Time: 3hrs Marks: 80

N.B.: 1. All Questions are compulsory 2. Figures to right indicate full marks

2. Figures to Figure moreure run marins

Q.1. A. (i) Give IUPAC nomenclature of the following: (Any Three) (03)

(i)
$$CI$$
 (ii) (iii) (iv) H_3C S Br $COOH$

- (ii) Draw the structures for the following: (Any Two)
- a) 3-Ethyl-5-methylquinoline b) 2-Methyl-5-bromofuran c) 4,5-Dihydro-imidazole-4-carboxylic acid

B. Answer the following in brief:

(10)

- (i) Size exclusion chromatography of monodisperse fractions of a linear polymer A and
- B, yield molecular weights 4,00,000 and 8,00,000 respectively. Mixture is prepared from 3 parts by weight of A and 5 parts by weight of B. Determine weight average molecular weight.
- (ii) During DNA synthesis, A, G and C requires protecting group while thymine does not. Justify.
- (iii) Calculate the isoelectric point for Aspartic acid given that $pK_{a1} = 1.88$, $pK_{a2} = 3.65$, and $pK_{a3} = 9.60$. Write the structure of the zwitterion
- (iv) Give the structure/s of reduction products of Pyridine.
- (v) At which position does electrophilic aromatic substitution occur in pyrrole? Why?

C. Answer the following:

- (i) Draw all resonating structures for thiophene (02)
- (ii) Can imidazole be considered as amphoteric? Justify. (02)
- (iii) Draw the structure of 5α -androstan- 3β -ol (in chair conformation) (01)

Q.2. A. Give the products of the following reactions (Any Six)

(06)

(i) Pyrrole
$$\frac{H_2/N_1 200-300 \text{ °C}}{\blacktriangleright}$$

(ii) Imidazole
$$\frac{\text{H}_2\text{SO}_4,/\text{SO}_3}{100^{\circ}\text{C}}$$

(iv) Pyridine
$$\frac{\text{NaNH}_2}{\text{Liq. NH}_3}$$

B. Complete the following reactions	(03)
(i) 2-cholestene Br ₂ in CHCl ₃	9 7 9 9 9 7 9 9
(i) 2-chorestene	2000
(ii) Androst-9(11)-ene Hydroboration-oxidation	
(iii) 5α-cholestan-3-one H ₂ , Pt Neutral	
C. Illustrate the Edman degradation analysis for the peptide Gly-Phe-Glu-Lys	(03)
Q.3. A. Write the following synthesis with mechanisms (Any Three) (i) Doebner-Miller synthesis (ii) Robinson-Gabriel synthesis for oxazole (iii) Hantzsch Pyridine synthesis (iv) Knorr Pyrrole Synthesis	(06)
B. Write all steps required for synthesis of Leu-Ala dipeptide.	(03)
C. Discuss polymerization reaction of propene using Ziegler Natta catalysis.	(03)
 Q.4. A. Give reasons for the following: (Any Three): (i) 5α-cholestane-3α-ol is oxidized 3 times faster than 5α-cholestane-3β-ol. (ii) Nucleophilic substitution in pyridine takes place at 2 and 4 position. (iii) Furan undergoes Diels Alder reaction faster than thiophene. (iv) Cholesterol gives cis product upon oxidation with KMnO₄ while with H₂O₂ it gives product 	(06)
B. Draw the general structures for androstane, pregnane and estrane backbone of steroids	(03)
C. Briefly discuss the Merrifield solid phase synthesis of DNA	(03)
 Q.5. A. Answer the following questions: (i) Pyrimidine (pKa: 1.30) is much less basic than pyridine (pKa: 5.2). Justify. (ii) Write method of synthesis of piperazine from oxirane (iii) Draw resonating structures for Indole. 	(03)
B. Attempt the following conversions (Any Five) (i) Furan to furfural (ii) Pyridine to 4-nitropyridine (iii) Indole to 3-Formylindole (iv) Thiazole to thiazole-5-sulphonic acid (v)Thiophene to Thiophene-2-carboxylic acid (vi) Acrolein to quinoline	(05)
C. Classify polymers on the basis of their physical properties giving one example from class. Discuss any one in detail	n each (04)

57188 Page **2** of **3**

Q.6. A. Identify and write the structures of A, B and C in the following reactions (i)

(06)

- **B.** 5-Cholestene (A) when treated with peracetic acid gives product B, which on treatment with water to give product C. Give the structures of A, B and C with proper stereochemistry. (03)
- C. What are co-polymers? Explain different types of co-polymers. (03)

57188 Page **3** of **3**