## Q. P. Code: 28231

(3 Hours)

[Total marks: 80]

Instructions:

- 1) Attempt any two questions from each section.
- 2) All questions carry equal marks.
- 3) Answer to Section I and section II should be written in the same answer book.

SECTION-I (Attempt any two questions)

| 1. | A) Solve the linear Diophantine equations $247x + 91y = 39$ .<br>B) State and prove Euler's criterion for quadratic residue of p.                                                                                                                                                                                                                                                                                                          | [10]<br>[10] |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2. | A) Let $r, n \in N$ and $l = \min\{r, n\}$ . then show that $n^r = \sum_{k=1}^l C(n, k)k! S(r, k)$ .                                                                                                                                                                                                                                                                                                                                       | [10]         |
|    | B) For $n \in N$ , How many square free integers do not exceed $n$ ?                                                                                                                                                                                                                                                                                                                                                                       | [10]         |
| 3. | <ul> <li>A) Give any sequence of mn + 1 distinct real numbers then prove that there exist either an increasing sequence of length m + 1 or decreasing sequence of length n + 1 or both.</li> <li>B) During a month with 30 days a baseball team plays at least one game a day, but on more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games.</li> </ul> | [10]<br>[10] |
| 4. | <ul> <li>A) Let G be a graph and e be an edge. Then show that e is a cut edge if and only if e is not on a cycle.</li> <li>B) Let d<sub>1</sub> ≤ ≤ d<sub>n</sub> be the vertex degrees of G. Suppose that, for each k &lt; n/2 with d<sub>k</sub> ≤ k, the condition d<sub>n-k</sub> ≥ n - k holds. Then, prove that G is Hamiltonia.</li> </ul>                                                                                          | [10]<br>an.  |

[10]

P.T.O....

SECTION-II (Attempt any two questions)

- 5. A) State and prove Gronwall's inequality to the uniqueness of the solution of the initial value problem. [10]
  B) Obtain approximate solution to with in t<sup>5</sup> of the initial value problem

   <sup>dx</sup>/<sub>dt</sub> = xt + t<sup>2</sup>y, x(0) = 1.
   <sup>dy</sup>/<sub>dt</sub> = xy + t, y(0) = 2.
   [10]
- 6. A) If  $\phi_1(x)$  is a solution of  $L_2(y) = 0$  on an interval *I* and  $\phi_1(x) \neq 0$  on *I* then show that the other linearly independent solution of  $L_2(y) = 0$  is  $\phi_2(x) = 0$

$$\phi_1(x) \int_{x_0}^x \left[ \frac{1}{\phi_1(t)^2} e^{-\int a_1 t dt} \right] dt.$$
[10]

B)Solve the following IVP.

$$\frac{dx}{dt} = 2x + y + z, \quad x(1) = 1 
\frac{dy}{dt} = 2y + 2z, \quad y(1) = 2 
\frac{dz}{dt} = 2z \qquad z(1) = 3.$$
[10]

7. A)Show that the Legendre polynomial  $P_n(x)$  of degree *n* is given by

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$
 [10]

B) Obtain solution in the form of power series of the following Differential equation:

$$\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + (4t^2 - 2)x = 0.$$
[10]

8. A) Solve  $\frac{\partial u}{\partial y} + c \frac{\partial u}{\partial x} = 0$ , u = u(x, y) with u(x, 0) = h(x) for a given  $h: \mathbb{R} \to \mathbb{R}$ . [10]

B) Solve 
$$u_x \cdot u_y = u$$
,  $u(x, 0) = x^2$ . [10]

