(3 Hours) [Total M	laiks.	TOO
--------------------	--------	-----

Note: (i) All questions are compulsory.

(ii) Figures to the right indicate marks for respective parts.

- Choose correct alternative in each of the following Q.1 (20)
- Rank Nullity Theorem states that if $T:V\to W$ is a linear transformation, then
 - (a) $\operatorname{Dim} V = \operatorname{dim}(\operatorname{Im} T) + \operatorname{dim} W$ (b) $\operatorname{Dim} V \operatorname{dim}(\operatorname{Im} T) = \operatorname{dim}(\ker T)$
 - (c) Dim $V = \dim W$ (d) Dim V/W = dim V - dim W
- ii. Let T be the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, where $\mathbf{A} = \begin{pmatrix} 5 & 1 \\ 2 & 3 \end{pmatrix}$.

What is the image of $\binom{2}{1}$?

- (d) None of these
- Which of the following is a linear transformation from $T: \mathbb{R}^2 \to \mathbb{R}^2$,? iii.
 - (a) T(x,y)=(x-y,y)
- (b) T(x,y)=(|x|, y+1)
- (c) $T(x,y)=(x^2 + y, x y)$
 - (d) All the above
- Let A be a $m \times n$ matrix and let row rank = p and column rank = q. Then
 - (a) p = q

(b) p > q

(c) p < q

- (d) None of the above
- If $A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 2 & 4 \\ 5 & 6 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 4 & 8 & 4 \\ 3 & 2 & 4 \\ 5 & 6 & 1 \end{pmatrix}$ then which of the following is true? (a) detA = detB (b) detA = 4detB(c) 4detA = detB (d) None of these

- $Det(2e_1, e_1+3e_2, -e_3)$ where e_1, e_2, e_3 are standard basis elements of \mathbb{R}^3 is vi.
 - (a) 3

(b) 1

(c) 6

- (d) -6
- Cramer's rule is used to vii.
 - (a) Find solution of linear equations
- homogeneous system of system of linear and solution of non-homogeneous system of linear and s
 - (c) Find determinant of the matrix
- (d) Find inverse of the matrix
- viii. Let V be a real inner product space and $x, y \in V$. If ||x|| = ||y||, then
 - (a) x + y and x y
- (b) x = v
- orthogonal

- (c) x and y are orthogonal (d) None of these

Paper / Subject Code: 79488 / Mathematics : Paper III (Rev)

ix. Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space

$$x = \sum_{i} x_i v_i$$
. Then $||x||^2 =$

(a)
$$\sum_{i=1}^{n} \langle x, x_i \rangle^2$$

(b)
$$\sum_{i=1}^{n} \langle v_i, x_i \rangle^2$$

(c) $\sum_{i=1}^{n} \langle x, v_i \rangle^2$

- (d) None of these
- x. Let $v = (a, b) \neq (0,0)$ in \mathbb{R}^2 . The set of all vectors orthogonal to v in \mathbb{R}^2 represents
 - (a) A straight line passing through origin and *v*
- (b) A straight line passing through origin and perpendicular to v

(08)

(c) Empty set

- (d) None of these
- Q2. Attempt any **ONE** question from the following:
- a) i. Define p) Linear Transformation q) kernel of a linear transformation. Further prove that if $T:V \to V'$ is a linear transformation then T is injective if and only if ker $T = \{0\}$.
 - ii. Prove: Let $A \in M_n(\mathbb{R})$ then prove that the system of homogenous system of n linear equations in n unknowns, AX = 0 has only the trivial solution if and only if Rank(A) = n.
- Q.2 Attempt any **TWO** questions from the following: (12)
- b) i. If $F: \mathbb{R}^3 \to \mathbb{R}^3$ such that F(x, y, z) = (x + y + z, x + 2y z, 3x + 5y z), show that F is linear transformation. Find whether F is non-singular.
 - ii. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(x, y, z) = (x, 2y, 0), find ker T, basis of ker T and nullity T.
 - iii. Show that A and B are row equivalent matrices where

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 3 & 1 \end{pmatrix}$$

- iv. Test for consistency and if possible solve the following system. 2x y + z = 9, 3x y + z = 6, 4x y + 2z = 7, -x + y z = 4
- Q3. Attempt any **ONE** question from the following: (08)
- a) i. Let $A \in M_n(\mathbb{R})$. Prove that AX = 0 has a non trivial solution if and only if $\det A = 0$. Further check whether the homogeneous system

$$\begin{pmatrix} 1 & 2 & 0 \\ -1 & 0 & 1 \\ 5 & 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 has a non trivial solution.

- ii. Let $v_1, v_2, ..., v_n \in \mathbb{R}^n$. Show that I) If $\{v_1, v_2, ..., v_n\}$ is linearly dependent then $\det(v_1, v_2, ..., v_n) = 0$. II) $\det(v_1, ..., v_i, ..., v_j, ..., v_n) = -\det(v_1, ..., v_j, ..., v_i, ..., v_n)$ for $1 \le i \ne j \le n$
- Q3. Attempt any **TWO** questions from the following: (12)
- b)
 i. Define adjoint of a matrix. Find A^{-1} for $A = \begin{pmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{pmatrix}$ using adjoint.
 - ii. Define bilinear map. Further check whether the following map is bilinear. $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ such that f((a,b),(c,d)) = ab + cd + 1.
 - iii. Using definition of determinant, prove that $\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} a_{12}a_{21}$
 - iv. Solve the following system of linear equations using Cramer's rule x + z = 9, x 3y = 1, 4y 3z = 3
- Q4. Attempt any **ONE** question from the following: (08)
- a) i. Let V be an inner product space. Define orthogonal vectors. If $\{v_i\}_{i=1}^n$ is a set of pair wise orthogonal vectors in V, then show $\|\sum_{i=1}^n v_i\|^2 = \sum_{i=1}^n \|v_i\|^2$. Is the converse true? Justify your answer.
 - ii. State and prove Cauchy-Schwarz inequality in an inner product space (V, \langle , \rangle) . Verify the same for u = (1,2), v = (2,3) from \mathbb{R}^2 with Euclidean inner product.
- Q4. Attempt any **TWO** questions from the following: (12)
 - b) i. Let V be a real inner product space and u be an unit vector in V. If $P_u(x)$ denotes the projection of x along u, show that $||x P_u(x)|| \le ||x \alpha u|| \ \forall \ \alpha \in \mathbb{R}$.
 - ii. Show that $\langle z, w \rangle = Re(z \overline{w})$ is an inner product on \mathbb{C} the space of Complex numbers.
 - iii. Let V be a finite dimensional inner product space over \mathbb{R} and W be a subspace of V. Define W^{\perp} , the orthogonal complement of W and prove that $(W^{\perp})^{\perp} = W$.
 - iv. Define angle between two vectors in an inner product space. Find angle between $p(x) = x^2 + 1$ and q(x) = x using inner product $\langle p, q \rangle = p(0)q(0) + p(1)q(1) + p(2)q(2)$ where $p(x) = a_0 + a_1x + a_2x^2$ and $q(x) = b_0 + b_1x + b_2x^2$.

- Q5. Attempt any **FOUR** questions from the following: (20)
- a) Prove that inverse of Linear Transformation (if it exist) is also a Linear Transformation.
- b) Find the rank of $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & 1 & 1 \\ 2 & -2 & 3 \end{pmatrix}$.
- c) I) Use determinant to check whether the set $\{(2,0,0,0), (1,-1,0,0), (1,2,5,0), (1,1,1,1)\}$ is linearly dependent or independent. State the result used.
 - II) Use determinant to find area of the parallelogram spanned by vectors, x = (1,1), y = (2,5). State the result used.
- d) Use the following expression of determinant $\det A = \sum_{\sigma \in S_n} sgn\sigma \ a_{1 \sigma(1)} \ a_{2 \sigma(2)} \dots a_{n \sigma(n)}$ to find the determinant of the matrix $\begin{pmatrix} 1 & 0 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}$.
- e) Find vectors $u, v \in \mathbb{R}^2$ with Euclidean inner product such that u is a scalar multiple of (1,3); v is orthogonal to (1,3); and u + v = (1,2)
- f) Find an orthogonal basis of $W = \{(x, y, z) \in \mathbb{R}^3 / x 2y = z\} \subseteq \mathbb{R}^3$ with dot product using Gram-Schmidt Orthogonalisation Process.
