(3 hours)

Total marks: 60

N.B.

- 1. Attempt any two questions from question numbers 1, 2, 3 and any two questions from question numbers 4, 5, 6.
- 2. Figures to the right indicate full marks
- 3. Simple non-programmable calculator is allowed.
- Let X and Y be two independent rvs following $U(0,\theta)$. Suppose we want to test 1 (08)a. the hypothesis $H_0: \theta = 2$ against $H_0: \theta = 1$. Calculate the probability of type one error and power of the test based on the following critical regions. (i) $W = \{(x, y); xy > 0.75\}$ (ii) $W = \{(x, y); \frac{x}{y} > 0.75\}.$
 - (07)Define Uniformly Most Powerful (UMP) test. Let $X_1, X_2, ..., X_n$ b. be iid rvs having pdf $f(x/\theta)$, $\theta > 0$ where

$$f(x/\theta) = \begin{cases} \theta x^{\theta-1} & ; \quad 0 < x < 1 \\ 0 & ; \quad otherwise \end{cases}$$

Find the LIMP test for

Find the UMP test for

(i)
$$H_0: \theta = \theta_0$$
 against $H_1: \theta > \theta_0$

- $H_0: \theta = \theta_0$ against $H_1: \theta < \theta_0$ (ii)
- 2 The probability density functions of random variable X under H_0 and H_1 are as (08)a. follows : f(x)

$$H_0: X \sim f_0(x) \quad \text{where}$$

$$f_0(x) = \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-x^2}{2}\right] \quad ; -\infty < x < \infty$$
against $H_1: X \sim f_1(x)$, where
$$f_1(x) = \frac{1}{2} \exp(-|x|) \quad ; -\infty < x < \infty.$$

Find MP test of size α based on a single observation for testing H_0 against H_1 .

(07)b. Let X be a rv following $C(1, \theta)$. Obtain a most powerful test of level of significance α to test $H_0: \theta = 0$ against $H_1: \theta = 1$. State clearly the critical regions for (i) k>1 (ii) k=1.

3 a. Let the rv X has pdf (pmf) $f(x/\theta)$, where $f(x/\theta)$ has a MLR in T(x). Consider (15) the one-sided testing problem, $H_0: \theta \le \theta_0$ against $H_1: \theta > \theta_0$; $\theta_0 \in \Theta$. Show that any test of the form

$$\phi(x) = \begin{cases} 1 & ; & T(x) > t_0 \\ \gamma & ; & T(x) = t_0 \\ 0 & ; & T(x) < t_0 \end{cases}$$
(1)

has non-decreasing power function and is UMP of its size α provided that $\alpha > 0$. Moreover show that for every $0 \le \alpha \le 1$ and every $\theta_0 \in \Theta$ there exists a $t_0, -\infty < t_0 < \infty$ and $0 \le \gamma \le 1$ such that the test described in (1) is UMP of its size α for testing H_0 against H_1 .

- 4 a. If R denotes total number of runs when there are n₁ elements of type I and n₂ (10) elements of type II, derive expression for *E*(*R*) and *var*(*R*). If n₁= 12, n₂ = 10 and observed value of R is 18, using normality, conclude about randomness of the sequence.
 - b. Show that for large n, $V = 4nD_n^{+2}$ follows χ^2 distribution with 2 d.f. If n = 30 and (05) $\chi^2_{2,0.05} = 5.99$ find value of D_n^+ .
- 5 a. State assumptions of Wilicoxon's Signed rank test. Describe test procedure to test (08) $H_0: M = M_0$ against $H_1: M > M_0$.
 - b. Find the distribution of median for sample of size 4 from uniform distribution (07) U(0, 1). Find mean and variance of the distribution.
- 6 a. How is Mann-Whitney test different from the Wald-Wolfowitz test? For two (08) samples of size m and n each from continuous populations show that, with standard notations Mann-Whitney statistic satisfies the recurrence relation, $r_{m,n}(u) = r_{m,n-1}(u) + r_{m-1,n}(u-n)$
 - b. Describe p^{th} quantile (K_p) of a continuous distribution f(x). How would you find (07) point estimate of K_p from sample? Prove or disprove,

$$P[X_{(r)} < K_p] = \sum_{i=r}^n p^i (1-p)^{n-i}$$

Where $X_{(r)}$ denotes rth order statistics. If n =4, show that

$$P[X_{(1)} < K_{0.5} < X_{(4)}] = 0.875$$

Hence find 87.5% confidence interval for the median if sample values are 3.2, 2.8, 4.9, 3.7.