M.SC. {COMPUTER SCIENCE} (PART-I) PRINCIPLES OF COMPILER DESIGN

PAPER - I (JAN- 2020)

Computer Science: Paper I - Principles of Compiler Design.

ne: 3 Hours

[75 Marks]

- 1. Attempt any three questions from each section
- 2. Answers to the two sections must be written in same answer sheet.
- 3. Figures to the right indicate full marks.
- 4. Assume additional data if necessary but state the same clearly.
- 5. Symbols have their usual meanings and tables have their usual standard design unless stated otherwise.
- 6. Use of Simple calculators and statistical tables is allowed.

Section I

Q. 1	A	Define: 1) Ambiguity 2) Parser.	6		
	В	Define regular expression and draw the transition diagram for the following expressions:-	6		
		1)ab*cbb 2)(0*+1).(01)*			
Q. 2	A	Explain Call by reference, Call by Value and Call by Name.	6		
	В	Explain Backtracking with suitable example.			
Q. 3	A	Consider the following grammar. S-> iCtS S->iCtSeS S-> a C- >b Show the step by step derivation of the string ibtibtaea and also draw the parse tree for the string.	6		
	В	Explain Left recursion with suitable example.	6		
Q. 4	Α	Explain recursive descent parser with suitable example.	6		
	В	List various operators used in programming languages.	6		
Q. 5	Α	Write a short note on cross compiler.	6		
	В	List Various types of statements used in High level programming language.	6		
		Section II			
Q. 6	Α	Derive three address code for Q>P AND T>U AND P>T	6		
	В	Explain loop unrolling and loop jamming optimization techniques.	7		
Q. 7	A	Explain syntax direction translation scheme for following programming constructs. (i) Procedure calls (ii) Declarations	6		
	В	Differentiate between error recovery and error repair. State and explain different types of errors that a compiler needs to handle.	7		
Q. 8	A	What is data flow analysis? Explain backward flow problems.	6		
	В	Explain code generation algorithm.	7		
Q. 9	Α	Define DAG. Explain the algorithm for DAG construction.	6		
	В	Write a note on activation record for C procedure.	7		
Q. 10	A	What is addressing mode? What addressing modes are used in assembly	6		
	В	language of a general purpose microprocessor? Explain peephole optimization.	7		
81874		Page 1 of 1			

F1E04DE6617C1A3B82ED47983BDDD051

M.SC. {COMPUTER SCIENCE} (PART-I) DIGITAL SIGNAL PROCESSING

PAPER - II (JAN- 2020)

er Science : Paper II - Digital Signal Processing.

3 Hours) (Total Marks: 75)

1.	Attempt any	three	questions	from	each	section

- 2. Answers to the two sections must be written in same answer sheet.
- 3. Figures to the right indicate full marks.
- 4. Assume additional data if necessary but state the same clearly.
- 5. Symbols have their usual meanings and tables have their usual standard design unless stated otherwise.
- 6. Use of Simple calculators and statistical tables is allowed.

		Section I	
1	A B	Compare IIR systems with FIR systems. If $x[n] = \{1,2,2,1,3,1\}$ is a periodic signal. Plot it in circular representation for- i) $x[-n]$ ii) $x[n-2]$ ii) $x[n+2]$ iv) $x[-(n-2)]$ v) $x[-(n+2)]$	6
2	A B	Write a detailed note on biomedical applications of DSP processors. If $x(n)=\{3, 4, 0, 6\}$ Find DFT $X[k]$.	6 6
3	A	Explain the significance of Carl's Correlation Coefficient Algorithm in digital signal processing. Evaluate Carl's Coefficient for two casual sequences $x[n] = \{2,4,4,8\}$ and $y[n] = \{1,1,2,2\}$	6
	В	For the causal signal $x(n) = \{2, 2, 4, 4\}$ compute four point DFT using DIT-Fft.	6
4	A	Find the cross correlation of two causal sequences $x[n] = \{2,3,1,4\}$ and $y[n] = 3\delta(n-3)-2\delta(n)+\delta(n-1)+4\delta(n-2)$	6
	В	For the FIR digital filter with impluse response given by $h(n) = 2\delta$ (n-4) sketch the magnitude response of the filter.	6
5	A B	Define BIBO Stable system. Determine output response of the LTI system using time domain method, whose input is $x[n] = 3\delta[n+1] - 2\delta[n] + \delta[n-1] + 4\delta[n-2]3\delta[n+1] - 2\delta[n] + \delta[n-1] + 4\delta[n-2]$ and $h[n] = 2\delta[n-1] + 5\delta[n-2] + 3\delta[n-3]2\delta[n-1] + 5\delta[n-2] + 3\delta[n-3]$.	6
		Section II	
6	A	Check whether the system y[n] = a ⁿ u[n] is: i) Static or Dynamic ii) Linear or Non-linear iii) Casual or Non-casual iv) Shift variant or shift Invariant	
	B	Write a detailed note on speech recognition	7
3	A	Explain any five properties of DFT.	6
	B	Compute linear convolution of the casual sequences $x[n] = \{2,-3,1,-4,3,-2,4,-1\}$ and $h[n] = \{2,-1\}$ using overlap save method.	7
8	A B	Compare microprocessor with digital signal processor. Compute DFT of sequence $x(n)=\{1,2,2,2,1,0,0,0\}$. using DIT-FFT algorithm.	6 7
9		Explain the following properties of DFT: i) Periodicity ii) Linearity iii) Time Shift iv) Circular Convolution v) Time Reversal	6
1 200	Ver.		

10 A Evaluate DFT of $x(n) = \cos(0.25\pi\pi n)$.

67472

and $h(n)=\{1\ 2\ 3\ 1\}$ using overlap save method.

B Compute linear convolution of the casual sequences $x(n)=\{7, 6, 4, 5, 2, 4, 5, 2, 3\}$

B Perform Cross correlation of the causal sequences $x(n) = \{3,3,1,1\}, y(n) = \{1,2,1\}.$

Page 1 of 1

6

r III - Mobile Computing and Computer Simulation and Modeli

M.SC. {COMPUTER SCIENCE} (PART-I) MOBILE COMPUTING & COMPUTER SIMULATION & MODELING

PAPER - III (JAN- 2020)

(3 Hours) (Total Marks: 75)

- 1. Attempt any three questions from each section
- 2. Answers to the two sections must be written in same answer sheet.
- 3. Figures to the right indicate full marks.
- 4. Assume additional data if necessary but state the same clearly.
- 5. Symbols have their usual meanings and tables have their usual standard design unless stated otherwise.
- 6. Use of Simple calculators and statistical tables is allowed.

Section I

QI.	Α	write a note on signal propagation.	3, 80 7, 40
	В	Explain the system architecture of DECT.	6
Q2.	A	Write a note on GSM Protocols.	6
	В	Explain the detailed structure of IEEE 802.11 protocol architecture	6
Q3.	A	Write a note on Mobile TCP	6
	В	Explain World Wide Web system architecture.	6
Q4.	A	Discuss on Wireless application environment.	6
	В	Write a note on Transaction-Oriented TCP.	6
Q5.	A	Explain WATM generic reference model.	6
	В	Write a note on MAC Frames.	6
		Section II	
Q6.	A	Explain Uniform distribution.	6
	В	Explain different steps in a simulation study.	7
Q7.	A	List and explain different simulation packages.	6
ST.	B	Explain simple linear regression.	7
Q8.	A	Write a note on Time-Average Number in system L.	6
	В	Explain the characteristics of Queuing Systems.	7
Q9.	A	Write a note on Goodness-of-Fit Tests.	6
	B	Explain the iterative process of calibrating a model.	7
Q10.	A	Explain the process of model building, verification and validation.	6
	В	Explain different steps in identifying the distribution with data.	7

69170 Page 1 of 1

M.SC. {COMPUTER SCIENCE} (PART-I) DATA WAREHOUSING & MINING & ADVANCED DATABASE SYSTEMS

PAPER - IV (JAN- 2020)

· IV - Data Warehousing and Mining and Advanced Database Sys

(3 Hours) (Total Marks: 75)

- 1. Attempt any three questions from each section
- 2. Answers to the two sections must be written in same answer sheet.
- 3. Figures to the right indicate full marks.
- 4. Assume additional data if necessary but state the same clearly.
- 5. Symbols have their usual meanings and tables have their usual standard design unless stated otherwise.
- 6. Use of Simple calculators and statistical tables is allowed.

		Section I	
Q1.	A	What are the components of a data warehouse.	6
	В	Write a short note on KDD.	6
Q2.	A B	 Write a short note on the following trends in data warehouse. a) Data Fusion b) Multidimensional Analysis c) Agent Technology Explain Bayes Theorem. 	6
02		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Q3.	A B	What are the different requirement gathering methods. Give an account of issues involved with Decision Trees.	6 6
Q4.	A	Describe in detail data design phase of a DW.	6
	В	Explain hierarchical clustering algorithms in detail.	6
Q5.	A	List out the requirement and steps in ETL.	6
	В	Explain the following spatial clustering algorithms: a) CLARANS b) SDCLARANS c) DBCLASD	6
		Section II	
Q1.	A 🔬	List and draw any four symbols used in ER model	6
	В	State four differences between DBMS and RDBMS.	7
Q2.	A	Explain with Example: i. Intra-query parallelism. ii. Intra operation Parallelism iii. Inter Operation Parallelism What are transient and persistent objects? Explain in detail.	6 7
02)	6
Q3.	A B	How are multimedia sources indexed for content-based retrieval? Describe and explain any two architectures supported by distributed DBMS.	6 7
Q4.	A	Differentiate between data-centric and document centric XML	6
	B	Write short note on: i) Location Transparency ii) Fragmentation Transparency	7
Q5.	A	Describe in detail temporal databases.	6
	В	What is Geographical Information systems? Explain Different format	
P. 47. 42.	3 9 7	used to represent geographic data.	7

67473 Page 1 of 1