(3 Hours) [Total Marks: 100]

Note: (i) All questions are compulsory.

- (ii) Figures to the right indicate marks for respective parts.
- Q.1 Choose correct alternative in each of the following

(20)

- i. Let T: $V \rightarrow V'$ be a linear transformation. ker(T) is a subspace of
 - (a) V

(b) V'

(c) V and V'

- (d) None of the above.
- *ii.* Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ such that T(x,y)=(x,0) be the linear transformation. Then, $\ker(T)$ is
 - (a) X –axis

(b) Y-axis

(c) $\{(0,0)\}$

- (d) None of the above
- iii. If $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$ then E^{-1} is
 - (a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 1 \end{pmatrix}$

(c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$

- (d) None of the above.
- iv. Which one of the following is **NOT TRUE**
 - (a) $Det(A^t) = Det A$
- (b) Det(A + B) = DetA + DetB
- (c) Det(AB) = DetA DetB
- (d) $Det(A^{-1}) = (Det A)^{-1}$, when A is invertible
- v. Let A be a matrix then which of the following is **NOT TRUE**
 - (a) If any of the row of a matrix A is zero then its determinant is zero
 - (b) If $i^{th}row$ is multiplied with non-zero α then its determinant does not change.
 - (c) If i^{th} and j^{th} rows of A are interchanged then determinant changes by a sign, for any $i \neq j$
 - (d) If the rows are linearly dependent then its determinant is zero.

Paper / Subject Code: 79488 / Mathematics : Paper III (Rev)

 $Det(2e_2, e_1+5e_2, -e_3)$ where e_1, e_2, e_3 are standard basis elements of \mathbb{R}^3 is vi.

(a) -10 -2

+2(c)

+10

If $I_{31} \in M_3(\mathbb{R})$ then I_{31} is vii.

(a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

(b) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

viii. Let V be a finite dimensional inner product space and W be a subspace of Vand W^{\perp} be the orthogonal complement of W in V. If dim V = n, $\dim W = r$, then $\dim W^{\perp}$ is

(a) r (b) n-r

(c) n (d) None of these

Let $e_1 = (1,0)$ and $e_2 = (0,1)$. Consider $S = \left\{ \frac{e_1 + e_2}{\sqrt{2}}, \frac{e_1 - e_2}{\sqrt{2}} \right\}$ in \mathbb{R}^2 with dot ix. product. Then

- (a) S is not a basis of \mathbb{R}^2
- (b) S is a basis of \mathbb{R}^2 but not orthogonal.
- (c) S is an orthogonal basis of \mathbb{R}^2 but not orthonormal
- (d) S is an orthonormal basis of \mathbb{R}^2

Consider the following sets of vectors in \mathbb{R}^2 under dot product.

- (i) $S_1 = \{(0,1), (2,0)\}$ (ii) $S_2 = \{\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\}$
- (iii) $S_3 = \{(0, -1), (0, 1)\}$ (iv) $S_4 = \{\left(\frac{1}{\sqrt{2}}, \frac{1}{2}\right), \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)\}$
- (a) All the sets are orthogonal sets
- (b) S_2 and S_4 are orthogonal sets
- (c) S_1 and S_2 are orthogonal sets (d) S_1 and S_3 are orthogonal sets

Q2. Attempt any **ONE** question from the following:

(08)

State and prove Rank-Nullity theorem. a)

- Prove that Elementary matrices are invertible and their inverses are also elementary matrices.
- Q.2 Attempt any **TWO** questions from the following: (12)
- b) i. Let T:V \rightarrow V' be a linear transformation. Prove that T is one-one if and only if kerT= $\{0_v\}$
 - ii If T:V \rightarrow W is linear transformation and B={ v_1, v_2,v_n } is linearly independent subset of V and kerT ={0} then show that { $T(v_1)$, $T(v_2),T(v_n)$ } is linearly independent subset of W.
 - iii Find the rank of a matrix A where $A = \begin{bmatrix} 1 & 3 & 4 & 1 \\ 2 & 6 & 8 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$.
 - iv Let $T:\mathbb{R}^2 \to \mathbb{R}^2$ T(x,y,z)=(x,2y+z) be a linear transformation. Find the matrix of this linear transformation w.r.t standard basis.
- Q3. Attempt any **ONE** question from the following: (08)
- a) i. Let $\phi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be a bilinear function such that $\phi(A^1, A^1) = 0$, $\forall A^1 \in \mathbb{R}^2$ and $\phi(E^1, E^2) = 1$ where E^1, E^2 are the standard unit vectors of \mathbb{R}^2 . Prove that $\phi(A^1, A^2) = \det(A^1, A^2)$ for any column vectors $A^1, A^2 \in \mathbb{R}^2$. Further prove that determinant of a $n \times n$ lower triangular matrix is product of its diagonal elements.
 - ii. Let $A \in M_n(\mathbb{R})$ then prove that AX = 0 has a non zero solution \iff det A = 0
- Q3. Attempt any **TWO** questions from the following: (12)
- b) i. Let A be an $n \times n$ invertible matrix. Prove that $\det(adj A) = (\det A)^{n-1}$. Further using adjoint, find inverse of $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where $ad bc \neq 0$.
 - ii. Find the determinant of the following matrices using definition and its properties

$$\begin{pmatrix} 1 & t & t^2 & t^3 \\ 1 & a & a^2 & a^3 \\ 1 & c & c^2 & c^3 \\ 1 & d & d^2 & d^3 \end{pmatrix}$$

iii. State the Laplace expansion formula for determinant.

Use Laplace expansion to find the determinant of the following matrix

$$\begin{pmatrix} 1 & -1 & 3 & 1 \\ -1 & 2 & -1 & 0 \\ 2 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

iv. State Cramer's Rule for a $n \times n$ linear system. Use it to find solution to

$$\begin{pmatrix} 1 & 4 & 2 \\ 3 & 2 & 1 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 15 \\ 10 \\ 5 \end{pmatrix}$$

(08)

- Q4. Attempt any **ONE** question from the following:
 - a) i. Let *V* be an inner product space. Prove that ||x + y|| = ||x|| + ||y|| if and only if $x = \alpha y$ or $y = \alpha x$ for $\alpha \ge 0$.
 - ii. Let W be a subspace of a finite dimensional inner product space V over \mathbb{R} . Show that $(p)W^{\perp}$ is a subspace of V $(q)(W^{\perp})^{\perp} = W$
- Q4. Attempt any **TWO** questions from the following: (12)
- b) i. Show that $(C[a,b],\langle,\rangle)$ the space of continuous real valued functions on [a,b] is an inner product space where $\langle f,g\rangle=\int_a^b f(t)g(t)dt$ for $f,g\in C[a,b]$.
 - ii. Let V be a real inner product space and u be an unit vector in V. If $P_u(x)$ denotes the projection of x along u, show that

$$||x - P_u(x)|| \le ||x - \alpha u|| \ \forall \ \alpha \in \mathbb{R}.$$

- iii. Define angle between two vectors in an inner product space. Find the angle between the vectors $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$ using $\langle A, B \rangle = ae + 2bf + 3cg + 4dh$ for $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$.
- iv. Using Gram-Schmidt Process, find orthonormal set corresponding to $S = \{(-1,2,0), (1,5,7)\}$ in \mathbb{R}^3 with dot product.

- Q5. Attempt any **FOUR** questions from the following: (20)
 - a) Let T:U \rightarrow V and S:V \rightarrow W be linear transformations. Prove that $S \circ T$ is also a linear transformation.
 - b) Verify Rank-Nullity theorem for the following linear transformation T: $\mathbb{R}^2 \to : \mathbb{R}^2 T(x,y) = (2x+y,3x-y)$
 - c) Prove that det(AB) = detAdetB for $A, B \in M_n(\mathbb{R})$
 - d) Find the inverse of the following matrix using adjoint $\begin{pmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$
 - Phow that $\left\{ \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right), \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right) \right\}$ is an orthonormal set in \mathbb{R}^3 with respect to dot product and extend it to an orthonormal basis of \mathbb{R}^3 .
- f) Verify Cauchy-Schwarz inequality for the functions f(x) = x and $g(x) = x^3$ in C[-1,1] using $\langle f,g \rangle = \int_{-1}^{1} f(x)g(x)dx$