Q.P. Code: 21411

(3 hours)

Max. Marks: 80

5

•	4			. •				
In	CT	rı	ın	Ť٦	n	n	C	•
111	LO L	ıı	ı	u	₹,		. 7	

- (1) Solve any four questions.
- (2) Figures to the right indicate full marks.
- (3) Assume suitable data wherever necessary and mention it clearly.
- (4) Answers to the sub question of an individual question should be written together and one below other.
- (5) Use of Refrigerant Charts, Psychrometric Chart and Steam Tables is allowed.
- (6) All questions carry equal marks
- Q1 a) List down types of compound compression systems. What are the advantages of 5 compound compression over single stage compression?
 - b) Discuss the HCFC-22 phaseout Schedule in India.
 - 5 c) With the help of a neat sketch discuss a Year round Air Conditioning system. 10 Explain each component in the System.
- **Q2** a) 25 m³ of air at 15 °C DBT and 13 °C WBT is mixed with 15 m³ of air at 25 °C **10** DBT and 18 °C WBT. Assuming barometric pressure of one standard atmosphere, determine the DBT and WBT of the resulting mixture.
 - b) What are the types of throttling devices? Discuss in details with a neat 10 sketch the working of a thermostatic expansion valve.
- Q3a) Compare LiBr- Water and Aqua – Ammonia absorption refrigeration system. 5 b) A vapor compression refrigeration system of 10 TR capacity using R-22 works on 10 evaporator and condenser temperature of -10 °C and 40 °C. Using P-h chart, calculate:
 - ii) COP i) Compressor power
 - iii) Mass flow rate iv) Piston displacement assuming Volumetric efficiency = 100 % and v) Heat rejected.
 - c) What are natural refrigerants? Discuss with application of each type.

Q.P. Code: 21411

Q4	A hall is to be maintained at 24 °C dry bulb temperature and 60 % relative humidity under the following conditions:								
	Outdoor conditions	= 38 °C DBT and 28 °C WBT							
	Sensible heat load in the room								
	Latent heat load in the room	= 13.6 kW							
	Total infiltration air	$= 1200 \text{ m}^3/\text{hr}$							
	Apparatus dew point temperature = 10 °C								
		Quantity of recirculated air from the hall = 60%							
	• •	If the quantity of recirculated air is mixed with the conditioned air after the cooling							
	coil, find the following:	coil, find the following:							
	i) The condition of air leaving	i) The condition of air leaving the conditioner coil and before mixing with the							
	recirculated air	recirculated air							
	ii) The condition of air before entering the hall								
	iii) The mass of air entering the cooler								
	iv) The mass of total air passing through the hall								
	v) The by-pass factor of the cooling coil; and								
	vi) The refrigeration load on the cooling coil in Tons of Refrigeration.								
Q5	a) What are the possible sources of noise and vibration in an air conditioning system? Discuss methods used to reduce the noise level and isolate vibrations.								
	b) Explain with neat sketches DX and flooded evaporators.								
Q6	Write short notes (any four):		20						
Qu	a. Air Washers								
	_	b. Marine Air Conditioning							
	c. Pressure and Temperature Controls								
		d. ASHRAE Numbering System of Refrigerants							
	e. Split Air Conditioners								
	t. LEED Rating System for Gree	f. LEED Rating System for Green Buildings							