(3 Hours)

[Total Marks: 80]

(10)

(10)

N.B.: (1) Question **No.1** is **Compulsory**.

- (2) Attempt any three questions from remaining questions.
- (3) Assume **suitable** data wherever required but **justify** the same.
- (3) Figures to the right indicate full marks.
- (4) Use of **Statistical Table** is allowed.
- **1.** (a) Define model. Explain different models with suitable example.
 - (b) Explain Naylor Finger approach for validation of simulation model.
- **2.** (a) Consider a single server system. Let the arrival distribution be uniformly distributed between 1 (10) and 10 minutes and the service time distribution is as follows:

Service Time (Min)	1	2	3	4	5	6
Probability	0.04	0.20	0.10	0.26	0.35	0.05

Develop the simulation table and analyze the system by simulating the arrival and service of 10 customers. Random digits for inter-arrival time and service times are as follows:

Customer	1	2	3	4	5	6	7	8	9	10
R.D. for Inter-arrival Time		853	340	205	99	669	742	301	888	444
R.D. for Service Time	71	59	12	88	97	66	81	35	29	91

- (b) Explain the following terms: Event Scheduling, Process Interaction, Activity Scanning, (10) Bootstrapping, and Terminating Event.
- 3. (a) Suppose that the life of an industrial lamp, in thousands of hours, is exponentially distributed (10) with failure rate $\lambda = 1/3$ (one failure every 3000 hours, on average).
 - i) Determine the probability that lamp will last longer than its mean life of 3000 hours.
 - ii) Determine the probability that the lamp will last between 2000 and 3000 hours.
 - iii) Find the probability that the lamp will last for another 1000 hours, given that it is operating after 2500 hours.
 - (b) Explain Direct Transformation method for random variate generation using Normal and (10) Lognormal distribution.
- 4. (a) Test the following random numbers for independence by Poker test. (10) {0.594, 0.928, 0.515, 0.055, 0.507, 0.351, 0.262, 0.797, 0.788, 0.442, 0.097, 0.798, 0.227, 0.127, 0.474, 0.825, 0.007, 0.182, 0.929, 0.852} Use $\alpha = 0.05$, $\chi^2_{0.05,1} = 3.84$
 - (b) Explain Inventory system. Discuss the cost involved in inventory systems. (10)
- 5. (a) Give the equations for steady state parameters for M/G/1 queue and derive M/M/1 from (10) M/G/1.
 - (b) A federal agency studied the records pertaining to the number of job-related injuries at an (10) underground coal mine. The values for the past 100 months were as follows:

Injuries per Month (0	1	2	3	4	С	6
Frequency of Occurrence	35	40	13	6	4	1	1

- i. Apply the Chi-Square test to these data to test the hypothesis that the underlying distribution is Poisson.
- ii. Apply the Chi-Square test to these data to test the hypothesis that the underlying distribution is Poisson with mean 1.0.

Use level of significance $\alpha = 0.05$ and $\chi^2_{0.05,2} = 5.99$, $\chi^2_{0.05,3} = 7.81$

- 6. Write short notes on (any two):
 - (a) Poisson Process and its properties.
 - (b) Manufacturing and Material Handling Systems.
 - (c) Initialization bias in steady state simulation.
 - (d) Steps in simulation study.

(20)