Q.P. Code : 38791

		[Time: Three Hours] [Mark	(s:80]
	N.	 Please check whether you have got the right question paper. B: 1. Question.No.1 is compulsory. 2. Attempt any three questions out of the remaining five questions. 3. Figures to the right indicate full marks. 	
Q.1	a)	Find the Laplace Transform of $\frac{\cos\sqrt{t}}{\sqrt{t}}$	05
	b)	Verify Caryley-Hamilton Theorem for $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ and deduce	05
	c)	with usual notation find p of 9P (X = 4) = P (X=2)	05
	d)	Evaluate $\int_c \bar{z} dz$, where c is the upper half of the circle r = 1.	05
Q.2	a)	Find the inverse Laplace-Transform by using convolution theorem $\frac{1}{1}$.	06
	b)	If $f(z) = u + iv$ is analytic and $u + v = \frac{2 \sin 2x}{e^{2y} + e^{-2y} - 2\cos 2x}$. find	06
	c)	Find a matrix P that diagonalises the matrix $A =$	08
		$\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$ and hence. Find the diagonal matrix and transforming matrix.	
Q.3	a)	Find the inverse Laplace Transform of $\frac{S^2+2S+3}{(S^2+2S+5)(S^2+2S+2)}$.	06
	b)	find the Bilinear Transformation which maps the points $z = -1$ 1 ∞ onto the points $w = -i$ -i i	06
	c)	Using the Kuhn-Tucker conditions solve the following N.L.P.P.	08
		Maximise $z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$	
		Subject to $x_1 + x_2 \le 2$ $2x_1 + 3x_2 \le 12$	
		$x_1, x_2, x_3 \ge 0$	

Q.4	a)	Evaluate $\int_{0}^{2+i} (2x + iy + 1) dz$ along the curve $x = t + 1$								0	
		$v = 2t^2 - 1$									
	b)	Find the co	efficient (of corre	elation	betwee	n x and	1 v for	the	0	
	0)	following data:									
		x: 62	64	65	69	70	71	72	74		
		y: 126	125	139	145	165	152	180	208		
	c)	Reduce the	followin	g quad	ratic for	rm				0	
	,	$2x_1^2 + x_2^2 - 3x_3^2 - 8x_2x_3 - 4x_3x_1 + 12x_1x_2$ to normal form									
		throught congruent transformation. Also find its rank,									
		signature and value-class.									
Q.5	a)	Evaluate $\int_{0}^{2\pi} \frac{\cos 2\theta}{1-\sin^2 \theta} d\theta$									
	b)	The marks obtained by students in a college are normally θ									
	-)	distributed	with mea	n 65 ar	nd varia	ance 25	. if 3 st	udents	s are	Ū	
		selected at 1	andom f	rom thi	s colleg	ge wha	t is the	probal	oility		
		that at least	one of th	nem wo	uld hav	ve score	ed mor	e then	75		
		marks?									
	c)	c) Find the orthogonal matrix which diagonalises the real								08	
	$\begin{bmatrix} 7 & 4 & -4 \end{bmatrix}$										
		symmetrix matrix. $\begin{vmatrix} 4 & -8 & -1 \\ 4 & 1 & 0 \end{vmatrix}$									
			E.	-4 -	-1 -0	7					
0.6	a)	Using Lagra	ange's m	ultiplie	r metho	od solv	e the fo	ollowir	ng	0	
	N.L.P.P.								U		
		Optimise Z	$= 4x_1 +$	$-8x_2 -$	$x_1^2 - x_2^2$	χ^2_2					
	Subject to $x_1 + x_2 = 4$										
		X	$x_1, x_2 \ge 0$)							
	b)	Find the eig	en value	s and e	igen ve	ectors for	or			0	
		. [4	6 6]							
		$A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	3 2								
	c)	L-1 -5 $-2Jfind inverse Laplace Transform of$								Û	
	0)	e^{4-3s} $e^{1/s+a}$								U	
		1) ${(s+4)^{5/2}}$	11) tar	$n^{-1} \left(\frac{b}{b} \right)$)						