesthecorrectyvectorwhenpresentedwiththex 

vectorforeitherthepatternAorthepatternC: 

INPUT PATTERN A 

[-12-1 1-11 111 1 -11 1 -1  1]  w  =[-1416] [-11] 

INPUT PATTERN C 

[-111 1-1 -1 1-1 -1 1 -1 -1 -1 1 1]  w= [-1416] [11] 

Toseethebidirectednatureofthenet,observethattheYvectorscanalsobeusedasinput.Forsignalssentfromthe 

Y-layertotheX-layer,theweightmatrixisthetransposeofthematrixW,i.e.wT. 

For the input vector associated with pattern A. namely. (-1, 1), we have 

[-1 1] wT = [-2 2 -2 2 -2 2 2 2 2 2 -2 2 2 2 -2 2] 

[-11-1 1-11 111 1-11 1 -11] 

This is pattern A. 

Similarly, if we input the vector associated with pattern C, namely, (1, 

1).We obtain [1  1] wT [-111 1-1-1 1-1-1 -1 11] 
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Exercise: 

Q1. Write a short on Bidirectional Associative Memory. 

Q2. What is mean by  Discrete BAM. 

Q3. Explain Algorithm of BAM. 

Q4. Explain Continuous BAM. 

Q5. What are the Application of BAM. 
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Chapter 11 
 

Fuzzy Set, Properties, Operations on Fuzzy sets, Fuzzy relations 
Introduction 

 
Fuzzy Logic 

 
Fuzzy set theory was developed by Lotfi A. Zadeh [Zadeh, 1965], professor for computer science 

at the University of California in Berkeley, to provide a mathematical tool for dealing with the concepts 

used in natural language (linguistic variables). Fuzzy Logic is basically a multivalued logic that allows 

intermediate values to be defined between conventional evaluations. 

 
However, the story of fuzzy logic started much more earlier . To devise a concise theory of logic, and later 

mathematics, Aristotle posited the so-called ¡¨Laws of Thought¡¨. One of these, the ¡¨Law of the Excluded Middle,¡¨ 

states that every proposition must either be True (T) or False (F). Even when Parminedes proposed the first version of 

this law (around 400 Before Christ) there were strong and immediate objections: for example, Heraclitus proposed that 

things could be simultaneously True and not True. It was Plato who laid the foundation for what would become fuzzy 

logic, indicating that there was a third region (beyond T and F) where these opposites ¡¨tumbled about.¡¨ A systematic 

alternative to the bi-valued logic of Aristotle was first proposed by ¢Gukasiewicz around 1920, when he described a 

three-valued logic, along with the mathematics to accompany it. The third value he proposed can best be translated as 

the term ¡¨possible,¡  ̈and he assigned it a numeric value between T and F. Eventually, he proposed an entire notation 

and axiomatic system from which he hoped to derive modern mathematics. 

 
Later, he explored four-valued logics, five-valued logics, and then declared that in principle there was 

nothing to prevent the derivation of an infinite-valued logic.¢Gukasiewicz felt that three- and infinite-valued logics 

were the most intriguing, but he ultimately settled on a fourvalued logic because it seemed to be the most easily 

adaptable to Aristotelian logic. It should be noted that Knuth also proposed a threevalued logic similar to 

Lukasiewicz¡¦s, from which he speculated that mathematics would become even more elegant than in traditional 

bi-valued logic. The notion of an infinite-valued logic was introduced in Zadeh¡¦s seminal work ¡¨Fuzzy Sets¡¨ 

where he described the mathematics of fuzzy set theory, and by extension fuzzy logic. This theory proposed 

making the membership function (or the values F and T) operate over the range of real numbers [0, 1]. 

 
New operations for the calculus of logic were proposed, and showed to be in principle at least a generalization 

of classic logic. Fuzzy logic provides an inference morphology that enables approximate human reasoning capabilities to 

be applied to knowledge-based systems. The theory of fuzzy logic provides a mathematical strength to capture the 

uncertainties associated with human cognitive processes, such as thinking and reasoning. The conventional approaches 
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to knowledge representation lack the means for representating the meaning of fuzzy concepts. As a consequence, the 

approaches based on first order logic and classical probability theory do not provide an appropriate conceptual 

framework for dealing with the representation of commonsense knowledge, since such knowledge is by its nature both 

lexically imprecise and noncategorical. The developement of fuzzy logic was motivated in large measure by the need for 

a conceptual framework which can address the issue of uncertainty and lexical imprecision. Some of the essential 

characteristics of fuzzy logic relate to the following (Zadeh, 1992): In fuzzy logic, exact reasoning is viewed as a limiting 

case of approximate reasoning. In fuzzy logic, everything is a matter of degree. In fuzzy logic, knowledge is interpreted a 

collection of elastic or, equivalently, fuzzy constraint on a collection of variables. Inference is viewed as a process of 

propagation of elastic constraints. Any logical system can be fuzzified. There are two main characteristics of fuzzy 

systems that give them better performance for specific applications. Fuzzy systems are suitable for uncertain or 

approximate reasoning, especially for the system with a mathematical model that is difficult to derive. Fuzzy logic allows 

decision making with estimated values under incomplete or uncertain information. 

 
Theory has been attacked several times during its existence. For example, in 1972 Zadeh’s colleague R. E. 

Kalman (the inventor of Kalman filter) commented on the importance of fuzzy logic: “...Zadeh’s proposal could be 

severely, fericiously, even brutally criticized from a technical point of view. This would be out of place here. But a 

blunt question remains: Is Zadeh presenting important ideas or is he indulging in wishful thinking?...” 

 
The heaviest critique has been presented by probability theoreticians and that is the reason why 

many fuzzy logic authors (Kosko, Zadeh and Klir) have included the comparison between probability and 

fuzzy logic in their publications. Fuzzy researchers try to separate fuzzy logic from probability theory, 

whereas some probability theoreticians consider fuzzy logic a probability in disguise. 
  

Fuzzy Set 

 

Since set theory forms a base for logic, we begin with fuzzy set theory in order to ¡§pave the 

way¡¨ to fuzzy logic and fuzzy logic systems. 

 
6.1.1 Set - Theoretical Operations and Basic Definitions 

 

In classical set theory the membership of element x of a set A (A is a crisp subset of universe X ) 

 

is defined by 
 

0, if xA, 
 

A(x)  = 
 

1, if xA 
 

6.1 
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The element either belongs to the set or not. In fuzzy set theory, the element can belong to the 

set partially with a degree and the set does not have crisp boundaries. That leads to the following 

definition. 
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Definition 6.1.1 (fuzzy set, membership function) Let X be a nonempty set, for example X=Rn, and be 

called theuniverse of discourse. A fuzzy AX is characterized by the membership function 
 

A : X  [0, 1] = 
 

6.2 
 

Where A (X) is a grade (degree) of membership of X x in set A. 
 

From the definition we can see that the fuzzy set theory is a generalized set theory that includes the classical set 

theory as a special case. Since {0,1} x [0,1] , crisp sets are fuzzy sets. Membership function (2.2) can also viewed as 

a distribution of truth of a variable. In literature fuzzy set A is often presented as a set of ordered pairs : 
 

A = {(x, A(x)) x X} 
 

6.3 
 

where the first part determines the element and the second part determines the grade of membership. 

Another way to describe fuzzy set has been presented by Zadeh, Dubois and Prade. If X is infinite, the 

fuzzy set A can be expressed by 
 

A = A(x)/ x 
 

6.4 
 

If X is finite, A can be expressed in the form 
 

n 

A =A(xi)/x1.... +A(xn) =A(xi)/xi 

i=1 

 

6.5 
 

Note :Symbolin (2.4) has nothing to do with integral (it denotes an uncountable enumeration) and / 

denotes atuple. The plus sign represents the union. Also note that fuzzy sets are membership 
 

functions. Nevertheless, we may still use the set theoretic notations like A B. 
 

This is the name of a fuzzy set given by 


AB . 

Example 6.1.1    
 

Discrete case: A=0.1/x1+ 0.4/x2 + 0.8/ x3 + 1.0/ x4  + 0.8/ x5  + 0.4/ x6  + 0.1/ x7 
 

1 - 
x - c

  , x[c - h, h] 
 

  h  
 

Continuous case : A(x) = 
x - c 

, x [c, c + h] 
 

h  
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0 , otherwise 
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Figure 6.1 A discrete and continuous membership functions 
 
 

 

Definition 6.1.2 (support) The support of a fuzzy set A is the crisp set that contains all elements of A with 

non-zeromembership grade : 
 

supp( A) ={xXA|(x) > 0} 

 

6.6 
 

If the support is finite, it is called compact support. If the support of fuzzy set A consists of only one 

point, it is called a fuzzy singleton. If the membership grade of this fuzzy singleton is one, A is called a 

crisp singleton ‘Zimmermann, 1985’. 
 

Definition 6.1.3 (core) The core (nucleus, center) of a fuzzy set A is defined by 
 

core ( A) ={xX(x) = 1} 

 
 
 

Definition 6.1.4 (height) The height of a fuzzy setAonXis defined by 
 

hgt( A ) = sup A( x ) 
 

xz
x

 
 

and Ais called normal ifhgt( A) = 1, and subnormal ifhgt ( A) < 1. 
 

Note :Non-empty fuzzy set can be normalized by dividingA(x)by supxA(x). Normalizing of A can 

beregarded as a mapping from fuzzy sets to possibility distributions : 
 

Normal (A)eA [Joslyn, 1994]. 
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The relation between fuzzy set membership function  , possibility distribution and probability 

distribution 
 

p :The definition pA(x)A(x) could hold, ifis additively normal. Additively normal means here that the 

stochasticnormalization 
 

 A(x)dx = 1
 
 

would have to be satisfied. So it can be concluded that any given fuzzy set could define either a probability 

distribution or a possibility distribution, depending on the properties of . Both probability distributions and 

possibility distributions are special cases of fuzzy sets. All general distributions are in fact fuzzy sets [Joslyn, 1994]. 
 

Definition 6.1.5 (convex fuzzy set)Afuzzy setAis convex if 

 

6x, y x and 6Z, [0,1] 
 

A(Zx + (1 - Z) y)  min (A(x), A(y)) 
 
 

Definition 6.1.6 (width of a convex fuzzy set) The width of a convex fuzzy setAis defined by 

 

width ( A) = sup(supp ( A ) )- inf(supp ( A) ) 
 
 

Definition 6.1.7 (-cut) The-cut of a fuzzy set
A

is defined by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2 An ƒÑƒ{ cut of a triangular fuzzy number 
 

 

Definition 6.1.8 (fuzzy partition)
A

set of fuzzy sets is called fuzzy partition if 
 

6x, y X 

 

NA 

Ai 
i=1 
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provided Ai are nonempty and subsets of x. 



 

9 Unedited Version: Neural Network and Fuzzy System 

 

69 
 
 

Definition 6.1.9 (fuzzy number)
A

fuzzy set (subset of a real line R) is a fuzzy number, if the fuzzy set is 

convex,normal, membership function is piecewise continuous and the core consists of G. one value only. 

The family of fuzzy numbers is . In many situations people are only able to characterize numeric 

information imprecisely. For example, people use terms such as, about 5000, near zero, or essentially 

bigger than 5000. These are examples of what are called fuzzy numbers. Using the theory of fuzzy 

subsets we can represent these fuzzy numbers as fuzzy subsets of the set of real numbers. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.3 Fuzzy number  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 Non-fuzzy number 

 

Note :Fuzzy number is always a fuzzy set, but a fuzzy set is not always a fuzzy number. 
 

An example of fuzzy number is ‘about 1’ that is defined by  (x) = exp(-j (x - 1) 2 ) 
 

It is also a quasi fuzzy number because limA (x) = 0. 

 

x + 
 
 
 

Definition 6.1.10 (fuzzy interval)Afuzzy interval is a fuzzy set with the same restrictions as in definition 

6.1.9, but thecore does not need to be a one point only. 
 

Fuzzy intervals are direct generalizations of crisp intervals [a, b] R. 

 

Definition 6.1.11 (LR-representation of fuzzy numbers) Any fuzzy number can be described by 
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  L((a - x) /  , x [a -  a] 
 

A (x) = 
1 , x [a, b] 

 

R((x - b) /  , x [b, b ] 
 

  
 

  0 , otherwise 
 

 

Where [a, b] is the core of A , and L:[0,1]  [0,1], R :[0,1] [0,1] are shape functions (called brieflys-

functions) that are continuous and nonincreasing such that L(0) =R(0) = 1,L(1) =R(1) = 0 , where L stands 

for lefthand side and R stands for right-hand side of membership function [Zimmermann, 1993]. 
 

Definition 6.1.12 (LR-representation of quasi fuzzy numbers) Any quasi fuzzy number can be described by  
 
 
 

 L((a - x) /  , x a 

A (x) = 1 , x[a, b] 

 R((x - b) /  , x b 
 

 

Where [a, b] is the core of A , and L:[0,) „_ [0,1],R:[0,)  [0,1] 

 

are shape functions that are continuous and non-increasing such that L(0) = R(0) = 1 
 

and they approach zero :limL(x) = 0 , lim R(x) = 0. 
 

For example, f(x) = e-xf, (x) = e-x2 and f(x) = max (0.1 - x) are such shape functions. In the following 

the classical set theoretic operations are extended to fuzzy sets. 

 

Definition 6.1.13 (set theoretic operations) 

 

ø0  (empty set) 

x1  (basic set, universe) 

A = BA(x) =B(x) 6x X (identity) 

ABA(x) =B(x) 6x X (subsethood) 

6x X:AB(x) = max(A(x),B(x)) (union) 

6x X:AB(x) = max(A(x),B(x)) (intersection) 

6x X:A-(x) = 1 -A(x) (complement) 

 

Union could also be represented by AA ={(x, max(A(x),B(x)))xX} 

 
Same notation could also be used with intersection and complement. 
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A is a subset of The graph of the 
 

universal fuzzy subset in X = [0, 10]. 
 

Figure 6.5 Fuzzy sets 
 

Theorem 2.1.1 The following properties of set theory are valid 

 

= 

(involution) 

 

A   = A 
 

A B = B A  
 

AB = BA (commutativity) 
 

(A B) C = A (B C) (AB)C = A(B) (associativity) 
 

A (B C) = (AB)  (A)  
 

A  (BC) = (A B)(A C) (distributivity) 
 

A  A = A  
 

 

A A = A 
 

A (AB)= A 
 

A (A B) = A 
 

(A B) =
AB

 

(AB) =
A B

 

 
(idempotence) 
 
 

 

(absorption
) 

 
 

 

(De Morgan’s laws) 
 

Proof :Above properties can be proved by simple direct calculations. For example, 

 

= 

A = 1 - (1 - A) =A . 
 

Fuzzy Relations 
 

Definition 2.1.17 (fuzzy relation) Fuzzy relation is characterized by a function 
 

R : X1 x ... x Xm  [0,1] where Xi are the universes of discourse and X1 x ... x Xm 
 



 

12 Unedited Version: Neural Network and Fuzzy System 

 

is the product space. If we have two finite universes, the fuzzy relation can be presented as a matrix 

(fuzzy matrix) whose elements are the intensities of the relation and R has the membership function 
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R (u,) , where u  X1 ,  X2 . Two fuzzy relations are combined by a so called sup-*- or max-min 

composition, which will be given in the definition 2.1.19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.7 Shadows of a fuzzy relation 
 

Note: Fuzzy relations are fuzzy sets, and so the operations of fuzzy sets (union, intersection, etc.) can be applied to them. 

 

Example 2.1.2 Let the fuzzy relationR= “approximately equal” correspond to the equality of two 

numbers.The intensity of cell R(u,) of the following matrix can be interpreted as the degree of 

membership of the ordered pair in R. The numbers to be compared are {1,2,3,4} and {3,4 ,5,6}. 
 

u  \ 1 2 3 4 
     

3 .6 .8 1 .8 

4 .4 .6 .8 1 

5 .2 .4 .6 .8 

6 .1 .2 .4 .6  
 

 

The matrix shows, that the pair (4, 4) is approximately equal with intensity 1 and the pair (1, 6) is 

approximately equal with intensity 0.1. 

 

Definition 2.1.18 (Cartesian product) LetAi x XIbe fuzzy sets. Then the Cartesian product isdefined 
 

A1 x ... x An (x1 ,..., xn) = min{A (xi)} 
 

Note: min can be replaced by a more general t-norm.  
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Figure 2.8 Cartesian product of two fuzzy sets is a fuzzy relation inXxY 
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Definition 2.1.19 (sup-*-composition, max-min composition) The composition of two relationsR o 

Sis defined as a membership function in XxY 
 

ROS (x) = supT(R(x,),S,y)) 
 

where R is relation in XxV and S is relation in V x Y, x X, y Y and T is a t-norm sup is 

replaced by the sum. If S is just a fuzzy set (not a relation) in V , then (2.15) becomes 

ROS (x) = supT(R(x,),S)) 
 

Example 2.1.3 LetX= {1,2,3,4},fuzzy setA= small = {(1,1), (2,0.6), (3,0.2), (4.0)} 
 

and fuzzy relation R = “approximately equal”.  
 

 1 .5 0 0 

R .5 1 .5 0 

 0 .5 1 .5 

 0 0 .5 1 
 
 
 

A o B = maxx min {A( x), R ( x, y )} 
 

= {(1,1), (2,.6), (3,.5), (4,.2)} 
 
 

 

The interpretation of example: x is small. If x and y are approximately equal, y is more or less 
small. 

 

Exercise: 

 

Q1.What is mean by Fuzzy Logic. 

Q2.Explain Fuzzy Set. 

Q3. Explain Fuzzy Relation. 

Q4. Write a definition of Fuzzy Number. 

Q5. Write a definition of  LR-representation of fuzzy numbers. 
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Chapter 12 
The extension principle, fuzzy measures, Membership function’s 

 
The Extension Principle 

 

The extension principle is said to be one of the most important tools in fuzzy logic. It gives means 

to generalize non-fuzzy concepts, e.g., mathematical operations, to fuzzy sets. Any fuzzifying 

generalization must be consistent with the crisp cases. 

Definition 2.1.20 (extension principle) LetA1,..., An be fuzzy sets, defined on X1...Xn and let f be a function 

f : Xix ...x XnVThe extension of f operating on A1 ,..., Angives a membership function (fuzzy set F ) 

F () = sup min(A (ui), ... , An (A (un))  
u1 ... u ny f -1 () 

 

when the inverse of f exists. Otherwise define F() = 0 . Function f is called inducing mapping. 
 

If the domain is either discrete or compact, sup-min can be replaced by max-min. On continuous domains 

sup-operation and the operation that satisfies criterion 

 

 
 

x , y = 0   

Sw (x, y) = y , x = 0 
 

1 , otherwise 
 

should be used [Driankov et. al., 1993]. 
 
 

 

Fuzzy Rules 

 
Fuzzy logic was originally meant to be a technique for modeling the human thinking and reasoning, which is 

done by fuzzy rules. This idea has been replaced by the thought that the fuzzy rules form an interface between humans 

and computers [Brown & Harris, 1994]. Humans explain their actions and knowledge using linguistic rules and fuzzy logic 

is used to represent this knowledge on computers. There are three principal ways to obtain these rules : 

 
1. human experts provide rules 

 
2. data driven: rules are formed by training methods 

 
3. combination of 1. and 2. 

 
The first way is the ideal case for fuzzy systems. Although the rules are not precise, they contain important 

information about the system. In practice human experts may not provide a sufficient number of rules and especially in 

the case of complex systems the amount of knowledge may be very small or even non-existent. Thus the second way 

must be used instead of the first one (provided the data is available). The third way is suited for the cases when some 

knowledge exists and sufficient amount of data for training is available. In this case fuzzy rules got from experts roughly 
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approximate the behavior of the system, and by applying training this approximation is made more precise. Rules 

provided by the expert’s form an initial point for the training and thus exclude the necessity of random initialization and 

diminish the risk of getting stuck in a local minimum (provided the expert knowledge is good enough). 

 
It has been shown in [Mouzouris, 1996] that linguistic information is important in the absence of 

sufficient numerical data but it becomes less important as more data become available. 

 
Fuzzy rules define the connection between input and output fuzzy linguistic variables and they 

can be seen to act as associative memories. Resembling inputs are converted to resembling outputs. 

Rules have a structure of the form : 

 
IF (antecedent) THEN (consequent) 

 

In more detail, the structure is 

 

IF ( 1 x is Ai 1 AND .... AND d x is Aid THEN ( y is i B ) 

 
where Ajii and Bi are fuzzy sets (they define complete fuzzy partitions) in % U R % V “R, respectively. Linguistic variable x 

is a vector of dimension d in d UU CC ...1 and linguistic variable V y# “. Vector x is an input to the fuzzy system and y is an 

output of the fuzzy system. Note that Bi can also be a singleton (consequence part becomes: ...THEN ( y is i z )). Further, if 

fuzzy system is used as a classifier, the consequence part becomes: ...THEN class is c. 
 

A fuzzy rule base consists of a collection of rules {R1, R2,..., RM}, where each rule i R can be considered to be 

of the form (2.34). This does not cause a loss of generality, since multi-input-multioutput (MIMO) fuzzy logic system can 

always be decomposed into a group of multi-input-singleoutput (MISO) fuzzy logic systems. Furthermore (2.34) includes 

the following types of rules as a special case [Wang, 1994] : 
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 IF (x1 is Ai 1 AND ... AND xi is Ai
k) THEN (y is Bi) where k>d 

 IF (x1 is Ai 1 AND ... AND 
x

i is Ai
k) OR (xk+1 is Ai

k+1AND... ANDxd is Ai
d)) THEN (y is Bi) 

 (y is Bi)
 

 (y is Bi) UNLESS (xi  is  Ai
1) AND...ANDxd is Ai

d ) 
 

 non-fuzzy rules
 

 

In control systems the production rules are of the form 

 

IF <process state> THEN <control action> 

 

where the <process state> part contains a description of the process output at the kth sampling 

instant. Usually this description contains values of error and change-of-error. The <control 

action> part describes the control output (change-in-control) which should be produced given 

the particular <process state>. For example, a fuzzified PI-controller is of the type (2.35). 

Important properties for a set of rules are completeness, consistency and continuity. These are 

defined in the following. 

 
Definition 6.1.27 (completeness) A rule base is said to be complete if any combination of input 

values results in anappropriate output value: 
 

6 x X :hgt(out(x)) >0 

 

Definition 6.1.28 (inconsistency) A rule base is inconsistent if there are two rules with the same 

rule antecedent butdifferent rule consequences. 

 
This means that two rules that have the same antecedent map to two non-overlapping 

fuzzy output sets. When the output sets are non-overlapping, then there is something wrong 

with the output variables or the rules are inconsistent or discontinuous. 

 
Definition 6.1.29 (continuity) A rule base is continuous if the neighboring rules do not have fuzzy output sets 
that have 

 

empty intersection. 
 
Exercise: 
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Q1.What is mean by The Extension Principle. 

Q2.What are the Fuzzy Rule. 

Q3. Write a definition of completeness. 

Q4. Write a Definition of inconsistency. 
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Chapter 13 
Fuzzification and defuzzyfication methods, Fuzzy controllers 

 

Fuzzifier and Defuzzifier 

 

The fuzzifier maps a crisp point x into a fuzzy set  
 

1, if x = x’ 

A
’ (x)  = 

0, otherwise 
 

Where X’ is the input. Fuzzifier of the form (2.43) is called a singleton fuzzifier. If the input contains noise 

it can be modeled by using fuzzy number. Such fuzzifier could be called a nonsingleton fuzzifier. Because 

of simplicity, singleton fuzzifier is preferred to nonsingleton fuzzifier. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.15 Fuzy logic controller Figure 2.16 Fuzzy singleton as fuzzifier 
 

The defuzzifier maps fuzzy sets to a crisp point. Several defuzzification methods have been suggested. 

The following five are the most common : 

 
 

 Center of Gravity (CoG) : In the case of 1-dimensional fuzzy sets it is often called the Center of Area (CoA)method. 

Some authors (for example, [Driankov et. al., 1993]) regard CoG and CoA as a same method, when other (for 

example, [Jager, 1995]) give them different forms. If CoA is calculated by dividing the area of combination of output 

membership functions by two and then taking from the left so much that we get an area equal to the right one, then 

it is clearly a distinct method. CoG determines center of gravity of the mass, which is formed as a combination of the 

clipped or scaled output fuzzy membership functions. The intersection part of these membership functions can be 

taken once or twice into calculation. Driankov [1993] separates the Center of Gravity methods such that, if the 
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intersection is calculated once the method is Center of Area and if it is calculated twice the method is called Center 

of Sums (CoS). In Fig. 2.17 defuzzified value obtained by CoS is slightly smaller than obtained by the CoA - method.


 Height method (HM) : Can be considered as a special case of CoG, whose output membership functions 

aresingletons. If symmetric output sets are used in CoG, they have the same centroid no matter how wide the set is 

and CoG reduces to HM. HM calculates a normalized weighted sum of the clipped or scaled singletons. HM is 

sometimes called Center average defuzzifier or fuzzy-mean defuzzifier.



 Middle of Maxima (MoM) : Calculates the center of maximum in clipped membership function. The 

rest of thedistribution is considered unimportant.

 
 First of Maxima (FoM): As MoM, but takes the leftmost value instead of center value.
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Figure 6.17 Defuzzification methods 

 

 

Defuzzification methods can be compared by some criteria, which might be the continuity of the output and the 

computational complexity. HM, CoA and CoS produce continuous outputs. The simplest and quickest method of these is 

the HM method and for large problems it is the best choice. The fuzzy systems using it have a close relation to some 

well-known interpolation methods (we will return to this relation later). 

 
The maximum methods (MoM, FoM) have been widely used. The underlying idea of MoM (with max-min 

inference) can be explained as follows. Each input variable is divided into a number of intervals, which means that the 

whole input space is divided into a large number of d-dimensional boxes. If a new input point is given, the corresponding 

value for y is determined by finding which box the point falls in and then returning the average value of the 

corresponding y-interval associated with that input box. Because of the piecewise constant output, MoM is inefficient 

for approximating nonlinear continuous functions. Kosko has shown [Kosko, 1997] that if there are many rules that fire 

simultaneously, the maximum function tends to approach a constant function. This may cause problems especially in 

control. 

 
The property of CoS is that the shape of final membership function used as a basis for defuzzification will 

resemble more and more normal density function when the number of functions used in summation grows. 

Systems of this type that sum up the output membership functions to form final output set are called additive 

fuzzy systems. 

 
Fuzzy logic is widely used in machine control. The term “fuzzy” refers to the fact that the logic 

involved can deal with concepts that cannot be expressed as the “true” or “false” but rather as “partially 

true”. Although alternative approaches such as genetic algorithms and neural networks can perform just 

as well as fuzzy logic in many cases, fuzzy logic has the advantage that the solution to the problem can be 

cast in terms that human operators can understand, so that their experience can be used in the design of 

the controller. This makes it easier to mechanize tasks that are already successfully performed by 

humans. 
 

Fuzzy controllers are very simple conceptually. They consist of an input stage, a processing stage, 

and an output stage. The input stage maps sensor or other inputs, such as switches, thumbwheels, and 
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so on, to the appropriate membership functions and truth values. The processing stage invokes each 

appropriate rule and generates a result for each, then combines the results of the rules. Finally, the 

output stage converts the combined result back into a specific control output value. 

 
The most common shape of membership functions is triangular, although trapezoidal and bell curves are also 

used, but the shape is generally less important than the number of curves and their placement. From three to seven 
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curves are generally appropriate to cover the required range of an input value, or the “universe of 

discourse” in fuzzy jargon. 

 
As discussed earlier, the processing stage is based on a collection of logic rules in the form of IF 

THEN statements, where the IF part is called the “antecedent” and the THEN part is called the 

“consequent”. Typical fuzzy control systems have dozens of rules. 
 

Consider a rule for a thermostat : 
 

IF (temperature is “cold”) THEN turn (heater is “high”) 

 

This rule uses the truth value of the “temperature” input, which is some truth value of “cold”, to generate 

a result in the fuzzy set for the “heater” output, which is some value of “high”. This result is used with the results of 

other rules to finally generate the crisp composite output. Obviously, the greater the truth value of “cold”, the 

higher the truth value of “high”, though this does not necessarily mean that the output itself will be set to “high” 

since this is only one rule among many. In some cases, the membership functions can be modified by “hedges” that 

are equivalent to adverbs. Common hedges include “about”, “near”, “close to”, “approximately”, “very”, “slightly”, 

“too”, “extremely”, and “somewhat”. These operations may have precise definitions, though the definitions can 

vary considerably between different implementations. “Very”, for one example, squares membership functions; 

since the membership values are always less than 1, this narrows the membership function. “Extremely” cubes the 

values to give greater narrowing, while “somewhat” broadens the function by taking the square root. 

 
In practice, the fuzzy rule sets usually have several antecedents that are combined using fuzzy operators, such as 

AND, OR, and NOT, though again the definitions tend to vary: AND, in one popular definition, simply uses the minimum 

weight of all the antecedents, while OR uses the maximum value. There is also a NOT operator that subtracts a 

membership function from 1 to give the “complementary” function. 

 
There are several ways to define the result of a rule, but one of the most common and simplest is the 

“max-min” inference method, in which the output membership function is given the truth value generated by the 

premise. 

 
Rules can be solved in parallel in hardware, or sequentially in software. The results of all the rules 

that have fired are “defuzzified” to a crisp value by one of several methods. There are dozens, in theory, 

each with various advantages or drawbacks. 
 

The “centroid” method is very popular, in which the “center of mass” of the result provides the 

crisp value. Another approach is the “height” method, which takes the value of the biggest contributor. 

The centroid method favors the rule with the output of greatest area, while the height method obviously 

favors the rule with the greatest output value. 
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The diagram below demonstrates max-min inferencing and centroid defuzzification for a system 

with input variables “x”, “y”, and “z” and an output variable “n”. Note that “mu” is standard fuzzylogic 

nomenclature for “truth value”: 
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Notice how each rule provides a result as a truth value of a particular membership function for the output 

variable. In centroid defuzzification the values are OR’d, that is, the maximum value is used and values are not 

added, and the results are then combined using a centroid calculation. Fuzzy control system design is based on 

empirical methods, basically a methodical approach to trial-and-error. The general process is as follows : 
 

 Document the system’s operational specifications and inputs and outputs. 
 

 Document the fuzzy sets for the inputs. 
 

 Document the rule set. 
 

 Determine the defuzzification method. 
 

 Run through test suite to validate system, adjust details as required. 
 

 Complete document and release to production. 
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As a general example, consider the design of a fuzzy controller for a steam turbine. The block 

diagram of this control system appears as follows : 
 

The input and output variables map into the following fuzzy set :  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

N3 : Large negative. 
 

N2 : Medium negative. 
 

N1 : Small negative. 
 

Z : Zero. 
 

P1 : Small positive. 
 

P2 : Medium positive. 
 

P3 : Large positive. 
 

The rule set includes such rules as: 
 

rule 1 : IF temperature IS cool AND pressure IS weak, THEN throttle is P3. 
 

rule 2 : IF temperature IS cool AND pressure IS low, THEN throttle is P2. 
 

rule 3 : IF temperature IS cool AND pressure IS ok, THEN throttle is Z. 
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rule 4 : IF temperature IS cool AND pressure IS strong, THEN throttle is N2. 
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In practice, the controller accepts the inputs and maps them into their membership functions and truth values. 

These mappings are then fed into the rules. If the rule specifies an AND relationship between the mappings of the two 

input variables, as the examples above do, the minimum of the two is used as the combined truth value; if an OR is 

specified, the maximum is used. The appropriate output state is selected and assigned a membership value at the truth 

level of the premise. The truth values are then defuzzified. For an example, assume the temperature is in the “cool” 

state, and the pressure is in the “low” and “ok” states. The pressure values ensure that only rules 2 and 3 fire: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The two outputs are then defuzzified through centroid defuzzication :  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
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The output value will adjust the throttle and then the control cycle will begin again to generate the next value . 

 

Building a fuzzy controller[edit] 
 

Consider implementing with a microcontroller chip a simple feedback controller :  
 
 
 
 
 
 
 
 

A fuzzy set is defined for the input error variable “e”, and the derived change in error, “delta”, 

as well as the “output”, as follows: 
 

LP : large positive 
 

SP : small positive 
 

ZE : zero 
 

SN : small negative 
 

LN : large negative 

 

If the error ranges from -1 to +1, with the analog-to-digital converter used having a resolution of 0.25, 

then the input variable’s fuzzy set (which, in this case, also applies to the output variable) can be 

described very simply as a table, with the error / delta / output values in the top row and the truth 

values for each membership function arranged in rows beneath : 
 

_____________________________________________________________________________________ 
 

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1  
_____________________________________________________________________________________  

mu (LP) 0 0 0 0 0 0 0.3 0.7 1 

mu (SP) 0 0 0 0 0.3 0.7 1 0.7 0.3 

mu (ZE) 0 0 0.3 0.7 1 0.7 0.3 0 0 

mu (SN) 0.3 0.7 1 0.7 0.3 0 0 0 0 

mu (LN) 1 0.7 0.3 0 0 0 0 0 0  
_____________________________________________________________________________________ or, in 

graphical form (where each “X” has a value of 0.1): 
 

  LN SN ZE SP LP  
 

-1.0 

 +-------------------------------------------------------------------------------------------------------    + 
 

| XXXXXXXXXX XXX : : : | 
 

-0.75 | XXXXXXX XXXXXXX : : : | 
 

-0.5 | XXX XXXXXXXXXX XXX : : | 
 

-0.25 | : XXXXXXX XXXXXXX : : | 
 

0.0 | : XXX XXXXXXXXXX XXX : | 
 

0.25 | : : XXXXXXX XXXXXXX : | 
 

0.5 | : : XXX XXXXXXXXXX XXX | 
 

0.75 | : : : XXXXXXX XXXXXXX | 
 

1.0 | : : : XXX XXXXXXXXXX | 
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 |      | 
  

+-------------------------------------------------------------------------------------------------------+ 
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Suppose this fuzzy system has the following rule base : 
 

rule 1 : IF e = ZE AND delta = ZE 

rule 2 : IF e = ZE AND delta = SP 

rule 3 : IF e = SN AND delta = SN 

rule 4 : IF e = LP OR delta = LP 

 
 
THEN output = ZE 
 
THEN output = SN 
 
THEN output = LP 
 
THEN output = LN 
 

These rules are typical for control applications in that the antecedents consist of the logical combination 

of the error and error-delta signals, while the consequent is a control command output. The rule outputs 

can be defuzzified using a discrete centroid computation : 
 

SUM ( I = 1 TO 4 OF ( mu(I) * output(I) ) ) / SUM( I = 1 TO 4 OF mu(I) ) 
 

Now, suppose that at a given time we have: 
 

e = 0.25 

delta = 0.5 
 

Then this gives :  
___________________________________ 

 
e delta 

___________________________________ 
mu(LP) 0 0.3 

mu(SP) 0.7 1 

mu(ZE) 0.7 0.3 

mu(SN) 0 0 

mu(LN) 0 0 

___________________________________ 

 

Plugging this into rule 1 gives : 
 

rule 1 : IF e = ZE AND delta = ZE THEN  output = ZE 
 

mu (1) = MIN ( 0.7, 0.3 ) =  0.3 
 

output(1) = 0 
 

-- where : 
 

 mu(1) : Truth value of the result membership function for rule 1. In terms of a centroid calculation, this is 

the “mass” of this result for this discrete case.


 output(1) : Value (for rule 1) where the result membership function (ZE) is maximum over the output variable fuzzy 

set range. That is, in terms of a centroid calculation, the location of the “center of mass” for this individual result. This 

value is independent of the value of “mu”. It simply identifies the location of ZE along the output range.
 

The other rules give : 
 

rule 2 : IF e = ZE AND delta = SP  THEN  output = SN 

mu (2) = MIN ( 0.7, 1 ) = 0.7  

output (2) = -0.5      

rule 3 : IF e = SN AND delta = SN THEN output = LP 

mu (3)  = MIN ( 0.0, 0.0 )  = 0  

output (3) = 1     
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rule 4 : IF e = LP OR delta = LP  THEN output = LN 

mu (4)  = MAX ( 0.0, 0.3 ) = 0.3  

output (4) = -1     
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The centroid computation yields : 
 

-for the final control output. Simple. Of course the hard part is figuring out what rules actually 

work correctly in practice. 
 

If you have problems figuring out the centroid equation, remember that a centroid is defined by 

summing all the moments (location times mass) around the center of gravity and equating the sum to 

zero. So if is the center of gravity, is the location of each mass, and is each mass, this gives : 
 

In our example, the values of mu correspond to the masses, and the values of X to location of the masses 

(mu, however, only ‘corresponds to the masses’ if the initial ‘mass’ of the output functions are all the 

same/equivalent. If they are not the same, i.e. some are narrow triangles, while others maybe wide 

trapizoids or shouldered triangles, then the mass or area of the output function must be known or 

calculated. It is this mass that is then scaled by mu and multiplied by its location X_i). 
 

This system can be implemented on a standard microprocessor, but dedicated fuzzy chips are now available. For 

example, Adaptive Logic INC of San Jose, California, sells a “fuzzy chip”, the AL220, that can accept four analog inputs 

and generate four analog outputs. A block diagram of the chip is shown below : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ADC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
: analog-to-digital converter 
  

DAC 
  
: digital-to-analog converter 
  

SH 
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Antilock brakes 
 

As a first example, consider an anti-lock braking system, directed by a microcontroller chip. The microcontroller 

has to make decisions based on brake temperature, speed, and other variables in the system. 
 

The variable “temperature” in this system can be subdivided into a range of “states”: “cold”, 

“cool”, “moderate”, “warm”, “hot”, “very hot”. The transition from one state to the next is hard 

to define. 
 

An arbitrary static threshold might be set to divide “warm” from “hot”. For example, at exactly 90 

degrees, warm ends and hot begins. But this would result in a discontinuous change when the 

input value passed over that threshold. The transition wouldn’t be smooth, as would be required 

in braking situations. 
 

The way around this is to make the states fuzzy. That is, allow them to change gradually from one 

state to the next. In order to do this there must be a dynamic relationship established between 

different factors. 
 

We start by defining the input temperature states using “membership functions”:  
 
 
 
 
 
 
 
 
 
 
 

 

With this scheme, the input variable’s state no longer jumps abruptly from one state to the next. Instead, as the 

temperature changes, it loses value in one membership function while gaining value in the next. In other words, 

its ranking in the category of cold decreases as it becomes more highly ranked in the warmer category. 
 

At any sampled timeframe, the “truth value” of the brake temperature will almost always be in some degree 

part of two membership functions: i.e.: ‘0.6 nominal and 0.4 warm’, or ‘0.7 nominal and 0.3 cool’, and so on. 
 

The above example demonstrates a simple application, using the abstraction of values from 

multiple values. This only represents one kind of data, however, in this case, temperature. 
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Adding additional sophistication to this braking system, could be done by additional factors such 

as traction, speed, inertia, set up in dynamic functions, according to the designed fuzzy 

system.[9] 
 

Logical interpretation of fuzzy control 
 

In spite of the appearance there are several difficulties to give a rigorous logical interpretation of 

the IF-THEN rules. As an example, interpret a rule as IF (temperature is “cold”) THEN (heater is “high”) by 

the first order formula Cold(x) High(y) and assume that r is an input such that Cold(r) is false. Then the 

formula Cold(r) High(t) is true for any t and therefore any t gives a correct control given r. A rigorous 

logical justification offuzzy control is given in Hajek’s book (see Chapter 7) where fuzzy control is 

represented as a theory of Hajek’s basic logic.[2] Also in Gerla 2005 [10] another logical approach to fuzzy 

control is proposed based on fuzzy logic programming.Indeed, denote by f the fuzzy function arising of an 

IF-THEN systems of rules. Then we can translate this system into a fuzzy program P containing a series of 

rules whose head is “Good(x,y)”. The interpretation of this predicate in the least fuzzy Herbrand model of 

P coincides with f. This gives further useful tools to fuzzy control. 

Exercise: 

Q1. Explain Fuzzifier and Defuzzifier. 

Q2.Write a short note onFuzzification. 

Q3. Explain the concept of defuzzyfication methods. 

Q4.What is the process of Building a fuzzy controller. 

Q5.Write a short note on centroid computation yields. 

Q6. Write a short note on Antilock brakes. 
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