OP Code: 20444

(Time: $2\frac{1}{2}$ Hours) (Total Marks: 75

- **N.B**: 1. All questions are compulsory.
 - 2. **Figures** to the **right** indicate **full** marks.
 - 3. Use of logtable / non-programmable calculator is allowed.
 - 4. **Answer** to **both sections** should be written in separate **answer books** and submitted separately.

Physical Constants:

 $N_A = 6.022 \times 10^{23} \text{ mo}^{-1}$ $h = 6.626 \times 10^{-34} Js$ F = 96500 C $C = 3 \times 108 \text{ ms}^{-1}$ $R = 8.315 \text{ Jk}^{-1} \text{ mol}^{-1}$ F = 19 a.m.u.H = 1 a.m.u. O = 16 a.m.u.

 $1 \text{ amu} = 1.66 \times 10^{-27} \text{ kg}$ C = 12 am

Section - I

- 1. Attempt **any three** of the following:
 - (A) Define Dipole moment. How is it used to:

5

5

- (i) identify cis and trans isomers.
- (ii) determine geometry of CO₂ and SO₂.
- (B) The frequency of separation between rotational lines of CO is $19.2 \times 10^2 \text{m}^{-1}$. Calculate the rotational constant and equilibrium internuclear distance for CO.
- (C) Explain the Rule of mutual exclusion using suitable example.

5 5

- (D) For an anharmonic oscillator, show that the frequencies of fundamental, first and second overtone bands are approximately in the ratio of 1:2:3.
- (E) Explain the different modes of stretching and leading bending vibrations. 5
- (F) The force constant of H F bond is 9.2×10^2 Nm⁻¹. Calculate the vibrational frequency of the molecule.

5

- 2. Attempt **any three** of the following :
 - (A) Derive an expression for emf of electrolyte concentration cell without 5 transference reversible to cation.
 - (B) What is meant by liquid junction potential? How does it arise? How is it 5 eliminated?
 - (C) Derive Nernst equation for emf of galvanic cell. 5
 - (D) Device and derive an expression for emf of electrolyte concentration cell 5 with transference reversible to anion.
 - (E) Define ionic strength. Calculate the ionic strength of a solution containing 5 0.1m CaCl₂ and 0.05m NaCl.

QP Code	:	20444
----------------	---	-------

(f) For the cell Pt, $Cl_2(g) \mid NaCl \text{ aq sdn.} \mid Cl_2(g)$, Pt

	20 bar 40 bar.	
	(i) Identify the type of cell.	
	(ii) Write the electrode reactions.	
	(iii) Calculate the E _{cell} at 298 K.	
3. (A)	Answer the following:	4
	Say whether the following statement is true of false:	
	(a) Hononuclear diatomic molecules have zero dipole moment.	
	(b) The molecules of Carbon tetrachloride are microwave active.	
	(c) Water molecule has three degrees of vibrational freedom.	
	(d) When the wavelength of the scattered radiation is same as that of	
	incident radiation, stokes lines are obtained in Raman spectra.	
	OR	
(A)	Choose the correct answer:	4
	(p) Raman spectra	
	(i) visible (ii) microwave (iii) uv	
	(q) When, Rayleigh scattering is conserved.	
	(i) $\lambda s > \lambda i$ (ii) $\lambda s = \lambda i$ (iii) $\lambda s < \lambda i$	
	(r) Methane has dipole moment.	
	(i) 1.6 (ii) Zero (iii) 4.0	
	(s) Bond between atoms of higher masses vibrate at frequency	
	than the bands between lighter atoms.	
	(i) lower (ii) higher (iii) ten times more	
		_
3. (B)	Say whether the following statement is true of false :	4
	(a) Liquid junction potential is minimized by using salt bridge.	
	(b) For chemical cell $E_{cell}^{\circ} = 0$.	
	(c) In concentration cell, the two half cells are made up of different electrodes.	
	(d) Oxidation takes place at anode in galvanic cells.	
(T)	OR	
(B)		
	(p) Saturated solution of is used to prepare salt bridge.	4
	(i) NaCl (ii) NH ₄ HO ₃ (iii) BaCl ₂	
	(q) The activity of AlCl ₃ is given by	
	(i) $27\text{m}^4\gamma^4$ (ii) $9\text{m}^4\gamma^4$ (iii) $8\text{m}^3\gamma^3$	
	(r) The relation between ionic strength μ and molality m for uni-univalent	
	electrolyte is	
	(i) $\mu = 2m$ (ii) $2\mu = m$ (iii) $\mu = m$ TURN OVE	R

(s) Pt \mid Sn²⁺, Sn⁴⁺ is ______ electrode.

		(i) Redox	(ii)	Amalgam	(iii) metal - metal ion	
			5	Section - II		
4.	Attempt any three of the following:					
	(A)	Discuss the symm molecule.	etry op	perations and	assign the point group to BO	Cl ₃ 5
	(B)	Explain C _{3V} and C _o	_{ov} poin	t groups with	a suitable example for each.	5
	(C)	Explain the follow each. (a) Inversion cent		-	ents with a suitable example froper rotational axis.	for 5
	(D)	What is Walsh cor	relatio	n diagram ?	Draw a neat and labelled Wal AH, type of molecule.	sh 5
	(E)	Draw a neat labelled	d molec	cular orbital d	agram for H ₂ O molecule showing energy levels. Give its magnet	
	(F)	Explain, the electric basis of band theor		perties of sem	iconductors and insulators on t	he 5
5.	Atte	mpt any three of the	e follov	ving:		
	(A)	Prove that the pack 0.74.	king de	nsity for face	centered cubic (fcc) structure	is 5
	(B)	For body centered (a) Number of ato	oms pe	r unit cell (bc	c)	5
	(~)				ic radius (r) is 124 pm.	
	(C)	(a) Derive a relation material.	ship be	tween lattice	constant (a) and density of crys	tal 3
	(2.9×1	10 ⁻⁸ cm. Atom	n crystallises in bcc structure wi	
	(D)	Differentiate between	en Sch	ottky defect	and Frenkel defect.	5
	(E)	Write a short note	on Con	ventional sup	erconductors.	5
	(F)	Explain the terms:				5
		(a) Unit cell and	_			
		(b) Ideal and Hard	a supei	rconductors.		

6. (A)	Select and write the appropriate answer:	4	
	(a) The order of energy of the molecular orbitals in triangular H_3^+ ion is		
	(i) $3\sigma > 2\sigma = 1\sigma$ (ii) $3\sigma = 2\sigma > 1\sigma$ (iii) $3\sigma < 2\sigma = 1\sigma$		
	(b) Axis of symmetry present in H ₂ O molecule is		
	(i) C_2 (ii) C_3 (iii) C_{∞}		
	(c) H ₂ molecule belongs to point group.		
	$(i) C_{\infty V} \qquad (ii) D_{\infty h} \qquad (iii) C_{2h}$		
	(d) When a pure crystal of germanium is doped with, p-type		
	semiconductor is obtained.		
	(i) Ga (ii) As (iii) P		
	OR		
(A)	State whether the following statements are true or false :	4	
	(p) The symmetry element identity is designated by symbol 'I'.		
	(q) On the basis of symmetry, the symbol 'e' represents a doubly degenerate orbital.		
	(r) BeH ₂ molecule has linear geometry.		
	(s) The energy gap between the molecular orbitals increases as the number		
	of overlapping atomic orbitals increases.		
6 (B)	Select and write the appropriate answer:	3	
o. (<i>D</i>)	(a) The number of atoms in simple cubic (sc) unit cell is		
	(i) 1 (ii) 2 (iii) 4		
	(b) Point defect occurring due to presence of foreign atoms in crystal lattice		
	is defect.		
	(i) vacancy (ii) impurity (iii) interstitial (self)		
	(c) The number of five and six membered rings in C_{60} fullerene is		
	respectively.		
	(i) 4 and 5 (ii) 12 and 18 (iii) 12 and 20		
	OR		
(B)	State whether the following statement are true or false :	3	
	(p) Lattice points signify the position of centre of particles and not the size.		
	(q) In silver halides, Schottky defect is predominant.		
	(r) High temperature super conductors require liquid helium for cooling.		