(JUNE - 2019)

(3 Hours)

[Total Marks:80

Instructions:

- Attempt any two questions from each section
- All questions carry equal marks.
- Answer to section I and II should be written on the same answer book

SECTION I (Attempt any two questions)

- 1. (a) If V is a finite dimensional vector space, then prove that any two Basis of V have the same number of elements.
 - (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^3$ be two linear transformations defined by T(x,y,z) = (x,2y,3z), S(x,y,z) = (x+y,y+z,z+x) and $B = \{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis of \mathbb{R}^3 . Verify that $[m(SoT)]_B^B = [m(S)]_B^B$. $[m(T)]_B^B$
- 2. (a) Let $C_1, C_2, C_3, \dots C_n$ be column vectors of dimension n. Then prove that they are linearly dependent if and only if $det(C_1, C_2, C_3, \dots C_n) = 0$
 - (b) (i) Find the rank of the matrix $\begin{pmatrix} 1 & 1 & -1 & 2 \\ 2 & -2 & 0 & 2 \\ 2 & -8 & 3 & -1 \end{pmatrix}$
 - (ii) Solve using Cramer's Rule

$$-2x - y - 3z = 3$$
$$2x - 3y + z = -13$$
$$2x - 3z = -11$$

- 3. (a) Define Minimal Polynomial of a square matrix. Show that the minimal polynomial of a real square matrix A divides every polynomial that annihilates $A_{n\times n}$. (Polynomial f(x) with real coefficients annihilates matrix A if f(A)=0)
 - (b) If $(x-1)(x+2)^2$ is a characteristic polynomial of a matrix $A_{3\times 3}$ then find the characteristic polynomial of $(i)A^{-1}(ii)A^t(iii)A^2$
- 4. (a) Let W be a subspace of a finite dimensional inner product space V, then prove that $V=W\oplus W^\perp$
 - (b) Let $S \subset \mathbb{R}^4$ be the set of vectors $X = (x_1, x_2, x_3, x_4)$ that satisfy $x_1 + x_2 x_3 + x_4 = 0$ What is the dimension of S. Find orthogonal complement of S

SECTION II (Attempt any two questions)

- 5. (a) Let G be a finite cyclic group of order n, $G = \langle a \rangle$, then prove that G has a unique subgroup of order n for each divisor d of n
 - (b) State and prove Cayley's Theorem

- 6. (a) Let G be a finite group and p be a prime that divides the order of group G. Then prove that G has an element of order p
 - (b) Determine all groups of order 66 upto isomorphism
- 7. (a) Let R be a commutative ring . If I, J are ideals in R, show that $I \cap J$, I + J and IJ are ideals of R, where

$$I + J = \{x + y/x \in I, y \in J\}$$

$$IJ = \{\sum_{i=1}^{n} x_i y_i / x_i \in I, y_i \in J\}$$

- (b) Determine all zero-divisors , units and idempotent elements in (i) \mathbb{Z}_{18} (ii) $\mathbb{Z}_3 \times \mathbb{Z}_6$ (iii) $\mathbb{Z} \times \mathbb{Q}$
- 8. (a) Show that ring $\mathbb{Z}[\sqrt(2)]$ and H are isomorphic where $H = \left\{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} / a, b \in \mathbb{Z} \right\}$ under addition and multiplication of 2×2 matrices
 - (b) Prove that every Principal Ideal Domain(PID) is a Unique Factorization Domain(UFD)

M.SC. (MATHEMATICS) PART-I Analysis & Topology (R-2016) (JUNE - 2019)

Hours)

[Total Marks:80]

- Attempt any two questions from each section.
- All questions carry equal marks.
- Answer to section I and II should be written on the same answer book.

SECTION I (Attempt any two questions)

- 1. (a) Let d_1 and d_2 be two metrics on X. If there exist k > 0, such that $\frac{1}{k}d_1(x,y) \le d_2(x,y) \le kd_1(x,y)$, for every $x,y \in X$, then show that d_1 and d_2 are equivalent metrics on X.
 - (b) i) In a metric space $(\mathbb{R}^2, ||||)$, examine if the set $S = \{(x_1, x_2) \in \mathbb{R}^2 : 1 < x_1 + x_2 < 2\}$ is open set.
 - ii) Let A be a non-empty set in a metric space (X, d). Show that $|d(x, A) d(y, A)| \le d(x, y)$, for all $x, y \in X$.
- (a) i) Show that close subset of compact set is compact.ii) Show that two close sets are separated if and only if they are disjoint.
 - (b) Show that a metric space is connected if and only if every continuous characteristic function is a constant function.
- 3. (a) Show that if $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is differentiable at p, then f is continuous at p.
 - (b) i) If u(x,y) = x 2y + 3, x = r + s + t, $y = rs + t^2$ find u_r , u_s and u_t at (1,2,4). ii) Write the matrix for f' and evaluate at the point (2,9) where $f(x,y) = (3x^2 + y, x^3 + y^2, x + y^3)$.
- 4. (a) i) Locate and classify the stationary points of the function given by $f(x,y) = x^2 + xy + 2x + 2y + 1$. ii) Find the distance of the point (10,1,-6) from the intersection of the plane x + y 2z = 5 and 2x 3y + z = 12.
 - (b) Determine whether the function $f(x,y) = x^3y + 3$, y^2 is locally invertible at (1,3).

SECTION II (Attempt any two questions)

- 5. (a) Define a Topological Space and Base of a Topological Space. Let X be any infinite set and τ_1 consist of ϕ , X and all subsets A of X such that $X \setminus A$ is finite. Let τ_2 consist of ϕ , X and all subsets A of X such that $X \setminus A$ is countable. Show that τ_1 and τ_2 are topologies on X.
 - (b) Define open and closed sets in a topological space. Prove that a set G in a topological space (X, τ) is closed if and only if $X \setminus G$ is open in (X, τ) .

[TURN OVER]

- 6. (a) Define T_1 . Show that a topological space (X, τ) is T_1 if and only if every one point subset of X is a closed subset.
 - (b) Let (X, τ) be a topological space. When is X said to be separable? Show that a topological space being separable is a topological property. Is being separable a hereditary property? Justify your answer.
- 7. (a) Show that closed subsets of a compact space is compact. Also prove that compact subset of a Hausdorff space is closed.
 - (b) State Tube Lemma and hence show that cartesian product of two compact topological spaces is compact.
- 8. (a) Define limit point compact space . Show that if a topological space X is compact then X is limit point compact.
 - (b) Prove that every closed and bounded interval in \mathbb{R} is compact.

73202 Page 2 of 2

M.SC. (MATHEMATICS) PART-I Complex Analysis (R-2016) (JUNE - 2019)

(Total marks: 80)

- 1) Attempt any two questions from each section.
- 2) All questions carry equal marks.
- 3) Answer to Section I and section II should be written in the same answer book.

SECTION-I (Attempt any two questions)

Q1 a) If $a_n \neq 0$ for all but finitely many values of n then prove that the radius of convergence R of $\sum_{n=0}^{\infty} a_n z^n$ is related by $\liminf \left| \frac{a_{n+1}}{a_n} \right| \leq \frac{1}{R} \leq \limsup \left| \frac{a_{n+1}}{a_n} \right|$. In particular,

if $\lim \left| \frac{a_{n+1}}{a_n} \right|$ exist, then $\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} |a_n|^{1/n}$.

- b) Find the domain of region of convergence of the following power series $\sum_{n=1}^{\infty} \left(\frac{(iz-1)}{3+4i} \right)^n.$
- Q2 a) Prove that the Mobius Transformation takes circles onto circles.
 - b) Find the bilinear transformation which maps the points $z = \infty, i, 0$ onto the points $0, i, \infty$.
- Q3 a) Prove that log z is not continuous on negative real axis.
 - b) Prove that $u(x, y) = x^3 3xy^2 + 3x^2 3y^2 + 2$ is a harmonic function. Also find its harmonic conjugate and the corresponding analytic function.
- Q4 a) Let γ be such that $\gamma(t) = \gamma_1(t) + i\gamma_2(t)$ be a smooth curve and suppose that f is a continuous function on an open set containing $\{\gamma\}$. Then prove that
 - (i) $\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$
 - (ii) $\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz|$
 - (iii) If $M = Max |f(\gamma(t))|$ and $L = L(\gamma)$ (length of γ) then $\left| \int_{\gamma} f(z) dz \right| \le ML$
 - b) Evaluate $\int_{-\infty}^{2+i} (2x+iy+1) dz$ along
 - (i) The straight line joining (1 i) to (2 + i).
 - (ii) Along the curve whose parametric equation is x = t + 1, $y = 2t^2 1$.

SECTION-II (Attempt any two questions)

- Q5 a) State and prove Cauchy's Integral Formula.

 b) Evaluate $\int_{c}^{c} \frac{\sin \pi z + \cos \pi z}{(z-1)(z-2)} dz$, using Cauchy's Integral Formula where C is the circle $|z| = \frac{3}{2}$.
- Q6 a) State and prove Identity theorem. b) Let $f(z) = e^z$ and $T = \overline{B(2+3i,1)}$. Find the point in T at which |f| attains its maximum value.
- Q7 a) State and prove Casorti Weiestrass theorem. 10 b) Find all the possible Laurent Series expansions of $f(z) = \frac{z^2 - 1}{z^2 + 5z + 6}$. 10
- Q8 a) State and prove Rouche's theorem. 10 b) Use the residue theorem to evaluate $\int_{-\infty}^{\infty} \frac{\cos 2x}{x^2 + 4} dx$. 10

M.SC. (MATHEMATICS) PART-I <u>Discrete Mathematics &</u> <u>Differential Equations (R-2016)</u>

(JUNE - 2019)

[Total marks: 80]

Instructions:

- 1) Attempt any two questions from each section.
- 2) All questions carry equal marks.
- 3) Answer to Section I and section II should be written in the same answer book.

ırs)

SECTION-I (Attempt any two questions)

- Q.1] A] Prove that ' if (a, m) = d, then a Diophantine equation ax + my = b is solvable if and only if d|b'. [10]
- B] Use Cardanos method to find the roots of the cubic equation $64x^3 48x^2 + 12x 1$. [10]
- Q.2] A] Define Derangement on 'n'. Prove that $D_n = n! \left[1 \frac{1}{1!} + \frac{1}{2!} \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!} \right]$ by using the principle of inclusion and Excusion. [10]
- B] If S(n, k) denotes the Striling number of second kind, then prove that

$$S(n,k) = \sum_{i=0}^{k} (-1)^{i} \times {k \choose i} (k-i)^{n}, \quad k \le n.$$
 [10]

- Q.3] A] Given 5 points in the plane with integer coordinates, show that there exists a pair of points whose midpoint also has integer coordinates. [10]
- B] Let m and n be relative prime positive integer then prove that the system

$$x \equiv a(mod m)$$
 and $x \equiv (mod n)$ has a solution. [10]

- Q.4] A] Let a simple graph G(v, e) is connected then prove that $v \le e + 1$. [10]
- B] Find the disjunctive normal to the function $F(x, y, z) = (x \lor y) \land \bar{z}$. [10]

SECTION-II (Attempt any two questions)

Q.5] A] Show that solution matrix \emptyset of y' = A(x)y is fundamental matrix if and only if $\det(\emptyset) \neq 0$. [10]

72918 Page 1 of 2

B] Solve
$$\frac{dx}{dt} = 2x + 4y$$
, $\frac{dy}{dt} = x - y$, $x(0) = 4$, $y(0) = 5$.

- Q.6] A] Show that $\emptyset_{1,}u_{2}\emptyset_{1},\ldots,u_{n}\emptyset_{1}$ is a basis for the solutions of $L_{n}(y)=0$ on I, where $\emptyset_{1}(x)\neq 0$ on I, and $v_{k}=u_{k}'$ ($k=1,2,\ldots,n$) are the linearly independent solutions of $\emptyset_{1}v^{(n-1)}+\cdots\ldots+\left(n\emptyset_{1}^{(n-1)}+a_{1}(n-1)\emptyset_{1}^{(n-2)}+\cdots\ldots+a_{n-1}\emptyset_{1}\right)v=0$. [10]
- B] Verify that $\emptyset_1(x) = x$, (x > 0) is a solution of $x^2y'' xy' + y = 0$, hence find other Linearly independent solution. [10]
- Q.7] A] Let u(x) be any non-trivial solution of u'' + q(x)y = 0 where $q(x) > 0 \ \forall x > 0$ if $\int_1^\infty q(x)dx = \infty$, than show that u(x) has infinitely many zero on positive x-axis. [10]
- B] Solve Bessel's equation $x^{2}y'' + xy' + (x^{2} p^{2})y = 0$, $p \ge 0$. [10]
- Q.8] A] Solve the Cauchy problem $(x^2 + 1)u_x + \frac{2xy}{x^2 + 1}u_y = 2xu$, y > 0, $u(0, y) = \log y$. [10]
- B] For the PDE $u_x^2 + u_y^2 = u^2$. i) Find the characteristic strips and ii) The integral surface z = u(x, y) passing through the circle $x = \cos S$, $y = \sin S$, z = 1. [10]

72918 Page 2 of 2

M.SC. (MATHEMATICS) PART-I Set theory, Logic & Elementary Probability Theory (R-2016) (JUNE - 2019)

<u>y (R-2016)</u> (*JUNE - 2019)* Duration: 3 Hours Marks: 80

N.B. 1) Attempt any two questions from section - I and any two questions from section - II.

2) All questions carry equal marks.

SECTION-I (Attempt any two questions)

1.	a)	Prove or disprove : i) $(A \cap B) \times C = (A \times C) \cap (B \times C)$	10
	b)	ii) A – (B \cap C) = (A–B) \cap (A–C) Show that the relation of congruence modulo m, $a \equiv b \pmod{m}$ in the Set of integers \mathbb{Z} is an equivalence relation.	7.7.5 2.5.7.5 2.5.5
	c)		3
2.	a)	If B is non-empty set then show that following statements are equivalent. 1) B is countable 2) There is surjective function f: Z+ → B	10
	b)	3) There is injective function $g: B \to Z_+$. Show that the mapping $f: \mathbb{Z}^+ \to \mathbb{Z}^+$ defined by $f(x) = x^2, x \in \mathbb{Z}^+$ where	5
	c)	\mathbb{Z}^+ is the set of positive integers is one-one and into. Prove or disprove if f and g are injective then g \circ f is injective.	5
3.	a)	By using mathematical induction prove that every integer $n \ge 2$ is a product of prime numbers (Here a prime number is itself to be viewed as	10
	b)	a one – factor product of prime numbers.) Define the following terms in partially ordered set: i) Chain (totally ordered set) ii) Maximal element iii) Upper bound	5
	c)	Using mathematical induction prove that if $n \ge 3$ then $2n-1 > 1$.	5
4.	a)	Show that every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.	10
	b)	What is the order of each of the following permutations? i) (124)(35) ii) (124)(356) iii) (124)(3578)	5
	c)	If $\beta = (1\ 2\ 5\ 7\ 3\ 6)$ then compute β^{122} .	5
		SECTION-II (Attempt any two questions)	
5.	(a)	If $\{A_j\}$ is increasing sequence of events of space (Ω, C) then show that $\lim_{n\to\infty} P(A_n) = P(\bigcup_{n=1}^{\infty} A_n)$	5
	b)	In a random arrangement of alphabets in word CHILDREN, find probability	5
	c)	that i) All vowels are together. ii) No two vowels are together. Let $\{F_i : i \in I\}$ be a collection of sigma-fields of subsets of Ω . Prove or disprove i) $\bigcap_{i=1}^{\infty} F_i$ is a sigma-field.	6

73380 Page 1 of 2

- ii) $\bigcup_{i=1}^{\infty} F_i$ is a sigma-field.
- d) A class C of subsets of Σ , such that either A or \overline{A} are countable. Is C a sigma field?
- 6. a) If A, B, C are independent events then show that
 i) A, B ∩ C are independent.
 ii) A, B ∪ C are independent.
 - iii) A, B C are independent. b) Find P(A) if $f(x) = \frac{1}{4} \mathbb{I}_{[-1,4]}(x)$ is a density function and P is absolutely
 - continuous probability measure with respect to it. Where A = (-1, 0.5].
 - Let $(\mathbb{R}, \mathcal{B}, m)$ be a measure space and $P(A) = \int_A f \, dm \, f$ is a density function. Show that P is a probability measure on Borel subset A of \mathbb{R} .
 - d) Define conditional probability of A given B, where A and B are events in a probability space. Also show that:
 P(A∪B/C) = P(A/C) + P(B/C) P(A ∩ B/C)
- 7. a) Let X and Y be two independent random variables with binomial 6 distribution B(m,p) and B(n,p) respectively. What is the distribution of X+Y.
 - b) Let X be a simple random variable and E(X) be the expectation of X. Show that if $X \ge 0$ and E(X) = 0 then P(X = 0) = 1.
 - c) The joint p.d.f of X,Y is f(x, y) = 2 for 0 < x < y < 1; find conditional p.d.f of X given Y.
 - d) X has Binomial with (n = 8, p=0.4). Find mean and variance if X. 5
- 8. a) For any r.v.s X, Y show that (a) $E^2[XY] \le E[X^2]E[Y^2]$ (b) E[X]Y = Y = 6 E[X].
 - b) Show that if non-negative random variable X has finite expectation E(X), then $P(\{X \ge C\}) \le \frac{E(X)}{C}$ for any $C \ge 0$.
 - c) State the Chebyshev inequality. A fair coin is tossed independently n 6 times. Let S_n be the number of heads obtained. Find a lower bound of the probability that $\frac{S_n}{n}$ differs from ½ by less than 0.1 when n = 1000.
 - d) Examine whether the Strong law of large numbers holds for sequence of independent r.v.'s

$$\{X_k\}: X_k = \begin{cases} \pm k & \text{with probability } \frac{1}{2\sqrt{k}} \\ 0 & \text{with probability } 1 - \frac{1}{\sqrt{k}} \end{cases}$$