QP Code: 23308 1

(3 Hours)			[Total Marks: 100		
Note: (<i>i</i>)	All questions ar	re compulsory.			500
• •	=	ight indicate marks	for res	spective parts.	200
	ose correct alternative in each of the following:				(20)
i.	The complete gr	r aph K_5 has edges	s. <u>/</u>		
	(a) 9		(b)		12 10 10 10 10 10 10 10 10 10 10 10 10 10
	(c) 11		(d)	12	9 A
ii.	Fleury's Algorithm is used to construct				S. A.
	(a) Euler pat	h ,	(b)	Hamilton path	
	(c) planar gra	aph	(d)	shortest path	
iii.	Pendant verte	x in any graph has o	legree		100°
	(a) 0		(b)		500
	(c) 2		(d)		
iv.	Adjacency matrix of any simple graph is always matrix				
	(a) Row		(b)	Column	
	(c) Square		(d)	Diagonal	
v.	If a tree T has 100 vertices then the number of edges is				
	(a) 100		(b)	98	
	(c) 101		(d)	99	
vi.	If a full binary tree has 10 internal vertices then the total no. of vertices is				
	(a) 11		(b)	20	
	(c) 21		(d)	10	
vii.	In a tree, the number of path(s) between any two vertices is				
	(a) two	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. V X C	Atmost two	
	(c) one		(d)	Atleast one	
viii.	A function $f(x)$ is said to be big -0 of $g(x)$ if there exist real constants c, k such that for all $x > k$				
	(a) $f(x) = c$		(b)	$g(x) \le c f(x)$	
	(c) $ f(x) \le$	c g(x)	(d)	None of the above	
ix	Which of the following functions is of order less than n ² .				
	(a) $n^2 - 7$		(b)	n^3	
	(c) 1		(d)	None of the above	
\mathcal{X}	To arrange the list of elements in ascending order we can use				
	8,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	arch algorithm	(b)	BFS algorithm	
		sort algorithm	(d)	None of the above	
Q.2 a)	Attempt any (ONE question from t	he fol	lowing:	(08)

Describe the Tower of Hanoi Problem. Discuss the solution for 3 discs and find the recursive algorithm for n discs.

[TURN OVER

2 QP Code: 23308

(12)

- ii. Given an integer x and a list of n distinct integers in ascending order, write Binary Search algorithm for searching x in the list. Also take the trace of the algorithm for the following data: x = 9, n = 5, list: 3, 7, 10, 12, 15.
- b) Attempt any **TWO** questions from the following:
 - i. Write the Euclid's algorithm to find the GCD of two positive integers a, b and trace your algorithm for a = 15 and b = 12.
 - ii. Describe the characteristics of an Algorithm.
 - iii. Design an algorithm to find first n terms of the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8... for a given $n \in \mathbb{N}$ (Give recursive or Iterative algorithm). Trace for n = 4.
 - iv. Give an algorithm to find the minimum element of a finite set of n integers, and the position where it occurs first. Trace the algorithm for the set $\{7,2,1,9,1\}$.
- Q.3 a) Attempt any **ONE** question from the following: (08)
 - i. Find shortest path from b to e, for the following graph, using Dijkstra's algorithm.

ii. Write Fleury's algorithm, hence construct, Euler path for the following graph, using Fleury's algorithm.

- b) Attempt any **TWO** questions from the following: (12)
 - i. Define Euler path and Euler circuit. Find least number of time it is necessary to lift a pencil from the paper when drawing the following graph. Justify your answer.

[TURN OVER

3 QP Code: 23308

- ii. State with an example: Ore's theorem, Euler's formula for a planar graph and Kuratowskis theorem.
 - iii. For the following graph *G*
- (p) Find four paths of length three each, from vertex C to vertex C
- (q) Find subgraphs $G \{C\}$ and $G \{B\}$.
- (r) If a new vertex F and edges through F are added to the given graph, such that newly formed graph becomes a wheel, what will be the degree of vertex F?

- iv. Represent graphs of K_4 , $K_{1,3}$ and, $K_{2,2}$ by adjacency matrix and incidence matrix.
- Q.4 a) Attempt any **ONE** question from the following:

(08)

- i. Prove that a tree with n vertices has n-1 edges.
- ii. Use Huffman coding to encode the following symbols with the frequencies listed.

A: 0.08, B: 0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35What is the average number of bits used to encode a character?

b) Attempt any **TWO** questions from the following:

(12)

- i. Define Tree, spanning tree and Full *m*-ary tree with an example for each.
- ii. Prove that the number of vertices in a full Binary tree is always odd.
- iii. Show that there is no tree with degree sequence (1,1,2,2,2,2,3,3,3,3,3,3,3).

[TURN OVER

4

QP Code: 23308

iv. Use Kruskal's algorithm to find a spanning tree of minimum total weight in the graph below. Give the weight of your minimum spanning tree and show your steps.

Q.5 Attempt any **FOUR** questions from the following: (20)

- a) Show that (i) $f(x) = x^2 + 2x + 1$ is big 0 of x^2 (ii) $f(x) = x^2$ is of order less than $g(x) = x^3$
- b) Design algorithms to exchange the values of a and b,(i) using temporary variable and (ii) without using temporary variable.
- c) Define Isomorphism of two graphs. Determine whether following graphs are Isomorphic, Justify your answer.

- d) Draw, if possible, the graph with 6 vertices with degree 1, 2, 2, 3, 3 and 4. If not possible, explain why such graph does not exist.
- e) Given the encoding scheme

 a: 001, b: 0001, e: 1, r: 0000, s: 0100, t: 011, x: 01010

 Find the word represented by

(1)01110100011 (2)0001110000 (3)01001001011

(4) 01100101010 (5) 0000001011

f) Construct Binary search tree for following key sequence: -Jai, Guy, Joy, Anu, Jit, Evy, Amit, Tim, Ron, Kit, Toy, Roy, Kaj, Don.
