[Total Marks: 100] (3 Hours) **Note:** (i) All questions are compulsory. (ii) Figures to the right indicate marks for respective parts. Choose correct alternative in each of the following (20)Q.1 Rank Nullity Theorem states that if $T:V \to W$ is a linear transformation, then i. Dim V = dim(Im T) +(b) $\operatorname{Dim} V - \operatorname{dim}(\operatorname{Im} T) = \operatorname{dim}(\ker T)$ $\dim W$ Dim V = dim W(d) $\operatorname{Dim} V/W = \operatorname{dim} V - \operatorname{dim} W$ (c) Which of the following is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 ? ii. T(x,y)=(x-y,y)(b) T(x,y)=(|x|, y+1) $T(x,y)=(x^2 + y, x - y)$ (c) (d) All the above Let A be a $m \times n$ matrix and let row rank = p and column rank = q. Then the iii. relation p and q is (b) p > q(a) p = qp < q(d) Cannot be determined (c) iv. Let $E = \begin{pmatrix} -1 & 0 \end{pmatrix}$ then E^{-1} is A $m \times n$ non-homogeneous system of linear equations AX = b has a solution v. if and only if (a) Rank A = Rank[A|b](b) Rank A > Rank[A|b] $Rank\ A < Rank[A|b]$ (c) (d) none of these vi. The rank of the identity matrix of order n is (a) n-1(b) n n+1(d) None of these (c) vii. Which of the following is **not true** (b) det(AB) = det(BA)(a) $det(AB) = det(A^tB^t)$ $\det(AB) = \det(AB^t)$ (d) det(AB) = det(A) + det(B)(c) *viii*. In a group G, $(a^{-1}b)^{-1} =$ ab^{-1} (a) (b) $b^{-1}a$ $a^{-1}b$ (d) ba^{-1} (c) Consider the pairs (i) $(\mathbb{N}, +)$, (ii) (\mathbb{R}^+, \times) and (iii) (\mathbb{Q}^*, \times) then

(b) Only (iii) is a group.

(d) None of the above

(a) (c)

Page 1 of 3

(i), (ii) & (iii) are groups.

(ii) & (iii) are groups.

Paper / Subject Code: 79474 / Mathematics: Paper III

- x. In an abelian group G which of the following is true?
 - (a) $a = a^{-1}, \forall a \in G$
- (b) $a = a^2, \forall a \in G$
- (c) $(ab)^2 = a^2b^2, \forall a, b \in G$
- (d) None of the above

(08)

- Q2. Attempt any **ONE** question from the following:
- a) i. Define p) A linear transformation q) kernel of a linear transformation. Further, prove that if $T:V\to V'$ is a linear transformation then T is injective if and only if ker $T=\{0\}$.
 - ii. Let V be a finite dimensional vector spaces over \mathbb{R} , S, T: $V \to V$, be linear maps and $B = \{e_1, e_2, \dots, e_n\}$ be the basis of V, then prove that $m(S \circ T) = m(S) \cdot m(T)$
- Q.2 Attempt any **TWO** questions from the following: (12)
- b) i. If $F: \mathbb{R}^3 \to \mathbb{R}^3$ is given by F(x, y, z) = (x + y + z, x + 2y z, 3x + 5y z), show that F is a linear transformation. Find whether F is non-singular.
 - ii. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that T(x, y, z) = (x, 2y, 0), find ker T, basis of ker T and nullity T.
 - iii. Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, such that T(1, 2) = (2, 3) and T(0, 1) = (1, 4)
 - iv. $P_3[\mathbb{R}]$ denote the vector space of all polynomials over \mathbb{R} of degree atmost 3 and D denote the differentiation mapping. Consider the basis $B = \{1, 1+x, 1+x^2, 1+x^3\}$ of $P_3[\mathbb{R}]$. Find $[m(D)]_{\mathbb{R}}^B$.
- Q3. Attempt any **ONE** question from the following: (08)
 - a) i. Define an elementary matrix and show that it is invertible.
 - ii. Define a bilinear function. Further, let $\phi : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be a bilinear function with $\phi(A^1, A^1) = 0$, $\forall A^1 \in \mathbb{R}^2$ and $\phi(E^1, E^2) = 1$ where E^1, E^2 are the standard unit vectors of \mathbb{R}^2 . Then, show that $\phi(A^1, A^2) = \det(A^1, A^2)$ for any column vectors $A^1, A^2 \in \mathbb{R}^2$.
- Q3. Attempt any **TWO** questions from the following: (12)
- b) Use Cramer's rule to solve the following system
 - 2x + y + z = 3, x y z = 0, x + 2y + z = 0
 - ii. Let $A \in M_{m \times n}(\mathbb{R})$ and $T: \mathbb{R}^n \to \mathbb{R}^m$, T(X) = AX, $\forall X \in \mathbb{R}^n$ be a linear transformation. Show that Rank T=Rank A
 - iii. Define adjoint of a matrix. Find A^{-1} for $A = \begin{pmatrix} 0 & -3 & -2 \\ 1 & -4 & -2 \\ -3 & 4 & 1 \end{pmatrix}$ using adjoint method.
 - iv. Express the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ as product of elementary matrices.

- Q4. Attempt any **ONE** question from the following: (08)
- a) i. Find the cube roots of unity and show that they constitute a group under multiplication.
 - ii. Let *G* be a group. For any $a, x \in G$, prove that $(xax^{-1})^n = xa^nx^{-1}, \forall n \in \mathbb{Z}$
- Q4. Attempt any **TWO** questions from the following: (12)
- b) i. Let G be a group. Prove that $o(a) = o(bab^{-1}), \forall a, b \in G$.
 - ii. Prove that \mathbb{Z}_6 is a group under addition modulo 6. Is it a group under multiplication modulo 6? Justify your answer.
 - iii. Let H and K be subgroups of a group G. Prove that $HK = \{hk | h \in H, k \in K\}$ is a subgroup of G if and only if HK = KH.
 - iv. Let H and K be subgroups of a group G.
 - (p) Prove that $H \cap K$ is a subgroup of G.
 - (q) Show that $H \cup K$ need not be a subgroup of G.
- Q5. Attempt any **FOUR** questions from the following: (20)
 - a) Prove that inverse (if it exist) of linear transformation is also a linear transformation.
 - b) Let $T:V\to W$ be a linear transformation. Show that ker T is a subspace of V.
- For $A, B \in M_n(\mathbb{R})$, if A is invertible show that I) $\det(A^{-1}) = (\det A)^{-1}$ II) $\det(ABA^{-1}) = \det B$ III) $\det(A^tB^t) = \det A \cdot \det B$
- Find Rank of a matrix $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & -1 & -1 \end{pmatrix}$. What can you say about the rank of the matrix, which is obtained from A by interchanging 2^{nd} and 3^{rd} columns of A?
- e) Let G be a group and $a \in G$ such that o(a) = n. Then show that $a^m = e$ if and only if o(a) divides m.
- f) Define the centre of a group G and show that it is a subgroup of G.
