6

6

6

- N.B: 1) questions are compulsory
 - 2) From questions 1, 2 and 3 attempt any One from part (a) and any Two from part (b)
 - 3) Attempt any Three from question 4
 - 4) Figures to the right indicate marks

1. (a) i) Let U be an open set in \mathbb{R}^2 containing the rectangle [a, b] X [c, d]. Suppose f: $U \to \mathbb{R}$ is 8 continuously differential function. Show that $g'(x) = \int_c^d \frac{\partial f(x,y)}{\partial x} dy$ where

 $g(\mathbf{x}) = \int_c^d f(x, y) dy \ \forall x \in [a, b].$

- ii) Define the double integral of a bounded function $f : S \to \mathbb{R}$ where $S = [a, b] \times [c, d]$ is a 8 rectangle in \mathbb{R}^2 . Further show with usual notations $m(b-a)(d-c) \le \iint_S f \le M(b-a)(d-c)$
- (b) i) Prove that a continuous function is integrable for a rectangular domain in \mathbb{R}^2 .
 - ii) Evaluate the iterated integral $\int_0^1 \int_{\sqrt{3}y}^{\sqrt{4-y^2}} \sqrt{x^2 + y^2} \, dx \, dy$ by converting to polar coordinates.
 - iii) Evaluate $\int_0^9 \int_{\sqrt{x}}^3 \sqrt{1+y^3} \, dy \, dx$ by reversing the order of integration. Sketch the region 6 of integration.
 - iv) Evaluate $\iint_S x^2 y dA$ where S is the region bounded by the lines 6 2x - y = 1, 2x - y = -2, x + 3y = 0, x + 3y = 1.
- 2. (a) i) Suppose F is a continuous vector field defined on an open connected set U in \mathbb{R}^n . Define 8 a function $\phi: U \to \mathbb{R}$ by $\phi(v) = \int_{v_0}^{v} F$ where v_0 is a fixed point in U and F is conservative. Show that $\nabla \phi(v) = F(v)$. $\forall v \in U$.
 - ii) State and prove Green's Theorem for a rectangle. Evaluate $\oint_c (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$ where *C* is the circle $x^2 + y^2 = 9$. 8
 - (b) i) Evaluate $\int_C \left[\frac{1+y^2}{x^3}dx \frac{1+y^2}{x^3}ydy\right]$ Where *C* is the straight line path joining (1,0) to (2,0) and (2,0) to (2,1).
 - ii) F = (P, Q) is a continuously differentiable function defined on a simply connected 6 region *D* in \mathbb{R}^2 . Show that $\int_c Pdx + Qdy = 0$ around every closed curve *C* in *D* if and only if $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \quad \forall (x, y) \in D$
 - iii) Using Green's theorem evaluate the line integral $\oint_C 2x \cos y \, dx + x^2 \sin y \, dy$, where *C* is the boundary of the region *R* enclosed between $y = x^2 andy = x$ oriented positively.
 - iv) Calculate the work done in moving the particle from the point P = (2, -1) to 6 Q = (-4, 2) by the force field $F(x, y) = (x^2 + 4xy + 4y^2, 2x^2 + 8xy + 8y^2)$, by showing first that *F* is conservative.

8

5

5

5

- ³ (a) i) Define smoothly equivalent parameterization of a surface S in \mathbb{R}^3 . Let S be a smooth parametric surface describe by R and r which are smoothly equivalent functions with R(s, t) = r(G(s, t)) where G(s, t) = u(s, t) i+ v(s, t) j being continuously differentiable, then show that $\iint_{r(A)} f ds = \iint_{R(B)} f ds$ Where G(B) = A.
 - ii) State Divergence Theorem for a solid in 3-space bounded by an orientable closed surface with positive orientation and prove the divergence Theorem for cubical region.
 - (b) i) Evaluate $\iint_S F.ndS$ where S is the hemisphere above the XY plane with unit radius 6 and F(x, y, z) = (x, y, 0).
 - ii) Using Stoke's theorem evaluate $\oint_C F dr$ where $F(x, y, z) = x i + y j + (x^2 + y^2) k$, C 6 is the boundary of the part of the paraboloid $z = 1 x^2 y^2$ in the first octant.
 - iii) Using Stoke's theorem evaluate $\iint_{S} curl F.n dS$ where F(x, y, z) = (xy, yz, zx) where ⁶ S is the triangular surface with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).
 - iv) Assuming S and V satisfy the conditions of the Gauss Divergence theorem and scalar 6 fields f, g have continuous partial derivatives, n is an unit outward normal to surface S and f is a harmonic function. Then prove the following
 - (1) $\iint_{S} (f \nabla g g \nabla f) \cdot n dS = \iiint_{V} (f \nabla^{2} g g \nabla^{2} f) dV$ (2) $\iint_{S} \nabla f \cdot n dS = 0$
- 4
- i) $f: [0,1] \times [0,1] \to \mathbb{R}$ is defined by $f(x,y) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ Show that *f* is not integrable on the given domain.
- ii) Use spherical co-ordinates to evaluate $\iiint_S z \, dx \, dy \, dz$ where *S* is the solid enclosed by $x^2 + y^2 + z^2 = 1$, $z \ge 0$.
- iii) Evaluate the $\int_C f(r)dr$, where f(x, y, z) = (xz, y + z, x) and $C: x(t) = e^t, y(t) = e^{-t}, z(t) = e^{2t}, 0 \le t \le 1$.
- iv) Using Green's Theorem, find the area of the region D whose boundary is positively oriented simple closed curve bounded by the lines y = 1, y = 3, x = 0 and the parabola $y^2 = x$ oriented positively.
- v) Using divergence theorem evaluate $\iint_S F.n \, ds$ where $F(x, y, z) = (x^2, y^2, z^2)$ and S is a surface of the sphere $x^2 + y^2 + z^2 = 25$ above the plane z = 3.
- vi) Find surface area of S, where S is the part of the paraboloid $z = x^2 + y^2$ that lies below 5 the plane z = 9.