Duration:3 hours	Total marks:80
N.S.: (1) Question No.1 is compulsory. (2) Solve any three from remaining five questions. (3) Figures to the right indicate full marks	
 Q. 1 Answer the following questions: (a)Write the entity declaration in VHDL for NOR gate. (b) Add (22)₁₀ to (56)₁₀ in BCD. (c) Convert decimal 57 into binary, base 7and Hexadecimal. (d) Construct Hamming code for 1010. (e) Perform subtraction using 2's complement for (10)₁₀-(7)₁₀ (f) State and prove De Morgan's law. (g) Convert (77)₁₀ into Excess-3 code. (h) Perform addition of (34)₈ and (62)₈ (i)Find 8's complement of the numbers (37)₈ and (301)₈ (j)Explain ASCII code in brief. 	(20)
Q. 2(a) Simplify the following equation using K map to obtain SOP equation minimum equation using only NAND gates.	n and realize the
$F(A,B,C,D) = \sum m(1,2,4,6,9,10,12,14) + d(3,7,13)$ (b) Implement full adder using 8:1 mux.	(10) (10)
Q. 3(a) Obtain the minimal expression using QuineMc-Cluskey method $F(A,B,C,D)=\sum m(1,2,3,5,6,10,11,13,14) + d(4,7)$ (b) What is race around condition? How to overcome it?	(10) (10)
Q. 4(a) Design 3 bit asynchronous counter and draw the timing diagram. (b) Convert JK flipflop to SR flipflop and D flipflop.	(10) (10)
Q. 5(a) Compare TTL and CMOS with respect to different parameters. (b) Explain the features of VHDL and its modeling styles.	(10) (10)
 Q. 6 Write short notes on(any four) a) Moore and Mealy machine b) Sequence generator c) Universal shift register d) Priority encoder e) Carry look ahead adder 	(20)
