		(3 Hours) (Total Marks :	80)	
		Please check whether you have the right question paper.		
N.B.:		1) Questions No. 1 is compulsory.		
		2) Solve any three question out of remaining five questions.		
		3) Assume suitable data if necessary.		
		4) Figures to the right indicate full marks .		
1	Solv	ve any four out of five :	(20)	
	a)	Explain Input and Output characteristics of CE configuration of BJT.		
	b)	Convert following decimal number to Binary, Octal, Hexadecimal and Gray code (154)10		
	c)	Design EX-OR gate using only NOR gates.		
	d)	Draw two truth tables illustrating the outputs of a full-adder, one table for the sum		
	,	output		
	e)	Covert $S - R$ filp-flop to D flip-flop.		
2.	a)	Implement following using only one 8: 1 Multiplexer and few gates :	(10)	
		$f(A, B, C, D) = \sum m(1, 2, 3, 5, 6, 9, 10, 11, 14)$		
	b)	Using Quine McCluskey Method determine Minimal SOP form for	(10)	
		$f(A, B, C, D) = \sum m(1, 3, 5, 6, 8, 9, 12, 14, 15) + \sum d(4, 10, 13)$		
3.	a)	Explain Collector to base bias Circuit with its stability factor.	(10)	
	b)	With neat diagram explain operation of ALU IC74181.	(10)	
4.	a)	Design a Mod 10 synchronous counter using S-R Flip-flop.	(10)	
	b)	Minimize the following four variable logic function using K-map :	(10)	
		$f(A, B, C, D) = \sum m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15)$ and design using		
		only NAND gates.		
5.	a)	Simplify following equation using Boolean algebra and Design using basic gates	(10)	
	u)	f(A B C) = A'B + BC' + BC + AB'C'	(10)	
	• `	$\int (\mathbf{A}, \mathbf{B}, \mathbf{C}) = \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{C} + \mathbf{A} \mathbf{B} \mathbf{C}$	(10)	
	D)	Explain Entity in VHDL and Write VHDL program for half subtractor circuit.	(10)	
6.	Solv	ve the following (Any Four):	(20)	
	a)	Explain working of Universal Shift Register.		
	b)	Working of T flip flop.		
	c)	Explain working of Differential Amplifier.		
	d)	Write VHDL program for EX-NOR gate.		
	e)	Explain working of Encoder and Decoder.		