$(2^{1}/_{2} \text{ Hours})$ Total Marks: 75

N.B.: (1) **All** questions are **compulsory**.

- (2) **Figures** to the **right** indicate **full** marks.
- (3) Draw **neat** diagrams wherever **necessary**.
- (5) Symbols have usual meaning unless otherwise stated.
- (5) Use of **non-programmable** calculator is allowed.

List of Constants:

Charge of an electron: $e = 1.6021 \times 10^{-19}$ Coulomb

Mass of an electron: $m = 9.109 \times 10^{-31} \text{ Kg}$

Boltzmann constant: $K = 1.3805 \times 10^{-23}$ Joule/ Kelvin

Plank's constant: $h = 6.626 \times 10^{-34}$ Joule-sec

Permeability of free space: $\mu_0 = 4\pi \times 10^{-7}$ Henry/meter

Avogadro's number: $N_A = 6.023 \times 10^{26}$ /Kmole

- 1. (a) Attempt any one:---
 - (i) Describe the types of cubic crystal (SC) structures with neat diagram. 10 Find the distance between the nearest neighbours and atomic packing factor of FCC system.
 - (ii) Derive the expression for drift velocity of free electrons in metals. **10** What are the drawbacks of classical theory for metals?
 - (b) Attempt any one:---
 - (i) Define the terms: Coordination number, unit cell, basis, crystal structure and single crystal. 5
 - (ii) Copper has fcc structure and its atomic radius is 0.1278 nm. 5 Calculate its density. Take the atomic weight of copper as 63.5.

10

5

2. (a) Attempt any one:---

- (i) Explain the Brillouin zones in one dimension and two dimensions with neat diagram. How are they related to the energy levels of an electron in a metal?
- (ii) Derive the expression for density of energy states in metals. 10
- (b) Attempt any one:---
 - (i) Derive the expression for the mean energy of electron gas at absolute zero temperature.
 - (ii) Show that the probability that a state ΔE above the Fermi level E_F is filled equals the probability that a state ΔE below E_F is empty.

53652 Page **1** of **3**

3.	(a)	Attempt any one:		
		(i) Derive the expression for F n-type of semiconductor.	Fermi level and electron concentration in	10
		minority carrier concentration	tion to find the expression for injected on in a bar of semiconductor subjected to function of distance under the state of	10
	(b)	Attempt any one:		
		_	arrier potential at an open circuited P-N g concentrations by using its energy band	5
			or with forbidden energy gap E_g = 0.7 eV, ermi level at T= 300 K if m_h^* = 6 m_e^* .	3 5 5 5 7
4.	(a)	Attempt any one:		
	` ,	(i) Write down expression for and discuss it for Ge and	everse saturation current I_0 of a PN-diode and Si diodes. Derive the relation for I_0 which is defined as $(1/I_0)(dI_0/dT)$.	10
			erive the expression for the diamagnetic	10
	(b)	Attempt any one:		
		(i) Explain the Meissner effect	in superconductors.	5
			erse saturation current I_0 = 1 μA at 37°C. resistance for an applied bias of 0.3 V at	5
5.	(a) Attempt any one:			
	167		0), (231), (101) and (123).	4
	13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	(ii) Show that for simple cubic	lattice d_{100} : d_{110} : $d_{111} = \sqrt{6}$: $\sqrt{3}$: $\sqrt{2}$	4
	(b)	Attempt any one:		
		7, "X, " ' ' ' \	of energy states below $E = 5 eV$ in a Assume the electrons to be free.	4
		(ii) Estimate the electronic spec E_F for copper is 7 eV.	ific heat of copper at 300K.	4

53652 Page **2** of **3**

(c) Attempt any one:---

- (i) The Hall voltage for sodium metal is 0.001 mV measured at I=100 mA, $B_z=2$ Weber/ m^2 . Thickness of specimen is 0.05 mm. Calculate the number of carriers per cubic meter in sodium.
- (ii) A germanium diode has 10^{22} donor atoms/m³ in the n-region and 2×10^{21} acceptor atoms/m³ in the p-region. Find the value of barrier potential developed across the unbiased junction at room temperature. Intrinsic carrier concentration (n_i) for germanium is 2.15 \times 10^{19} /m³.

(d) Attempt any one:---

- (i) A superconducting material has critical temperature of 4.5K in zero magnetic field and critical field of 0.04 Wb/m² at 0 K. Find critical field at temperature 3 K.
- (ii) A magnetic material has magnetization of 3300 A/m and flux density of 0.0044 Wb/m². Calculate the magnetizing force.

V 4 V C 16 4 4 8 7 9 8 8

53652 Page **3** of **3**