Q. P. Code: 13596

[Total Marks: 80]

(3 Hours)

N.B. (1) Question No. 1 is compulsory.	
(2) Attempt any three questions from remaining.	
(3) All questions carry equal marks.	
(4) Assume suitable data wherever necessary.	
1. Answer any four of the following:	
(a) Explain why inverse kinematic solution is not unique for generic robots.	5
(b) Define joint and link parameters.	5
(c) Differentiate between the robots direct and inverse dynamics problem.	5
(d)Explain Reach and Stroke of a robot.	5
(e) Define pixel function, shrink operator and swell operator.	5
2. a) Find the position of the tool tip of the Adept one robot when the joint variables are $q = \left[\frac{\pi}{4}, -\frac{\pi}{3}, 120, \frac{\pi}{2}\right]^{T}$	e 10
Given d= $[877, 0.0, d3, 200]^{T}$ mm and a= $[425, 375, 0.0, 0.0]^{T}$ mm.	
b) Obtain the inverse kinematics analysis of a 3 axis planar articulated robot	10
3. a) Formulate the dynamic model of a simple one axis robot.	10
b) Consider a 3 axis planar articulated robot. The tool configuration function	10

of this robot is as follows:

$$W(q) = \begin{bmatrix} a1c1 + a2c12\\a1s1 + a2s12\\d3\\0\\0\\exp(\frac{q3}{\pi}) \end{bmatrix}$$
 Find the tool configuration Jacobian matrix V (q).

Q. P. Code: 13596

4. a) Explain robot motion planning using Bug 1 and Bug 2 algorithm.	10
b) What is a GVD? Sketch all the GVD's resulting due to the basic	10
interactions of the obstacle .Derive the necessary equations.	
5 .a) What are moments of an image? How the moments are used in the	10
shape analysis of objects?	
b) Explain the 4 point minimal PNP trajectory for pick and place	10
of objects by using a robot manipulator.	
6. Write short notes on any four of the following:	20
(a) Potential functions.	
(b) Wave front planner.	
(c)Template matching.	
(d)Cartesian space trajectory	
(e)Edge detection	