		(3 Hour	rs)	[Total Mar	ks : 100
Q.1	Choose correct alternative in each of the following:				(20)
	i.	Let T: $V \rightarrow V'$ be a linear transformation, then $ker(T)$ and $Im(T)$			
	1.	are subspaces of			6250
		(a) V and V' respectively	(b)	V' and V respectively	7,6,6,7
		(c) V	(d)		
	ii.	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by			
	11.	T(x,y)=(x+y,y), then $Im(T)$ is equal to			
		(a) $L\{(1,0),(0,1)\}$	(b)	L{(1,0),(1,1)}	
		(c) $L\{(0,1),(0,1)\}$	(d)	None of the above	
	iii.	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by			
	111.	T(x,y,z) = (0,y,z), then KerT	is the		or
		(a) X –axis	(b)	Y-axis	
		(c) Z-axis	(d)	None of the above.	
	_	(1 0 0)	9, 7; y		
	iv. If $\mathbf{E} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$ then $\mathbf{E}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$				
		$\begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	CO OF	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		(a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$	(b)	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	
				$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	
			25 60 V		
		(c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$	(d)	None of the above	
	á		276	8 8 6 7 V	
	V.,	Which of the following vectors are collinear?			
	32 2 V	(a) (2,3), (4,4)	(b)	(2,3), (4,6)	
, S.	7,000	(a) (2,3), (4,4) (c) (2,3), (4,6), (1,2)	(d)	(2,3), (4,6), (1,2), (2,2)	
	vi.	Let $\{e_1, e_2, e_3\}$ be the standard basis of			
		\mathbb{R}^3 , then $Det(2e_2, e_1 + 5e_2, -e_3)$	$e_3) =$		
	0,000	(a) -10	(b)	-2	
		(c) +2	(d)	+10	
		Volume of parallelepiped spanned by vectors (1,2,3), (4,0,1) and			
	VII.	(6,1,1) is			
	2 2 3 3 S	(a) 5	(b)	10	
	50,07	(c) 15	(d)	None of the above	
	viii.	viii. If G is a group such that $a^3 = e, \forall a \in G$, then			
20°		200 C C C C C C C C C C C C C C C C C C		G must be non-abelian	
300	P 01/1	(c) $order(a) = 3, \forall a \in G$	` ′		
7,0	2 700	5) TW = 0	\ ~/	-	

Paper / Subject Code: 79474 / Mathematics: Paper III

- ix. The order of the group S_n is
 - (a) n

(b) n!

(c) $\phi(n)$

- (d) None of the above
- x. Which of the following is true?
 - D_3 and D_4 are abelian

groups.

- (b) D_4 is an abelian group.
- (c) D_3 is an abelian group.
- (d) None of the above.
- Q.2 a) Attempt any ONE question from the following:

(08)

- i. State and prove the Rank-Nullity theorem.
- ii. Prove that any n dimensional real vector space is isomorphic to \mathbb{R}^n .
- b) Attempt any TWO questions from the following:

(12)

- i. Check whether the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x, y) = (x + y, y) is one-one.
- ii. Find the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by T(x, y, z) = (x, 2y + z) with respect to the standard basis.
- iii. Find ker(T) and Im(T) for the linear transformation $T: \mathbb{R}^2 \to : \mathbb{R}^2$ given by T(x, y) = (x + y, y).
- iv. Let $T_1,T_2:V\rightarrow V'$ be two linear transformations then prove that $T_1+T_2:V\rightarrow V'$ is also a linear transformation.
- Q.3 a) Attempt any ONE question from the following:

(08)

i. Prove that $\mathbf{S} = \mathbf{x_0} + \mathbf{S_h}$ where S is the set of all solutions of the non-homogeneous system of m linear equations in n unknowns $\mathbf{AX} = \mathbf{B}$, $\mathbf{x_0}$ is a particular solution of the system and $\mathbf{S_h}$ is the set of all solutions of the associated homogeneous system $\mathbf{AX} = \mathbf{0}$.

Hence find the general solution of the system

$$\begin{pmatrix} 2 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ given that } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ is a particular}$$

solution of the given non-homogeneous system.

ii. Let $A^1, A^2 \in \mathbb{R}^2$ and $k \in \mathbb{R}$. Show that p) $\det(A^1, A^2) = 0$ iff $\{A^1, A^2\}$ is linearly dependent. q) $\det(A^1, A^2 + kA^1) = \det(A^1, A^2)$.

b) Attempt any TWO questions from the following:

(12)

- i. Express $\mathbf{A} = \begin{pmatrix} 5 & 2 \\ 4 & 2 \end{pmatrix}$ as a product of elementary matrices.
- Define rank of a matrix and find rank of $\mathbf{A} = \begin{pmatrix} 2 & 2 & 4 \\ 2 & 2 & 0 \\ 2 & 1 & 4 \end{pmatrix}$
- iii. Write the definition of determinant for a 2×2 matrix. Hence, find the determinant of the matrix $A = \begin{pmatrix} 2 & 3 \\ 5 & 2 \end{pmatrix}$
- iv. State the result for inverse of a matrix in terms of its adjoint. Hence find A^{-1} for $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & 0 \end{pmatrix}$.
- Q.4 a) Attempt any ONE question from the following:

(08)

- i. Define subgroup. Let G be a group and H, K be subgroups of G. Prove that $H \cup K$ is a subgroup of G iff $H \subseteq K$ or $K \subseteq H$.
- ii. Define Group. Prove that the set of prime residue classes modulo n, U(n) is a group under multiplication modulo n.
- b) Attempt any TWO questions from the following:

(12)

- i. Define $GL_2(\mathbb{R})$ and $SL_2(\mathbb{R})$. Prove that $SL_2(\mathbb{R})$ is a subgroup of $GL_2(\mathbb{R})$ under matrix multiplication.
- ii. Let G be a group. Prove that $o(a) = o(bab^{-1}), \forall a, b \in G$.
- iii. Let Q_8 be the quartenion group. $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$. Multiplication in Q_8 is defined by $i^2 = j^2 = k^2 = ijk = -1$. Construct the composition table for Q_8 and show that $order(\pm i) = order(\pm j) = order(\pm k) = 4$.
- iv. Show that all subgroups of the additive group $(\mathbb{Z}, +)$ are of the form $n\mathbb{Z}$, where $n \in \mathbb{N} \cup \{0\}$.
- Q.5 Attempt any FOUR questions from the following:

(20)

- a) Let $T:U \rightarrow V$ and $S:V \rightarrow W$ be linear transformations. Prove that SoT is also a linear transformation.
- b) If $T:V \rightarrow W$ is an injective linear transformation and $B = \{v_1, v_2, \dots, v_n\}$ is linearly independent subset of V then show that $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is linearly independent subset of W.
- c) Prove that an elementary 2×2 matrix is invertible.

State the Laplace expansion formula for the determinant of an $n \times n$ d) *n* matrix.

Use Laplace expansion to find the determinant of the matrix

$$A = \begin{pmatrix} 1 & -1 & 3 & 1 \\ -1 & 2 & -1 & 0 \\ 2 & -1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} .$$

Show that $H = \{I, (12)(34), (13)(24), (14)(23)\}$ is a e)

subgroup of S_4 . Prove that $G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} \middle| a \in \mathbb{R}, a \neq 0 \right\}$ is a group under matrix

multiplication. f)