		(3Hours) [Total Marks:	80]
Note	e: A A F	Question No. 1 is compulsory. Answer any three from the remaining five questions. Assume suitable data if necessary and justify the same. Figures to the right indicate the marks.	
Q1.	a	Why QR factorization is important?	5
	b	Define eigen value and eigen vector.	5
	c	How subspace is different from subset?	5
	d	Prove that if cholesky factorization exists then the matrix is positive	5
		definite.	
Q2.	a	If $A = \begin{bmatrix} 5 & 5 & 10 \\ 5 & 3 & 5 \\ 10 & 5 & 4 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ Solve Ax=b using PLU factorization.	15
		Compare PLU factorization with simple LU factorization?	
	b	Define Singular Value Decomposition.	5
Q3.	a	Explain Gauss Seidal iterative technique to solve sparse linear systems.	10
		Compare it with Jacobi method.	
	b	Determine the values of 'b' , at which the following system of equations	10
		are consistent. Under such condition how many solutions exist? Justify	
		your answer.	
		$3x_1 + 2x_2 + 5x_3 = 4$	

 $2x_1+2x_2+4x_3=b$

 $2x_1 + 4x_2 + 6x_3 = 8$

- Q4. Least square problem can not be solved uniquely if the columns of 'A' 10 are not linearly independent. Why? If $A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ solve the Least square problem using QR factorization method.
 - b Define span and base vector for a vector space. Two vectors are given as 10 $V_1=(1, 2, 3)$ and $V_2=(2, 1, 3)$ construct a vector V_3 such that the vectors V_1 , V_2 and V_3 span the entire R^3 space.

- **Q5.** Let $A = \begin{bmatrix} 25 & 2 \\ 2 & 4 \end{bmatrix}$. Find all the eigen values of 'A' using iterative 15 techniques. Convergence is guaranteed in this case. Why?
 - b Write Shifted QR algorithm to determine the eigen values iteratively. 5
- **Q6.** a Determine the QR factorization of A, using Gram Schmidt process of 10 orthogonalization where $A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \\ 1 & 2 \end{bmatrix}$.
 - b Construct a '2x2' matrix whose determinant is very large but the 10 condition number is the best. Justify your answer.
