Institute of Distance and Open Learning
 MA/MSc(Mathematics) Part II
 Assignment 2018-19

Instructions:

- All questions to be written and submitted in the assignment sheet provided by IDOL
- Answers to all five papers' assignments to be submitted separately
- The last date of submission is Saturday 30th March 2019 before 5pm in Room No. 112, first floor,IDOL building, Kalina campus, Santacruz (E), Mumbai 400098

Paper I: Algebra and Field Theory

1. Define a solvable group. Show that subgroup of a solvable group is solvable.
2. Find the rational canonical form of the following matrices over \mathbb{Q} and determine whether they are similar: $A=\left(\begin{array}{ccc}2 & -2 & 14 \\ 0 & 3 & -7 \\ 0 & 0 & 2\end{array}\right) \quad B=\left(\begin{array}{ccc}0 & -4 & 85 \\ 1 & 4 & -30 \\ 0 & 0 & 3\end{array}\right) \quad C=\left(\begin{array}{ccc}2 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3\end{array}\right)$
3. Show that if K is an algebraic extension of E and E is an algebraic extension of F then K is an algebraic extension of F.
4. Prove that $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic.

Paper II: Advanced Analysis and Fourier Analysis

1. Let A be closed rectangle in \mathbb{R}^{n}. Prove that the function $\chi_{C}: A \rightarrow \mathbb{R}$ is integrable if and only if the boundary of C has measure zero.
2. State and prove Bounded Convergence Theorem
3. State and prove the Dirichlet's theorem.
4. Prove that $L^{2}[-\pi, \pi]$ is separable.

Paper III: Differential Geometry and Functional Analysis

1. For any $x, y \in V$, where V is an inner product space, show that $\|x-y\|^{2}=\|x\|^{2}+\|y\|^{2}$ if and only if x is orthogonal to y .
2. Prove or disprove: The unit sphere is a regular surface.
3. State and prove the lemma of Riesz.
4. Prove that the dual space of l^{1} is l^{∞}.

Paper IV: Numerical Analysis

1. Perform two iterations of the Newton-Raphson method to solve the following system of non-linear equations: $4 x^{2}+2 x y+y^{2}=30$ and $2 x^{2}+3 x y+y^{2}=3$. Use initial approximation $x_{0}=-3$ and $y_{0}=2$.
2. Use Newton's divided difference formula to find the fourth degree curve passing through the points $(-4,1245),(-1,33),(0,5),(2,9)$ and $(5,1335)$.
3. Obtain the least squares quadratic approximation to the function $y(x)=\sin x$ on $[0, \pi / 2]$ with respect to the weight function $W(x)=1$.
4. Derive a numerical method (Crank-Nicolson's method) to obtain the numerical solution of one dimensional heat equation with initial and boundary conditions.

Paper V: Graph Theory

1. Prove that the block graph of a connected graph is a tree.
2. Prove that a graph is Eulerian if and only if it is connected and even.
3. Prove that every simple outer planar graph has a vertex of degree less than or equal to 2 .
4. Compute the spectrum of the complete bipartite graph with m vertices.
