Institute of Distance and Open Learning
 MA/MSc(Mathematics) Part I
 Assignment 2018-19

Instructions:

- All questions to be written and submitted in the assignment sheet provided by IDOL
- Answers to all five papers' assignments to be submitted separately
- The last date of submission is Saturday 30th March 2019 before 5pm in Room No. 112, first floor,IDOL building, Kalina campus, Santacruz (E), Mumbai 400098

Paper I: Algebra

1. Prove that the $\mathbb{Q}-\{1\}$ with operation * defined as $a * b=a+b-a b$, is an abelian group.
2. Let V be a finite dimensional vector space over a field F. Let B and B^{\prime} be bases of V. Show that for every linear functional T on V the matrix of T with respect to B^{\prime} is similar to the matrix of T with respect to B.
3. Prove that a finite integral domain is a field.
4. Show that similar matrices have the same minimal polynomial.

Paper II: Analysis and Topology

1. Define metric space. If (X, d) is a metric space, then prove that in (X, d) :
(i) Union of open sets is open
(ii) Intersection of a finite number of open sets is open
2. Define a connected set. If A and B are connected sets the prove or disprove that $A \cap B, A \cup B$ are also connected.
3. Define a Hausdroff Topological space. Prove that every metric space is a Hausdroff space.
4. Show that continuous image of a connected space is connected.

Paper III: Complex Analysis

1. Prove that if G is an open connected set and $f: G \rightarrow \mathbb{C}$ is differentiable with $f^{\prime}(z)=0 \forall z \in G$, then f is constant.
2. Prove that a Möbius Transformation is a composition of translation, rotation, inversion and magnification.
3. State and prove Cauchy's Integral Formula.
4. Find all the possible Laurent Series expansions of $f(z)=\frac{1}{z(z+1)(z-2)}$.

Paper IV: Discrete Mathematics and Differential Equations

1. Prove that $a \equiv b(\bmod n)$ if and only if a and b leave the same reminder when divided by n.
2. State and prove Euler's criterion for quadratic residue of p.
3. Show that the Legendre polynomial $P_{n}(x)$ of degree n is given by $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.
4. Solve $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0$ using power series.

Paper V: Set theory, Logic and Elementary Probability Theory

1. Define finite set. Show that if a set A is finite then there is no bijection of A with a proper subset of itself.
2. By using Zorn's lemma, prove that a nonzero unit ring contains a maximal proper ideal.
3. State and prove continuity property of probability.
4. Show that $E_{y} E[X / Y=y]=E[X]$
