Duration: 2 ½ Hrs. Total marks: 75 N.B.: 1) All questions are compulsory 2) Figures to the right indicate full marks. Q.1 (a) I) Define an unbiased estimator. [2]II) i) Give an example of a consistent as well as anunbiased estimator. [2] ii) Not consistent but unbiased estimator. [2] State Neyman Factorization Theorem. In each of the following cases, find [9] (b) sufficient estimator. i) X follows binomial distribution with parameters k and p. ii) X follows Normal (μ, σ^2) , for σ^2 $(\mu \text{ known})$ OR Q.1 (p) Explain using suitable examples in each case. [4] i) An unbiased estimator is unique. ii) An unbiased estimator is always consistent. [3] (q) Define Relative Efficiency of an estimator. A r.v X follows Rectangular distribution over $[0,\theta]$ Let $T_1 = 2\bar{X}$ and $T_2 = (\frac{n+1}{n}) Y_n$ be the two estimators of θ . Y_n is the nth order statistics. i) check for their unbiasedness [4] ii) Which estimator is more efficient? [4] Q.2 (a) Define MVUE. Prove that it's unique if it exists. [8] (b) Let $X_1 ... X_n$ be a r.s. from binomial distribution with parameters k and p. Obtain [7] CRLB for the variance of an unbiased estimator of p. Also check whether it's attained OR

54141 Page 1 of 3

Paper / Subject Code: 24121 / Statistics: Paper II - Theory of Estimation.

Q.2a (p) State and prove Cramer-Rao Inequality stating clearly the Regularity conditions. [9]

$$f(x,\theta) = \theta (1-\theta)^{x-1}, x = 1,2,...\infty$$

Obtain CRLB of $\frac{1}{\theta}$, $0 < \theta < 1$

- Q.3 (a) Write a note on i) method of Maximum Likelihood (MLE). [5]
 - (b) Obtain the estimarors of the unknown Parameters using MLE. [10]

i)
$$f(x;\theta) = \frac{\theta^a}{\Gamma a} e^{-x\theta}$$
, $x^{a-1}, x > 0$

a known

$$\theta > 0$$

= 0, otherwise (o.w)

ii)
$$f(x,\theta) = \frac{2x}{\theta} e^{-x^2/\theta} e$$
, $x > 0$, $\theta \cdot 0$
= 0, o.w.

OR

[8]

- Q.3 (p) Describe i) 'Method of Moments'.
 - ii) Method of minimum chi-square and modified minimum Chi-square.
 - (q) Obtain MLE of θ_1 and θ_2 , if pdf of a r.v. X is given by, [7]

$$f\left(x,\,\theta_{1},\,\theta_{2}\right)=\frac{1}{\theta_{2}}\,\,e\,\frac{-(x-\theta_{1})}{\theta_{2}},\,x\geq\theta_{1}$$

$$\Theta_2 > 0$$

$$=0$$
, o.w.

54141

Q.4	(a)	Explain the following terms used in case of Bayesian estimation.	[8]
	i)	Prior and Posterior distribution	0,00
	ii)	'Squered error Loss Function'. (SELF) and Bayes' estimator.	
	(b)	Obtain 100 (1-α) % Confidence Interval (C.I) for population (Normal) variance	[7]
		σ^2 when μ is unknown.	
		OR CONTRACTOR OF THE PROPERTY	
Q.4	(p)	Explain the term 'Pivot Quantity' in obtaining C.I. Obtain 100 (1- α) % C.I. for	[8]
		$\frac{\sigma_1^2}{\sigma_2^2}$, when two independent samples are drawn from Normal populations with r	neans
		μ_1 and μ_2 known.	
		A r.s. of size n is drawn from binomial distribution with parameters, k and θ . The distribution of θ is Beta with parameters a and b. Assuming SELF, obtain Bayes'	prior
		estimator of θ .	[7]
Q.5	(a)	i) State Properties of MLE.	[8]
		ii) Explain exponential Family of probability distributions.	
43	(b)	A r.v. X follows exponential distribution with mean θ . Check for its consistency.	[7]
		OR OR	
Q.5	(p)	Prove that two distinct unbiased estimators of unknown Parameter θ give rise to infinitely many unbiased estimators. Illustrate with the help of an example.	[8]
	(q)	Comment on the following	[7]
		i) MLE is unique.	
	Sol	i) Binomial distribution with parameters k and p belongs to Exponential Family	
0,0	00	of distributions.	
£ 60 60 60 60 60 60 60 60 60 60 60 60 60		7.6.6.6.4.4.4.2	
	250		

7070D8E3A90CB751FF4E99E2C59F66C1

Page 3 of 3

54141