$(2\frac{1}{2}$ Hours)

Total Marks: 75

- **N.B**.(1) All questions are **compulsory**.
 - (2) **Figures** to the **right** indicate **full** marks
 - (3) Use of logarithmic tables or nonprogrammable calculator is allowed

Physical constants:

$$\begin{split} N = &6.022 \times 10^{23} \\ k = &1.38 \times 10^{-23} \text{ J K}^{-1} \\ F = &96500 \text{ Coulombs} \\ R = &8.314 \text{ J K}^{-1} \text{ mol}^{-1} \\ h = &6626 \times 10^{-34} \text{ J s} \\ c = &3.0 \times 10^8 \text{ m s}^{-1} \\ m_e = &9.109 \times 10^{-31} \text{kg} \\ 1 \text{ a m u} = &931 \text{ MeV} = &1.66 \times 10^{-27} \text{ kg} \\ \pi = &3.142 \end{split}$$

- 1. Attempt any three of the following :
 - A. Derive an expression to show that elevation in boiling point is directly 5 proportional to mole fraction of the solute.
 - B. Define osmotic pressure. Explain what is meant by abnormal molar mass. 5

C.	Define and explain the term phase with suitable examples of one, two and	5
	three phase systems using two components.	

- D. Draw and explain the phase diagram for lead silver system.
- E. Draw and explain the phase diagram for three component system having 5 one pair of partially miscible liquids.
- F. When 1.84 g of carbon tetrachloride was dissolved in 100 g of benzene, 5 the freezing point depression was found to be 0.613 K. Calculate the molecular weight of carbon tetrachloride if $K_f = 5.12$ K mol⁻¹ kg.
- 2. Attempt **any three** of the following:

А.	Give any five characteristics features of catalyst.	5
В.	Derive Michaelis-Menten equation for enzyme catalysis.	5
C.	With respect to BET equation answer the following:	5
	(i) State the equation.	
	(ii) identify the terms involved in the equation.	
	(iii) test the validity of the equation.	
D.	Differentiate between physical and chemical adsorption.	5
E.	What are surfactants? Give the application of surfactants in detergents	5
	And food industry.	
F.	Describe any two methods to explain the charge on a colloidal particle.	5

5

3.	At	tempt any three of the following:	
0		Explain the terms (i) chemical cell (ii) concentration cell .Give one example of each.	5
	B.	Explain how quinhydrone electrode is used to determine pH of a solution	5
		Derive an expression for emf of an electrolyte concentration cell with transference reversible to cation.	5
	D.	A solution is 0.01m w.r.t NaCl and Na_2SO_4 each.Calculate the activity coefficient of NaCl in this solution.(A = 0.509 for water at 298 K)	5
	E.	Derive an expression for a emf of the following cell:	5
		- +	
		$Cd (Hg) \mid CdSO_4 \mid Cd (Hg)$	
		$a_1 a_2$	
	Б		~
	F.	Define the ionic strength of a solution. Calculate the ionic strength of a	5
		solution containing 0.1 m KCl and 0.01 m CaCl ₂	
Δ	Δtte	empt any three of the following:	
т.		Differentiate between thermoplastic and thermosetting polymer.	5
		The intrinsic viscosity of a solution is $0.36 \text{ dl } \text{g}^{-1}$. The constants	5
	D.	K and α in Mark-Houwink equation are 3.6x 10 ⁻⁴ and 0.64 respectively.	5
		Calculate the molecular weight of the polymer.	
	C.	Explain the Schottky and Frenkel defect in solids.	5
		Prove:	5
		(i)There are four molecules of NaCl per unit cell of the crystal.	
		(ii) There are four atoms per unit cell of face centred cubic lattice of an	
		element.	
	E.	Derive Bragg's equation.	5
	F.	The first order reflection maxima from (100),(110) and (111) planes of a	5
		given cubic crystal occurs at 7.2°,10.2° and 12.5° respectively. What type	
		cubic lattice does the crystal possess?	
_			4
5.4		ay true or false for the following statement:	4
	` '	The reaction $N_{2(g)} + 3H_{2(g)} = 2 NH_{3(g)}$ has three degrees of freedor	n.
	· · ·	The Gibbs phase rule is given by : $F = C + P - 2$.	1180
	(\mathbf{C})	The addition of nonvolatile solute to the solvent increases the vapour press of the solution.	ure
	(1)	A service solution.	

(d) A system with zero degree of freedom is known as invariant system.

OR

4

4

4

`4

5.A. Match the following:

Column A	Column B
(p) $p/p^{\circ} = 1 - x_2$	(i) phase rule for three component system.
(q) $F = 3 - P$	(ii) van't Hoff equation
(r) $\pi V = nRT$	(iii) condensed phase rule
(s) $F = 5 - P$.	(iv) Raoult's Law
	(v) phase rule for one component system.

- 5.B. Say **true** of **false** for the following:
 - (a) Langmuir's isotherm holds good at low pressure but fails at high pressure.
 - (b) Adsorption of hydrogen on charcoal is physical adsorption.
 - (c) Potential developed at the fixed layer in a colloidal solution is known as Nernst potential.
 - (d) The inhibitors accelerate the rate of reaction.

OR

5.B. Match the following:

Column A

Column B

(p)	Adsorption is multilayer in thickness	(i) heterogeneous in nature
(r)	colloidal solution Soap Invertase	 (ii) BET (iii) catalyst (iv) colloidal electrolyte (v) inhibitor

5.C. Say **true** or **false** for the following:

(a) The expression for activity of HCI and NaCI will be same.

- (b)The value for E^{0}_{cell} is 0.0 V in chemical cell.
 - (c) Chemical energy is converted into electrical energy in galvanic cells.

(d) Quinhydrone electrode functions satisfactorily from pH range 1 to 14.

4

3

3

Column B

5.C. Match the following:	
Column A	

(p) Glass electrode(q) Quinhydrone electrode	(i) amalgam electrode(ii) concentration cell
(r) $Ag AgNO_3 AgNO_3 Ag^+ a_1 a_2$	(iii) ion selective electrode.
(s) Cd (Hg)	(iv) redox electrode.

(v) chemical cell

- 5.D. Say **true** or **false** for the following.
 - (a) Number of atoms per unit cell of body centred cubic crystal is 4.
 - (b) Weight average molecular weight depends only on number of polymer molecules.
 - (c) There are six Cl^{-} surrounding one Na⁺ in NaCl unit cell.

OR

5.D. Match the following: Column A

- Column B
- (i) natural polymer

- (1.
- (r) epoxy polymer

(p) NaCl

(q) starch

- (ii) BCC lattice(iii) FCC lattice
- (iv) liquid polymer