(2^{1})	 ה⊢	lours)
	<i></i>	

[Total Marks: 60]

8

4

8

4

- **N.B.** :(1) All questions are compulsory.
 - (2) Figures to the right indicate full marks.
 - (3) Symbols have their usual meaning unless otherwise stated.
 - (4) Use of log tables / non-programmable calculator is allowed.
- 1. (a) Attempt any one : -
 - Give a simple theoretical description of the deuteron and obtain an expression that relates the binding energy of the two nucleon system to width and depth of the assumed square wave potential.
 - (ii) Give an account of Nilsson's model of the nucleus. Sketch the Nilsson diagram up to nucleon number 20. Use it to predict the ground state spin and parity of ₉F¹⁹ and ₁₁Na²³.
 Given: deformation of these nuclei is 0.10 and 0.11 respectively.
 - (b) Attempt any one : -
 - (i) What is the prediction of the simple shell model regarding the ground state angular momentum and parity of nuclei when the nucleus is
 (i) even Z even N (ii) odd A (iii) odd Z odd N
 - (ii) Define nuclear quadrupole moment. What information does the measurement of the electric quadrupole moment of a nucleus provide? What are prolate and oblate nuclei?
- 2. (a) Attempt any one : -
 - (i) Obtain the conditions under which different types of β decays are energetically possible.
 - (ii) Explain in brief the principal process by which the γ rays interact with matter.
 - (b) Attempt any one : -
 - (i) What led Pauli to postulate the existence of neutrino?
 - (ii) Check whether ${}_{92}U^{238}$ is unstable against α emission. Given: $M(U^{238}) = 238.048608 U$, $M(Th^{234}) = 234.043583 U$ and $M(He^4) = 4.00260 U$

{Turn Over}

3.	(a)	Attempt any one : -	8
	(i)	Discuss the Solar Fusion and CNO cycle.	
	(ii)	Define Q value of a nuclear reaction. Obtain an expression for non-	
(b) (i) (ii)		relativistic Q Value. State the conditions for exoergic and endoergic	
		reactions.	
	(b)	Attempt any one : -	4
	(i)	Calculate the energy required to remove the least tightly bound neutron from Ca^{40} . Given: $M(Ca^{40}) = 39.962589 U$, $M(Ca^{39}) = 38.970691U$,	
		M(n) = 1.008665 U and 1 U = 931.5 MeV	
	(ii)	Discuss the mass distribution of Fission fragments.	
4. ((((((a)	Attempt any one : -	8
	(i)	Draw and explain in detail the Baryons and Mesons Octets.	
	(ii)	Discuss in detail the November revolution.	
	(b)	Attempt any one : -	4
	(i)	Draw the Feynman diagrams, in terms of transitions at quark level for	
		$\Delta^0 \rightarrow p^+ + \pi^-$ reaction as a purely hadronic weak interaction and by a strong interaction.	
	(ii)	Explain the primitive vertex for quantum electrodynamics and quantum	
		chromodynamics. State the mediating particles in these cases.	
5. A ((Atte	mpt any four: -	12
	(a)	How does larger angular momentum of the projectiles in nuclear	
		scattering experiments affect its de Broglie wavelength? What are its	
	(h)	advantages? Which nuclei have radius equal to half that of Te^{128} ?	
	(d)	Find the energy of a neutrine in the following K conture relation:	
	(C)	Find the energy of a neutrino in the following K-capture relation.	
		$_{55}$ $_{55}$ $_{51}$ $_{-1}e^{\circ} \rightarrow _{54}$ $_{2}e^{\circ}$ $_{-1} + \nu$. The total energy released in this process is	
		35.5 keV and the binding energy of the K-electron in Xe^{131} is 35 keV. The	
		daughter nucleus is formed directly in the ground state. {Turn Over}	

- (d) What are the selectin rules for γ decay?
- (e) Explain the term Direct Reaction. State its characteristics.
- (f) Find the unknown particle *X* in the nuclear reactions given below:
 - 1) $_{13}Al^{27}(X,p) = {}_{14}Si^{30}$
 - 2) $_9F^{19} + _1H^1 \rightarrow _8O^{16} + X$
 - 3) $_{11}Na^{23} + X \rightarrow _{10}Ne^{20} + _{2}He^{4}$
- (g) List all the leptons and their corresponding numbers in a tabular form.
- (h) What are strange particles? Justify their name.
